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Abstract 

A relational model representation of the effect of op- 
erators is learned and used to improve the acquisition of 
heuristics for problem solving. A model for each operator 
in a problem solving domain is learned from example ap- 
plications of the operator. The representation is shown to 
improve the rate of learning heuristics for solving symbolic 
integration problems. 

I. Introduction 

Machine learning research in problem solving domains 
has focus& on acquiring heuristics to guide the applica- 
tion of operators. Predominantly, researchers have assumed 
an operator representation (e.g. program code) which hides 
the operator semantics [5,6,7,10]. We call this operator rep- 
resentat ion opaque in that the transformation performed by 
the operator is not explicit. In contrast, transparent opera- 
tor representations (e.g. STRIPS-like) enable the learning 
agent to reason with operator definitions. This research 
examines two issues: 

o how to learn transparent operator representations from 
opaque represent ations. 

o how to improve the process of acquiring problem solv- 
ing heuristics by using transparent operator represen- 
t ations. 

We demonstrate the approach with a PROLOG imple- 
mentation, named PET, which learns to solve symbolic in- 
tegration problems. 

Section 3 formalizes the representation for operators 
used by PET and describes an algorithm for learning the 
representation. We call this representation of an opera- 
tor a relational model. We discuss a two step algorithm 
for learning a relational model for an opaque operator OP 
from example applications of OP. First PET induces a gen- 
eral form, PRE, for states in which OP is usefully applied 
and a general form, POST, for states resulting from the 
application. Then PET selects relations from background 
knowledge [12] which link features of PRE with features of 
POST. Discovering a good relational model is formulated 
as a state space search. 

Section 4 discusses how relational models improve the 
process of learning problem solving heuristics. The repre- 
sentation reveals features of heuristics which may be overly 
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specific. Further, the representation suggests training in- 
stances which test these features, thereby guiding general- 
ization. 

For preliminaries, section 2 briefly reviews our past re- 
search on PET which serves as a “testbed” for experiment- 
ing with operator representations. 

II. The PET System 

[4,5 
This section presents an overview of the PET system 

I 
. Two central features of PET are episodic learning of 

use ul problem solving macros and perturbation to auto- 
matically generate training instances. 

Episodic learning is an incremental approach to learn- 
ing heuristics which recommend problem solving opera- 
tors and sequences. The LEX system [7,8] learns heuristic 
rules which recommend individual operators. The heuris- 
tics learned are an accurate compilation of past problem 
solving experience, but, taken together, may not enable ef- 
ficient problem solving. The contextual information of an 
operator’s position in problem solving seQuences is not cap 
tured by LEX. MACROPS [3], on the other hand, learns 
operator sequences but does not acquire heuristics to se- 
lect useful sequences to apply to particular problem states. 
Generally useful sequences are not identified and reuse of 
the macros during problem solving results in combinatorial 
explosion [2]. 

PET learns heuristics for operator sequences by incre- 
mentally learning new sub-goals. PET can only learn a 
heuristic for an operator if the purpose of the operator is 
understood. Initially, this restricts PET to learning heuris- 
tics for operators which achieve a goal state. Problem states 
covered by these heuristics are learned as sub-goals. Now 
PET learns heuristics for operators which achieve the sub- 
goals. Operator sequences thus grow incrementally. 

Perturbation is a technique for reducing teacher in- 
volvement during training by automatically generating near 
examples and near-misses. The role of the teacher in learn- 
ing from examples is to generate and classify training in- 
stances. This role is diminished by shifting responsibility 
to the student. Given a positive instance POS for operator 
OP, PET generates and classifies further instances by: 

- generation: make a minimal modification of POS by 
applying perturbation operators to POS. These o 

P 
er- 

ators select a feature F of POS and generate POS by 
deleting F from POS or by replacing F by a sibling in 
a concept hierarchy tree. 

- classification: POS’ is a positive instance for operator 
yields the same (sub)goal as ap- 
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Viewed abstractly, episodic learning of problem solving 
involves learning why individual operators are useful and 
nerturbation is useful in learning when operators should 
be applied. Sections 3 and 4 demonstrate the importance 
of learning an explicit representation of what individual 
operators do during problem solving. 

III. Learning Relational Modela 

This section formalizes the relational model represen- 
tation of operators and presents an algorithm for learning 
the represent ation from examples. 

A relational model of an operator OP is an augmen- 
tation of a heuristic rule for OP. Following Amarel [I], a 
heuristic for OP is a production rule which explicitly rep- 
resents OP’s pre and post conditions. The form of the rule 
is: 

PREYPOST 

and has the interpretation: 

IF the current state, S, matches PRE, and the state 
resulting from apply(OP,S) matches POST THEN 
OP is recommended in S. 

The pre and post state conditions are represented as 
parse trees of problem states. The following is an example 
production rule which recommends the operator 

OP: 
J 

in state J x2 dx (“+C” is dropped for simplicity): 

/\ /\ 1 op . 
X 3 

/\ /\ 

Notzthat 
2 x 3 
the state resulting from the operator appli- 

cation, POST, is explicitly represented as the RHS of the 
rule. 

Heuristic rules are generalized using “standard” gener- 
alization techniques. For example, the candidate elimina- 
tion algorithm (71 is used by LEX to form generalizations 
of heuristic rules of the form PRE + OP. Applying the 
algorithm to states resulting from OP’s application yields a 
generalization of POST. For each operator OP in a prob- 
lem solving domain, PET uses the dropping conditions and 
climbing hierarchy tree generalization operators to induce 
general forms both for states in which OP is recommended 
and for states resulting from recommended applications.* 

Relational models are an augmentation of heuristic 
rules with background knowledge. The background knowl- 
edge consists of domain specific relations. In the do- 
main of mathematics, PET uses the relations equal( X,Y 
suc(N,M), sum(L,M,N), product(L,M,N), 
and derivative( X,Y) . 

A relational model is a tuple (OP, PRE, POST, AUG). 
The augmentation, AUG, is a set of relations {refl, . . , rel,} 
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Instead, rep 

from background knowledge. Each relation reZ; E AUG 
has a relation name, or functor, and m 2 2 arguments, 
{a17 a2, * - * 9 a,}. The purpose of the augmentation is to re- 
late subexpressions of PRE with subexpressions of POST, 
thereby “linking” PRE to POST. To establish these 
links, each aj is constrained to be a subexpression of ei- 
ther PRE or POST, such that not all aj are from the 
same source. (Actually, this is a simplification. By allow- 
ing aj to be a subexpression of an argument of another 
relation in AUG, composites of relational descriptors can 
be formed by “daisy-chaining” a link between PRE and 
POST through multiple descriptors. For example, the re- 
lation that PRE is the double derivative of POST is repre- 
sented by derivutive(PRE,X),derivative(X,POST). See [9] 
for a description of the algorithm which permits chaining 
and its ramifications.) 

An evaluation function c estimates the “quality” of a 
relational model by measuring the coverage of PRE and 
POST by AUG. Intuitively, coverage is a measure of the 
number of nodes of PRE and POST which are in argu- 
ments of AUG. Formally, 

c((OP, PRE, POST, AUG)) = 1 SI 1 + 1 S2 1 

where ] S ] is the cardinality of set S and 
S1 = {nodes n in PRE: 3rel(ul, a2.. . , a,) E AUGA 

3i, 1 5 i < m, such that descenduntof(n, a;)} 

S2 is similarly defined for nodes in POST. Note that an in- 
dividual node in PRE or POST can contribute to coverage 
at most once since Sr and S2 are sets not bags. 

In addition to representing the transformation per- 
formed by an operator, a relational model constrains the 
interpretation of the heuristic. For example, the rule on 
page 3 is augmented with eg and sue relations, yielding the 
relation al model: 

I 
. T 

-suc(2,3)- 

The interpretation of the heuristic is: 

IF the current state, S, matches s x2dx and the 

state resulting from apply(OP,S) matches f such 
that the relations in the augmentation hold, THEN 
OP is recommended in S. 

Given an unaugmented rule R = (OP, PRE, POST), a 
relational model of R is constructed by searching for the set 
of instantiated augmentation relations, AUG, which best 
covers R. This search is implemented in PET as a beam- 
search through the space of candidate augmentations. In 
this space, nodes are represented by the tuple 
where Pool is the set of subexpressions of PR B 

AUG, Pool 
and POS d 

not covered by AUG. In particular, the initial state is 
(nil, {PREuPOST}). Th ere is one operator in this search 
which is described by: 



Given a state (AUG, Pool), 
SELECT a relational descriptor, D, from the set of 

background concepts. 
INSTANTIATE D with members of Pool or their 

sub-expressions. 
REMOVE selected Pool members from Pool, 

yielding Pool’. 
ADD instantiated descriptor to AUG, 
yielding AUG’. 

Generate new state (AUG’, Pool’). 

The search terminates with AUG when continued search 
fails to improve coverage. 

Built-in biases reduce the non-determinism of the search 
for an augmentation with maximal coverage and minimal 
complexity. In the selection of a relational descriptor, pref- 
erence is given to more primitive relations, such as equal 
and sue, over more complex relations, such as product. F’ur- 
t her, there are semantic constraints on the subexpressions 
selected to instantiate a relation. For example, the first pa- 
rameter in the derivative relation must contain a variable of 
differentiation. Finally, note that the algorithm tries large 
subexpressions from PRE and POST before small subex- 
pressions, thereby maximizing the coverage of the augmen- 
tation. If two relational models have the same coverage, 
then the one with fewer relations is preferred. 

This section introduced relational models and briefly 
described how they are constructed. It demonstrated that 
relational models can be built using the general techniques 
of state-space search. This search is constrained by built- 
in bias toward simple models with maximum coverage and 
by semantic constraints on relational descriptors. Section 
4 describes an application of relational models. 

IV. Using Relational Models 

This section describes how PET uses relational models 
to improve learning of problem solving heuristics. Rela- 
tional models explicitly represent the transformation per- 
formed by operators. This enables PET to reason with 
operator semantics to guide the generation of training in- 
st antes. 

As described in section 2, PET applies perturbation op- 
erators to a single teacher-supplied training instance to gen- 
erate and classify multiple near-examples and near-misses.* 
Perturbation automates part of the teacher’s role, but not 
the task of selectivefy generating training instances which 
are most useful in enabling concept convergence. Relational 
models present an alternative to naively generating all pos- 
si ble training inst antes. 

PET selectively generates training instances which test 
features of a concept suspected to be spurious or overly 
specific. Spurious features are removed with the dropping 
conditions generalization operator. Rather than test the 
relevance of every feature, PET heuristically selects can- 
didates. Given relational model (OP, PRE, POST, AUG) 
the heuristic states: 

Features of PRE which are not transformed by OP 
may be irrelevant to the rule recommending OP. 

Those features of PRE which are not transformed are 
exactly those linked by the eq relation to features of POST. 
This heuristic identifies candidate irrelevant features which 
can be tested with perturbation. 

Relational models also guide the generation of training 
instances which test features suspected to be overly specific. 
Again, the selection of candidate perturbation operators is 
heuristically guided. The heuristic relies on two sources of . - 
mformat Ion: 

o relational models - which represent the transformation 
performed by an individual rule application. 

o episodes - which represent the “chaining” of individual 
rules into a useful problem solving sequence. 

Consider an episode E consisting of rule applications 
rl,r27---,fn- Each rule r; is represented with relational 
model (OP;, PRE;, POST;, AUG;). AUG; represents the 
“intra-rule” links between PRE; and POST;. “Inter-rule” 
links are implicit in E. As reviewed in section 2, r; is added 
to an episode if it enables r;+l. This establishes an implicit 
link between POST; and PREi+l. Constraints imposed 
on r; by rj, i < j, are discovered by following inter-rule 
links through E and intra-rule links through rules. These 
constraints suggest perturbation operators for r;. 

The heuristic of locating overly specific features by 
propagating constraints through episodes is motivated by 
this observation: 

Due to the incremental growth of episodes, for any 
pair of rules r; and rj, i < j in E, the size of the 
training set for rj exceeds the size of the training 
set for ri because every training instance for r; is 
also a training instance for rj. 

This suggests that features of PREj and POSTi are 
more general than features of PRE; and POSTi. PET 
selects perturbation operators which capitalize on this ob- 
servation by back-propagating general features of PREj to 
potentially overly-specific features of PRE;. 

We illustrate this back-propagation with an example 
from Utgoff [ 111. Assume that from prior training for op- 
erator 

OPl : sin2x + I - cos2 x 

PET has acquired the following relational model: 

f 

I i\ /\ 
/*\ x /*\ x 

sin 

Note that this model has been generalized from ground 
instances such that PRE,,l matches states of the form 
J(sin2 2) nonzerointeger sin x dx. 

Now PET is given the training instance I sin’ x sin x dx 
with the advice to apply the opaque operator: 

* LEX uses a similar technique. See IS]. 



Of 2 : sinn 2 + (sin2 2); 

PET applies the operator, yielding J sin2 z)’ sin z dx. As 
reviewed in section 2, PET can only \ earn a rule for this 
training instance if it achieves a known (sub)goal (allowing 
the rule to be integrated into an existing episode). In this 
example, the training instance achieves the subgoal defined 
by PRE,i. The following relational model for the training 
instance is built by the state-space algorithm in section 3: 

/ 
sin 

Now that episodic learning has associated the relational 
models for OR1 and OP2, perturbation operators are ap- 
plied to generalize the model for OP2. The relaxed con- 
straint in PRJ!&~~ is regressed through the episode with 
the potential of identifying a feature of RR&,2 which can 
be relaxed (generalized). The inter-rule link implicit in 
episodes connects the relational model of OP2 with the re- 
lational model of OPl. Matching POST& with RR&r 
binds variable ni with 3. This suggests that the relational 
model for OP2 is overly-specific. Perturbation tests relax- 
ing this constraint by generating a training instance with 
the feature slightly modified. This is done by traversing 
intra-rule links represented by the augmentation. Specifi- 
cally, PET generates a useful training instance by the fol- 
lowing steps: 

Locate the relation r E AUG,,2 with argument of 3 
from POSTop2. In this case, r = product(2,3,6). 

Perturb r to generate a slight variant, f. This is done in 
three steps: First, replace the argument with a neigh- 
boring sibling in a concept hierarchy tree. In this case, 
replace 3 with 4. Second, locate an argument p in r 
such that p is a sub-expression of PRE, 2 and replace 
it by free variable Z. In this case, p = g Third, eval- 
uate the resulting partially instantiated descriptor to 
uniquely bind x to p’. In this example, p’ = 8 and 
# =product (2,4,8). 

Generate PREL,, a perturbation of PRE,,2, by re- 

placing p by p’. Here, PRh$, = s sin’ z sin z dx 

Classify PRE$, as an example or near-miss of a state 
in which op2 is useful. As reviewed in section 2, 
PRG,,:! is an example if apply(OP2,PREb2) achieves 
the same subgoal as apply(OP2,PRE0p2). In this exam- 
ple, PRE$, is an example which achieves the subgoal 
of PREopl. 

/ 
sin 

X 

Note that the product(2,n~,n2) augmentation descriptor 
corresponds to the concept of even-integer(n2). PET uses 
this relational model to guide the incremental refinement 
of the rule with subsequent training (see [9]). 

In addition to this example, PET learns relational mod- 
els for eighteen other operators. The longest episode is a 
sequence of seven operations. We are currently examining 
metrics for measuring performance of learning algorithms. 
Representational adequacy is of major importance. For 
heuristic accuracy, description languages for rules should 
represent relations observed among features during train- 
ing. Relational models address this concern. 

V. Summary 

This paper examines the effect of operator represent a- 
tion on the acquisition of heuristics for problem solving. 
Opaque operator represent at ions, which conceal the trans- 
formation performed by the operator, are frequently used. 
Transparent operator representations reveal the transfor- 
mation, allowing reasoning about operator effects. How- 
ever, it is unreasonable to assume transparency in “real- 
world” learning domains. 

This paper presents an approach to learning transpar- 
ent representations from examples of opaque operator ap- 
plications. The transparent representation is called a rela- 
tional model. Domain-specific background knowledge, rep 
resented as a set of relations, augments rules which model 
the transformation of each operator. The learning algo- 
rithm is described as a state-space search for an augmen- 
tation which is simple yet predictive. Once learned, a rela- 
tional model for an operator OP is also a heuristic which 
identifies states in which OP is recommended. 

Lastly, the paper examines an advantage of the rela- 
tional model representation over “traditional” opaque rep 
resentat ions. The representation reveals features of heuris- 
tics which are candidates for generalization. A method 
for automatically generating training instances which test 
these candidates is presented. 

The research ideas are implemented in a system which 
learns to solve symbolic integration problems. Please re- 
fer to [9] for a more complete description of this research 
including an algorithm for generalizing over a set of rules 
represented as relational models. 

Finally, PET generalizes the original training instance 
with examples generated by perturbation. The following 
relational model is the minimal generalization of this (2 
member) training set: 
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