
Learning Operator Transformations

Bruce W. Ported,
Dennis F. Kibler

Information and Computer Science Department
University of California at Irvine

Irvine, Ca 92717*+

Abstract

A relational model representation of the effect of op-
erators is learned and used to improve the acquisition of
heuristics for problem solving. A model for each operator
in a problem solving domain is learned from example ap-
plications of the operator. The representation is shown to
improve the rate of learning heuristics for solving symbolic
integration problems.

I. Introduction

Machine learning research in problem solving domains
has focus& on acquiring heuristics to guide the applica-
tion of operators. Predominantly, researchers have assumed
an operator representation (e.g. program code) which hides
the operator semantics [5,6,7,10]. We call this operator rep-
resentat ion opaque in that the transformation performed by
the operator is not explicit. In contrast, transparent opera-
tor representations (e.g. STRIPS-like) enable the learning
agent to reason with operator definitions. This research
examines two issues:

o how to learn transparent operator representations from
opaque represent ations.

o how to improve the process of acquiring problem solv-
ing heuristics by using transparent operator represen-
t ations.

We demonstrate the approach with a PROLOG imple-
mentation, named PET, which learns to solve symbolic in-
tegration problems.

Section 3 formalizes the representation for operators
used by PET and describes an algorithm for learning the
representation. We call this representation of an opera-
tor a relational model. We discuss a two step algorithm
for learning a relational model for an opaque operator OP
from example applications of OP. First PET induces a gen-
eral form, PRE, for states in which OP is usefully applied
and a general form, POST, for states resulting from the
application. Then PET selects relations from background
knowledge [12] which link features of PRE with features of
POST. Discovering a good relational model is formulated
as a state space search.

Section 4 discusses how relational models improve the
process of learning problem solving heuristics. The repre-
sentation reveals features of heuristics which may be overly

* N ew address: Computer Science Department, The University of Texas at

Austin.

** This research was supported by the Naval Ocean Systems Center under con-

tract N00125-81-1165.

specific. Further, the representation suggests training in-
stances which test these features, thereby guiding general-
ization.

For preliminaries, section 2 briefly reviews our past re-
search on PET which serves as a “testbed” for experiment-
ing with operator representations.

II. The PET System

[4,5
This section presents an overview of the PET system

I
. Two central features of PET are episodic learning of

use ul problem solving macros and perturbation to auto-
matically generate training instances.

Episodic learning is an incremental approach to learn-
ing heuristics which recommend problem solving opera-
tors and sequences. The LEX system [7,8] learns heuristic
rules which recommend individual operators. The heuris-
tics learned are an accurate compilation of past problem
solving experience, but, taken together, may not enable ef-
ficient problem solving. The contextual information of an
operator’s position in problem solving seQuences is not cap
tured by LEX. MACROPS [3], on the other hand, learns
operator sequences but does not acquire heuristics to se-
lect useful sequences to apply to particular problem states.
Generally useful sequences are not identified and reuse of
the macros during problem solving results in combinatorial
explosion [2].

PET learns heuristics for operator sequences by incre-
mentally learning new sub-goals. PET can only learn a
heuristic for an operator if the purpose of the operator is
understood. Initially, this restricts PET to learning heuris-
tics for operators which achieve a goal state. Problem states
covered by these heuristics are learned as sub-goals. Now
PET learns heuristics for operators which achieve the sub-
goals. Operator sequences thus grow incrementally.

Perturbation is a technique for reducing teacher in-
volvement during training by automatically generating near
examples and near-misses. The role of the teacher in learn-
ing from examples is to generate and classify training in-
stances. This role is diminished by shifting responsibility
to the student. Given a positive instance POS for operator
OP, PET generates and classifies further instances by:

- generation: make a minimal modification of POS by
applying perturbation operators to POS. These o

P
er-

ators select a feature F of POS and generate POS by
deleting F from POS or by replacing F by a sibling in
a concept hierarchy tree.

- classification: POS’ is a positive instance for operator
yields the same (sub)goal as ap-

278

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

Viewed abstractly, episodic learning of problem solving
involves learning why individual operators are useful and
nerturbation is useful in learning when operators should
be applied. Sections 3 and 4 demonstrate the importance
of learning an explicit representation of what individual
operators do during problem solving.

III. Learning Relational Modela

This section formalizes the relational model represen-
tation of operators and presents an algorithm for learning
the represent ation from examples.

A relational model of an operator OP is an augmen-
tation of a heuristic rule for OP. Following Amarel [I], a
heuristic for OP is a production rule which explicitly rep-
resents OP’s pre and post conditions. The form of the rule
is:

PREYPOST

and has the interpretation:

IF the current state, S, matches PRE, and the state
resulting from apply(OP,S) matches POST THEN
OP is recommended in S.

The pre and post state conditions are represented as
parse trees of problem states. The following is an example
production rule which recommends the operator

OP:
J

in state J x2 dx (“+C” is dropped for simplicity):

/\ /\ 1 op .
X 3

/\ /\

Notzthat
2 x 3
the state resulting from the operator appli-

cation, POST, is explicitly represented as the RHS of the
rule.

Heuristic rules are generalized using “standard” gener-
alization techniques. For example, the candidate elimina-
tion algorithm (71 is used by LEX to form generalizations
of heuristic rules of the form PRE + OP. Applying the
algorithm to states resulting from OP’s application yields a
generalization of POST. For each operator OP in a prob-
lem solving domain, PET uses the dropping conditions and
climbing hierarchy tree generalization operators to induce
general forms both for states in which OP is recommended
and for states resulting from recommended applications.*

Relational models are an augmentation of heuristic
rules with background knowledge. The background knowl-
edge consists of domain specific relations. In the do-
main of mathematics, PET uses the relations equal(X,Y
suc(N,M), sum(L,M,N), product(L,M,N),
and derivative(X,Y) .

A relational model is a tuple (OP, PRE, POST, AUG).
The augmentation, AUG, is a set of relations {refl, . . , rel,}

l This research

resentations which

does not present a novel generalization technique.

improve existing techniques are proposed.

Instead, rep

from background knowledge. Each relation reZ; E AUG
has a relation name, or functor, and m 2 2 arguments,
{a17 a2, * - * 9 a,}. The purpose of the augmentation is to re-
late subexpressions of PRE with subexpressions of POST,
thereby “linking” PRE to POST. To establish these
links, each aj is constrained to be a subexpression of ei-
ther PRE or POST, such that not all aj are from the
same source. (Actually, this is a simplification. By allow-
ing aj to be a subexpression of an argument of another
relation in AUG, composites of relational descriptors can
be formed by “daisy-chaining” a link between PRE and
POST through multiple descriptors. For example, the re-
lation that PRE is the double derivative of POST is repre-
sented by derivutive(PRE,X),derivative(X,POST). See [9]
for a description of the algorithm which permits chaining
and its ramifications.)

An evaluation function c estimates the “quality” of a
relational model by measuring the coverage of PRE and
POST by AUG. Intuitively, coverage is a measure of the
number of nodes of PRE and POST which are in argu-
ments of AUG. Formally,

c((OP, PRE, POST, AUG)) = 1 SI 1 + 1 S2 1

where] S] is the cardinality of set S and
S1 = {nodes n in PRE: 3rel(ul, a2.. . , a,) E AUGA

3i, 1 5 i < m, such that descenduntof(n, a;)}

S2 is similarly defined for nodes in POST. Note that an in-
dividual node in PRE or POST can contribute to coverage
at most once since Sr and S2 are sets not bags.

In addition to representing the transformation per-
formed by an operator, a relational model constrains the
interpretation of the heuristic. For example, the rule on
page 3 is augmented with eg and sue relations, yielding the
relation al model:

I
. T

-suc(2,3)-

The interpretation of the heuristic is:

IF the current state, S, matches s x2dx and the

state resulting from apply(OP,S) matches f such
that the relations in the augmentation hold, THEN
OP is recommended in S.

Given an unaugmented rule R = (OP, PRE, POST), a
relational model of R is constructed by searching for the set
of instantiated augmentation relations, AUG, which best
covers R. This search is implemented in PET as a beam-
search through the space of candidate augmentations. In
this space, nodes are represented by the tuple
where Pool is the set of subexpressions of PR B

AUG, Pool
and POS d

not covered by AUG. In particular, the initial state is
(nil, {PREuPOST}). Th ere is one operator in this search
which is described by:

Given a state (AUG, Pool),
SELECT a relational descriptor, D, from the set of

background concepts.
INSTANTIATE D with members of Pool or their

sub-expressions.
REMOVE selected Pool members from Pool,

yielding Pool’.
ADD instantiated descriptor to AUG,
yielding AUG’.

Generate new state (AUG’, Pool’).

The search terminates with AUG when continued search
fails to improve coverage.

Built-in biases reduce the non-determinism of the search
for an augmentation with maximal coverage and minimal
complexity. In the selection of a relational descriptor, pref-
erence is given to more primitive relations, such as equal
and sue, over more complex relations, such as product. F’ur-
t her, there are semantic constraints on the subexpressions
selected to instantiate a relation. For example, the first pa-
rameter in the derivative relation must contain a variable of
differentiation. Finally, note that the algorithm tries large
subexpressions from PRE and POST before small subex-
pressions, thereby maximizing the coverage of the augmen-
tation. If two relational models have the same coverage,
then the one with fewer relations is preferred.

This section introduced relational models and briefly
described how they are constructed. It demonstrated that
relational models can be built using the general techniques
of state-space search. This search is constrained by built-
in bias toward simple models with maximum coverage and
by semantic constraints on relational descriptors. Section
4 describes an application of relational models.

IV. Using Relational Models

This section describes how PET uses relational models
to improve learning of problem solving heuristics. Rela-
tional models explicitly represent the transformation per-
formed by operators. This enables PET to reason with
operator semantics to guide the generation of training in-
st antes.

As described in section 2, PET applies perturbation op-
erators to a single teacher-supplied training instance to gen-
erate and classify multiple near-examples and near-misses.*
Perturbation automates part of the teacher’s role, but not
the task of selectivefy generating training instances which
are most useful in enabling concept convergence. Relational
models present an alternative to naively generating all pos-
si ble training inst antes.

PET selectively generates training instances which test
features of a concept suspected to be spurious or overly
specific. Spurious features are removed with the dropping
conditions generalization operator. Rather than test the
relevance of every feature, PET heuristically selects can-
didates. Given relational model (OP, PRE, POST, AUG)
the heuristic states:

Features of PRE which are not transformed by OP
may be irrelevant to the rule recommending OP.

Those features of PRE which are not transformed are
exactly those linked by the eq relation to features of POST.
This heuristic identifies candidate irrelevant features which
can be tested with perturbation.

Relational models also guide the generation of training
instances which test features suspected to be overly specific.
Again, the selection of candidate perturbation operators is
heuristically guided. The heuristic relies on two sources of . -
mformat Ion:

o relational models - which represent the transformation
performed by an individual rule application.

o episodes - which represent the “chaining” of individual
rules into a useful problem solving sequence.

Consider an episode E consisting of rule applications
rl,r27---,fn- Each rule r; is represented with relational
model (OP;, PRE;, POST;, AUG;). AUG; represents the
“intra-rule” links between PRE; and POST;. “Inter-rule”
links are implicit in E. As reviewed in section 2, r; is added
to an episode if it enables r;+l. This establishes an implicit
link between POST; and PREi+l. Constraints imposed
on r; by rj, i < j, are discovered by following inter-rule
links through E and intra-rule links through rules. These
constraints suggest perturbation operators for r;.

The heuristic of locating overly specific features by
propagating constraints through episodes is motivated by
this observation:

Due to the incremental growth of episodes, for any
pair of rules r; and rj, i < j in E, the size of the
training set for rj exceeds the size of the training
set for ri because every training instance for r; is
also a training instance for rj.

This suggests that features of PREj and POSTi are
more general than features of PRE; and POSTi. PET
selects perturbation operators which capitalize on this ob-
servation by back-propagating general features of PREj to
potentially overly-specific features of PRE;.

We illustrate this back-propagation with an example
from Utgoff [111. Assume that from prior training for op-
erator

OPl : sin2x + I - cos2 x

PET has acquired the following relational model:

f

I i\ /\
/*\ x /*\ x

sin

Note that this model has been generalized from ground
instances such that PRE,,l matches states of the form
J(sin2 2) nonzerointeger sin x dx.

Now PET is given the training instance I sin’ x sin x dx
with the advice to apply the opaque operator:

* LEX uses a similar technique. See IS].

Of 2 : sinn 2 + (sin2 2);

PET applies the operator, yielding J sin2 z)’ sin z dx. As
reviewed in section 2, PET can only \ earn a rule for this
training instance if it achieves a known (sub)goal (allowing
the rule to be integrated into an existing episode). In this
example, the training instance achieves the subgoal defined
by PRE,i. The following relational model for the training
instance is built by the state-space algorithm in section 3:

/
sin

Now that episodic learning has associated the relational
models for OR1 and OP2, perturbation operators are ap-
plied to generalize the model for OP2. The relaxed con-
straint in PRJ!&~~ is regressed through the episode with
the potential of identifying a feature of RR&,2 which can
be relaxed (generalized). The inter-rule link implicit in
episodes connects the relational model of OP2 with the re-
lational model of OPl. Matching POST& with RR&r
binds variable ni with 3. This suggests that the relational
model for OP2 is overly-specific. Perturbation tests relax-
ing this constraint by generating a training instance with
the feature slightly modified. This is done by traversing
intra-rule links represented by the augmentation. Specifi-
cally, PET generates a useful training instance by the fol-
lowing steps:

Locate the relation r E AUG,,2 with argument of 3
from POSTop2. In this case, r = product(2,3,6).

Perturb r to generate a slight variant, f. This is done in
three steps: First, replace the argument with a neigh-
boring sibling in a concept hierarchy tree. In this case,
replace 3 with 4. Second, locate an argument p in r
such that p is a sub-expression of PRE, 2 and replace
it by free variable Z. In this case, p = g Third, eval-
uate the resulting partially instantiated descriptor to
uniquely bind x to p’. In this example, p’ = 8 and
=product (2,4,8).

Generate PREL,, a perturbation of PRE,,2, by re-

placing p by p’. Here, PRh$, = s sin’ z sin z dx

Classify PRE$, as an example or near-miss of a state
in which op2 is useful. As reviewed in section 2,
PRG,,:! is an example if apply(OP2,PREb2) achieves
the same subgoal as apply(OP2,PRE0p2). In this exam-
ple, PRE$, is an example which achieves the subgoal
of PREopl.

/
sin

X

Note that the product(2,n~,n2) augmentation descriptor
corresponds to the concept of even-integer(n2). PET uses
this relational model to guide the incremental refinement
of the rule with subsequent training (see [9]).

In addition to this example, PET learns relational mod-
els for eighteen other operators. The longest episode is a
sequence of seven operations. We are currently examining
metrics for measuring performance of learning algorithms.
Representational adequacy is of major importance. For
heuristic accuracy, description languages for rules should
represent relations observed among features during train-
ing. Relational models address this concern.

V. Summary

This paper examines the effect of operator represent a-
tion on the acquisition of heuristics for problem solving.
Opaque operator represent at ions, which conceal the trans-
formation performed by the operator, are frequently used.
Transparent operator representations reveal the transfor-
mation, allowing reasoning about operator effects. How-
ever, it is unreasonable to assume transparency in “real-
world” learning domains.

This paper presents an approach to learning transpar-
ent representations from examples of opaque operator ap-
plications. The transparent representation is called a rela-
tional model. Domain-specific background knowledge, rep
resented as a set of relations, augments rules which model
the transformation of each operator. The learning algo-
rithm is described as a state-space search for an augmen-
tation which is simple yet predictive. Once learned, a rela-
tional model for an operator OP is also a heuristic which
identifies states in which OP is recommended.

Lastly, the paper examines an advantage of the rela-
tional model representation over “traditional” opaque rep
resentat ions. The representation reveals features of heuris-
tics which are candidates for generalization. A method
for automatically generating training instances which test
these candidates is presented.

The research ideas are implemented in a system which
learns to solve symbolic integration problems. Please re-
fer to [9] for a more complete description of this research
including an algorithm for generalizing over a set of rules
represented as relational models.

Finally, PET generalizes the original training instance
with examples generated by perturbation. The following
relational model is the minimal generalization of this (2
member) training set:

Reference8

[I] Amarel, S. “On Representations of Problems of Rea-
soning About Actions,” in Machine Intelligence 3, D.
Michie (Ed.), 131-171, 1968, Edinburgh Univ. Press.

[2] Carbonell, J. “Learning by Analogy: Formulating and
Generalizing Plans from Past Experience,” in Machine
Learning, Michalski, Carbonell, Mitchell (Eds.), l37-
162, 1983, Tioga Press.

[3] Fikes, R., Hart, P. and Nilsson, N. “Learning and
Executing Generalized Robot Plans,” Artificial Inteffi-
gence, 3, 251-288, 1972, North-Holland Publishing Co.

[4] Kibler, D. and Porter, B. “Perturbation: A Means
for Guiding Generalization,” Proceedings of Interna-
tional Joint Conference on Artificial Intelligence, 415-
418, 1983.

[S] Kibler, D. and Porter, B. “Episodic Learning,” Pro-
ceedings of National Conference on Artificial Inteffi-
gence, 191-196, 1983.

[6] Langley, P. “Learning Effective Search Heuristics,” Pro-
ceedirlgs of In terna tionaf Joint Conference on Artificial
Intelligence, 419-421, 1983.

[7] Mitchell, T. Version Spaces: An Approach to Concept
Learning, PhD Dissertation, Stanford University Com-
puter Science Dept, December 1978, CS-78-711.

(81 Mitchell, T., Utgoff, P., and Banerji, R. “Learning
by Experimentation: Acquiring and Refining Problem
Solving Heurist its,” Machine Learning, Michalski, Car-
bone& Mitchell (Eds.), 163-190, Tioga Press, 1983.

[9] Porter, B. Learning Problem Solving, PhD Disserta-
tion, University of California at Irvine, Information and
Computer Science Dept, (forthcoming).

[IO] Silver, B. “Learning Equation Solving Methods from
Worked Examples,” International Machine Learning
Worfcshop, 99-104, June 22-24,1983, Monticello, Illi-
nois.

[ll] Utgoff, P. “Adjusting Bias in Concept Learning,” In-
ternational Machine Learning Workshop, 105-109, June
22-24,1983, Mont icello, Illinois.

[l2] Vere, S.A. “Induction of Relational Productions in
the Presence of Background Information,” Proceedings
of fnternationaf Joint Conference on Artificial fnteffi-
gence, 349-355, 1977.

[l3] Waldinger, R. “Achieving Several Goals Simultane-
ously!” Machine Intelligence 8, 1977 Elcock, E. W. and
Michle D. (eds.), New York: Halstead and Wiley.

282

