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ABSTRACT 

We address the problem of reconstructing the 
visible surface in stereoscopic vision. We point 
out the need for viewpoint invariance in the 
reconstruction scheme and demonstrate the 
undesirable "wobble" effect that can occur when 
such invariance is lacking. The design of an 
invariant scheme is discussed. 

J. INTRODUCTION 

In this paper we consider aspects of the task of 
generating geometrical information from stereo 
vision. The aim is to derive as rich a geometric 
description as possible of the visible surfaces of 
the scene - a "viewer-centred representation of 
the visible surfaces" (Marr, 1982). Principally 
this is to consist of information about surface 
discontinuities and surface orientation and 
curvature. Ideally it would be desirable to label 
discontinuities, and generate smooth surfaces 
between them, all in a single process. Some 
preliminary work has been done towards achieving 
this (Blake, 1983) but here we restrict discussion 
to reconstruction of smooth surfaces. 

Grimson (Grimson, 1982) discusses the task of 
interpolating smooth surfaces inside a known 
contour (obtained from stereo e.g. (Mayhew and 
Frisby, 19811, (Marr, 791, (Grimson, 19821, 
(Baker, 1981)). He shows how surface 
interpolation can be done by minimising a suitably 
defined surface energy, the "quadratic variation". 
The interpolating surface that results is 
biharmonic and under most conditions is defined 
uniquely. Terzopoulos (Terzopoulos, 1983) derives, 
via finite elements, a method of computing a 
discrete representation of the surface; the 
computation uses relaxation which is widely 
favoured for minimisation problems in computer 
vision (Ullman, 19791, largely because of its 
inherent parallelism. Both Grimson and Terzopoulos 
suggest that the surface computed represents the 
configuration of a thin plate under constraint or 
load. 

In this paper we first point out that the 
faithfulness of the computation to the physical 

thin plate holds only under stringent assumptions 
- assumptions that do not apply for the intended 
use in representing visible surfaces. It is argued 
that physical thin plates do not anyway have the 
right properties for surface interpolation - it is 
not desirable to try and model one. Secondly, the 
effect of biharmonic interpolation is investigated 
in its own right. We show that it lacks 3-D 
viewpoint invariance and demonstrate, with 2-D 
examples, that this results in an appreciable 
flwobblen of the reconstructed surface as the 
viewpoint is varied. An alternative method of 
surface reconstruction is proposed that does have 
the requisite viewpoint-invariance. 

n m THIN PLATE 

Accurate mathematical modelling of a thin plate is 
fraught with difficulties and, in general, 
generates a somewhat intractable, non-linear 
problem. Under certain assumptions however the 
energy density on the plate can be approximated by 
a quadratic expression; minimising the total 
energy in that case is equivalent to solving a 
linear partial differential equation with linear 
boundary conditions. The partial differential 
equation determines the displacement f(x,y) of the 
plate, in the z-direction (the viewer direction), 
that interpolates a set of matched points. These 
matched points are assumed to be available as the 
output of stereopsis. With an approximate 
representation of the plate in a discrete 
(sampled) space, using finite differences or 
finite elements, the linear differential equation 
becomes a set of simultaneous linear equations. 
These can be solved by relaxation. The assumptions 
necessary to approximate the surface energy by 
quadratic variation are analysed in (Landau and 
Lifshitz, 1959) and we enumerate them: 

1. The plate is thin compared with its 
extent. 

2. The displacements of the nlate from its 
equilibrium position z=o are 
substantially in the z-direction; 
transverse displacement is negligible. 

3. The normal to the plate is everywhere 
approximately in the z-direction. 
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4. The deflection of the plate is 
everywhere small compared with its 
extent. 

5. The deflection of the plate is 
everywhere small compared with its 
thickness 

Assumption 1 is acceptable - indeed intuitively it 
is preferable to use a thin plate that yields 
willingly to the pull of the stereo-matched 
points. Assumption 2 may also be acceptable if 
the pull on the plate from each matched point is 
normal to the plate. The remaining assumptions 3-5 
are the ones which prove to be stumbling blocks 
for reconstruction of visible surfaces. 

Assumption 3 is clearly unacceptable: any scene 
(for example, a roan with walls, floor, table-tops 
etc.) is liable to contain surfaces at many widely 
differing orientations. By no means will they all 
be in or near the frontal plane (i.e. normal to 
the z-direction), though it seems that human 
vision may have a certain preference for surfaces 
in the frontal plane (Marr, 1982). In particular, 
surfaces to which the z-axis is almost tangential 
are of considerable interest: it is important to 
be able to distinguish, in a region of large 
disparity gradient, between such a slanted surface 
and a discontinuity of range (caused by 
occlusion). 

Assumption 4 and the even stronger assumption 5 
are again unacceptably restrictive. In fact 
assumption 5 can be removed at the cost of 
introducing non-linearity that makes the problem 
considerably harder; the non-linear formulation 
takes into account the stretching energy of the 
plate as well as it bending energy. It is this 
energy that represents the unwillingness of a flat 
plate to conform to the surface of a sphere rather 
than to, say, a cylindrical or other developable 
surface. Even without assumption 5, assumption 4 
on its own is still too strong because it requires 
the scene to be relatively flat - to have an 
overall variation in depth that is small compared 
with its extent in the xy plane. This is clearly 
inapplicable in general. 

One conclusion from the foregoing review of 
assumptions is that that faithfulness of visible 
surface reconstruction to a physical thin plate 
model is undesirable. This is because of the 
stretching energy discriminating against spherical 
surfaces, which is not generally appropriate in 
surface reconstruction. In fact, happily enough, 
we saw that quadratic variation is not an accurate 
description of the surface energy of a thin plate 
precisely because it omits stretching energy, so 
biharmonic interpolation does not exhibit this 
discraination. 

Y 
An alternative formulation attaches the surface 

f(X,Y) to ma tched points by springs, allowing some 
deviation of the surface from the points. 

We now declare ourselves free from any obligation 
to adhere to a physical thin plate model and will 
explore the geometrical properties of biharmonic 
interpolation. 

III Ui&RMONIC INTERPOJ,ATION 

We now examine biharmonic interpolation in its own 
right. A variety of forms of such interpolation 
are possible and the one preferred by Grimson 
(Grimson,l982) is to construct that surface 
z=f(x,y) that (uniquely) minimises the quadratic 
variation 

F = 
I 
fxx2 + fyy2 dx dy (1) 

subject to the constraints that l f(x,y) passes 
through the stereo-matched points. In (Landau 
and Lifshitz, 1959) , the solution to this 
minimisation is given by the biharmonic equation 

A' = 0, where (2) 

under certain boundary conditions. For instance 
when the edges of the surface are fixed 
(constrained, for example, by stereo-matched 
points) the condition is that 

f is fixed, and b2f/bn2 = 0 (3) 

<b/an denotes differentiation along the normal to 
the boundary). Consider the effect on a simple 
shape such as a piece of the curved wall of a 
cylinder, assuming that the surface is fixed on 
the piece's boundary. It is easy to show that a 
cylindrical surface defined by 

f(⌧,y) q  ,/(a2 - x2> (4) 

does not satisfyh2f = 0, so we cannot expect the 
surface to be interpolated exactly. Grimson 
(Grimson, 1982) demonstrates this: his 
interpolation of such a boundary conforms to the 
cylindrical surface near the boundary ends but 
sags somewhat in the middle. 

To return to the definition in (l), a serious 
objection to using quadratic variation to define 
surface energy is that it is not invariant under 
change of 3D coordinate frame. As (Brady and Horn, 
1983) point out, it is isotropic in 2D - invariant 
under rotation of axes in the x-y plane. However, 
under a change of coordinate frame in which the z- 
axis also moves, the quadratic variation proves 
not to be invariant. 

Is it altogether obvious that 3D invariance is 
required? Certainly the situation is not entirely 
isotropic in that the visible surface is single 
valued in z - any line perpendicular to the image 
plane intersects the visible surface only once 
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- the z-direction is special. On the other hand it 
is also desirable that the interpolated surface 
should be capable of remaining the same over a 
wide range of viewpoints. Specifically, given a 
scene and a set of viewpoints over which occlusion 
relationships in the scene do not alter, so that 
the points matched by stereo do not change, the 
reconstructed surface should remain the same over 
all those positions. Such a situation is by no 
means a special case and is easy to generate: 
imagine, for example, looking down the axis of a 
"beehive". There is no of 
occlusion over a range of viewer directions that 
lie a certain - cone. We want the 
reconstructed surfaces of both beehive and table 
to remain 
changes. 
viewpoints, 

static in 3D as viewing position 
The point is that, over such a set of 

the available information about the 
surface does not change; neither then should there 
be any change in the estimate of its shape. 

Without invariance, a moving viewer would perceive 
a wobbling surface. To demonstrate the wobble 
effect, surface interpolation using quadratic 
variation has been simulated in 2-D (fig 1) over a 
range of viewpoints. In the 2-D case, biharmonic 

viewer 
OZO 

--W-M 
Figure 1: Biharmonic interpolation scheme. 
Here is an example of the interpolation scheme 

reformulated as follows: first interpolation 
defined for an arbitrary 3D surface, defined by 

operating in 2-D rather 3-D. curve 
interpolates 3 points (marked by circles). As the 
viewer direction varies from 0 to 30 degrees there 
is marked movement of the interpolating curve. 
Clearly the scheme is far from invariant to change 
of viewpoint. - EdS is invariant wi 

of coordinate frame 

interpolation simply fits a piecewise cubic 
polyncmial to set of points. There is continuity 
of second derivative at those points and the 
second derivative is zero at the end-points. In 
other words, interpolation in 2-D reduces simply 
to fitting cubic splines. As 
expected, the wobble effect is strong when 
boundary conditions are such that the 
reconstructed surface is forced to be far from 
planar. 

XYA VIEWPOINT-INVARIANT~ENERGY 

In order to obtain the desired invariance to 
viewpoint while still constraining the surface to 
be single valued along the direction of 
projection, the interpolation problem can be 

th respect to change 

- A dx dy = E dS in one coordinate frame 
but not in certain others 

therefore A dx dy cannot be invariant under change 
of coordinate frame. 

The original energy (1) has a unique minimum 
(Grimson, 1982) but with the new energy (7) the 
situation is more complicated. To understand this 
we will consider, for simplicity, a 2-D form of 

(7): rsx 

J 

a 

F= E(f,,f,,)ds 
x: at, (9) 

where E(t,u) = u2(1+t2)-3 and 

ds = w(f,)dx, where w(t>=(l+t2)1/2. 
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A standard result from the calculus of variations 
(Akhiezer, 1962) states certain sufficient 
conditions for a minimum of F to exist, one of 
which is that: 

there exist a>O, p>l, b s.t. for all t,u 

E(t,u)w(t) >= alulP + b. 

This condition is not satisfied by (9) because the 
term in t becomes arbitrarily small for large 
enough t. This problem can be circumvented by 
restricting f to a family of functions whose 
normal is nowhere perpendicular to the line of 
sight- say at most 85' away. Now the term in t is 
bounded below. 

There remains a uniqueness problem: w(t)E(t,u) 
fails to satisfy a certain sufficient condition 
for uniqueness (Troutman, 1983): it is not convex. 
This too can be remedied by replacing E in (9) by 
E+P, where P is a positive constant, representing 
the energy of a flexible rod under a stretching 
load. Now, for t-values in a certain range Itl<=T 
(T depends on P and may be made arbitrarily large 
by choosing a large enough P), w(t)(E(t,u)+P) 
becomes convex. Thus the energy functional (7) is 
convex in f,, f,, provided that, for all x in the 
appropriate interval, 

If xx :<=T. (10) 

The consequence is that any admissible function 
f for which the functional F (9) is stationary 
uniquely minimises F. This suggests that, in a 
discrete version of the problem suitable .for 
computation, optimisation by gradient descent 
(using relaxation) could succeed in finding the 
surface f(x) that has minimum energy. If, for 
this f(x), there is equality in condition (10) 
then viewpoint invariance is lost. But provided T 
is chosen sufficiently large this will occur only 
.for reconstructed curves of extreme slope and/or 
curvature. The case of extreme slope, for example, 
occurs at extremal boundaries - for which changing 
viewpoint affects occlusion - in which case 
reconstruction is not expected to be viewpoint 
invariant. 

1. Biharmonic interpolation does not 
accurately model a thin plate and, in 
any case, a thin plate model would be 
inappropriate for use in surface 
interpolation. 

2. Biharmonic interpolation of the visible 
surface is not viewpoint invariant and 
that, in specific 2-D cases, this lack 
of invariance certainly causes 
significant surface wobble. 

3. A possible alternative reconstruction 
scheme uses an energy that is a 
function of surface curvature and area. 

This method is viewpoint invariant and 
certainly possesses the necessary 
existence and uniqueness properties, in 
the 2D case. It remains to extend these 
results to 3D and to develop and test a 
discrete computation to perform the 
reconstruction. 
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