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ABSTRACT 

A rcpresmltation for image curves and an algorithm for its 
complltntion arc introducrd. The representation is designed 
to facilitate matching of image curves to completely specified 
motlcl plane curves and estimation of t,hcir oricnt,ation in space, 
despite the presence of noise. variable resolution, or partial oc- 
clusion. This is an important subproblem of model-based vision. 
A curve may bc represented at a variety of scales, and a strat- 
egy for s&ctiiig natural scales is proposed. At each scale, the 
rcprrscntntion is simply a list of positions in the plane, with tan- 
gent directions and curvatures specified at each position; each 
ctlrvature is cithcr a zero or an extremllm (hereafter critical 
points). The algorithm for computing the representation in- 
volvcs smoothing with gaussians at different scales: extracting 
tile critical points from the smoothed curves. and using dynamic 
programming to construct a list of critical points which best ap- 
proximate the curve for each length of list possible. We propose 
to examine the tradeoff between the error of the approximation 
and length of the lists to find natural scales. 

I. INTRODUCTION 

In this paper we describe a rc>prcscntntion for image curves 
designed to serve as input to the following complltation: given 
a database of model plane curves. and an image containing the 
projection of one or more of them. decide which model curves it 
contains and cstirnate their positions and orientations in space. 
This is model-l)nscd vision applic>tl to plane curves rather than 
to arbitrary tllrclc-cliillcnsionnl objects, as in [Brooks 10811 or 
[Goad 19831: cvcn this drastic rcstric’tion is still an important 
problem, sincr the edges of tllrcc~-dinlcnsiorl;Il models and their 
bounding contours arc oftcln plane cllrves. 

At an abstract level, ollr design mrthodology has two 
phases. The first is to identify those characteristics of image 
cluves which (~rlable computing a desired lcvc~l of reliability in 
1nodc1 matches and viewpoint estimates at minimum cost. Next, 
a representation for those characteristics is selected to serve as 
input to a program which matches models and cstirnates view- 
points. Representations are judged by the rxtcnt to which they 
irialrc it possible for ;I progratn, at least in tlic~ory, to achieve 
ally specified reliability at minimum rest. Thcso considerations 
lcad to the following design criteria: 

1. The representation must exhibit partial invariance with re- 
spect to viewpoint. so that matching can take place by 
comparing models to representations, rather than compar- 
ing models projcxctcd at all possible viewpoints to repre- 

* This report describes work done at the Stanford Artificial 
Intelligence Laboratory. It was supported by the Advanced Rc- 
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sent,ations. The space of possible viewpoints is simply too 
large for the latter approach to be feasible computationally. 

The representat,ion must deal c~ff(~ctivcly with chnngcs in the 
resolution of the image curve: since the curve can appear 
at my distance from the camera. the resolution at which it 
is imaged can vary widely. so that details that are clear in 
the model may be unavailable in the image. 

The representation nnlst be insensitive to noise introduced 
by imaging. which botll obscures fine details and introduces 
spurious ones. 

The representation must be robust with respect to partial 
occlusion of the model cllrve to be useful in any real nppli- 
cation. 

The representation must provide a range of scales of de- 
scription for image clirvcs for reasons of computational 
economy. Coarse descriptions can be used when error toler- 
ances arc high rnollgli to jiistify C~lilllini~ting irrelwant de- 
tail which netdlt&y overh~udens tllc complltation, while 
fine descriptions are ~availablc when the dcmnnd for the 
higher qlmlity results they produce justifies the added com- 
putational cost. 

II. OVERVIEW OF THE REPRESENTATION 

The rcprcscntation described here is designed with these 
requirements in mind. The reprcscntntion has multiple scales. 
At each scale. it consists of a list of points in the plane, with 
tangent direction and signet1 curvature specified at each point; 
each curvature is eith(>r a zero or an cxtrrmum. (We refer to 
such points as critical points, and following spline terminology, 
we call each clcmrnt of these lists a knot.) The automatic se- 
lection of “natural” scales is being explored. 

A curvatllre-based rcprc~entation has attributes which help 
make it insc>nsitivt to c.hangcs in viewpoint. In the plane, cur- 
vature is invariant with respect to rotation and translation, and 
curvature ratios arc’ invariant with rcppect to scale. The use 
of cxtrema and zeros of nlrvaturc provides insensitivity with 
respect to thr projection of a plane curve orientcsd arbitrarily 
in space. A rc>presc>rlt ation of an image curve bas;ckd OII these 
features will I)(> iIlVill+k~lt in sonic respects as a function of vicw- 
point of tlic niodcl cilrve md deform slowly or predictably in 
others, thus facilitating mntchiug of image curves to models and 
estimation of viewpoint. 

The availability of multiple. llatllral scales of reprcsenta- 
tion serves several purposes. It, hchlps provide insensitivity to 
changes in the resolution of image curves. It provides flexibil- 
ity in meeting the quality-cost tradeoff demands of a particular 
task. Finally, it helps discount the effect of noise, which may 
influence the representation at a very fine scale, but usually not 
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at coarser ones. 

Irisensitivity to partial occlusion is provided by the fart that 
each knot in the lists of knots comprisin g the representation has 
local support, so that it contains information only about that 
portion of the curve between the knots adjacent to it. Thus 
if part of the image curve is absent, the rc>prcsentation of the 
parts which remain is not necessarily affected. The sensitivity 
of matching and location estimation to partial occlusion of the 
model curve then depends on how effectively these operations 
can proceed based only on a subset of the information available 
from an unoccluded curve. 

The algorithm for computing the representation begins 
with a list of points in the plane, perhaps the output of an 
edge detector. We will refer to this list as the original sam- 
pled curve. The sampled curve is smoothed with gaussinns at 
scvernl different resolutions. Critical points on these smooth 
curves are folmd, and position. tangent dircc*tion, and curva- 
ture are estimated at each. These knots from different scales of 
smoothing are rnntZir1nte.s for inchlsion in the lists of knots that 
will ultimately represent the curve. 

All the knots are considered together without regard to 
scale of smoothing in a graph structure which represents all 
possible lists of knots covering the entire sarnplcd curve, One 
pass of dynamic programming is used to find each possible fixed- 
length list of knots which whm considered as knots in a splint 
best approximates the origin,11 curve. That is, for each possible 
number of knots, that set of knots which minimizes the npprox- 
imntion error is chosen from the candidnt,cs. Thus smoothing 
at different scales produces candidate knots, while an approxi- 
mation error criterion selects from them and combines them in 
the final rcpresc>ntntion. Those lists of knots which correspond 
to natllral scales of representation will ultimately be selected by 
examining the tradeoff between the length of the lists and their 
approximation error. 

III. EXTREMA AND ZEROS OF CURVATURE 

Claims for the relevance of extremn and zeros of curvature 
to the perception of curves have come from both psychology and 
computer vision. [Attnenvc 1054] tlt~monstratctl experimentally 
the importance of curvature maxima in recognizing known ob- 
jects. !Hoffblar~ 1982] suggested segmeuting curves at (signed) 
curvature mininla, provided experimental evidence that humans 
did so, and implemented a program to segment curves on this 
basis. Others who have sllggcstctl the USC of critical points 
include [Duda and Hart 19731, [&ady 19821, and [Hollerbach 
1975). 

Our claim for the relevance of critical points follows from 
t,he mathematics of the specific computational task for which the 
representation is to serve as input. In this section we present a 
few results which demonstrate why z&os and extrema of curva- 
ture provide information useful for recognizing and estimating 
the orientation of known plane curves in space. 

Even thollgh the image curves to be rcprcscntcd are per- 
spective projections of plane curves in space, oilr analysis is 
based on orthoyraphic projection, which for our purposes is a 
suitable approximation for analyzing the behavior of of curva- 
ture extrcma and zeros. The basic imaging sitllation consists 
of the image plane containin g the image curve and the object 
plane cant ainin g the object curve (a curve from the database 
of rl~otld plane curves). The object curve is projected onto the 
image plane by dropping the normal from the object point to 
the image plane. 

The relationship between curvature in the object and cur- 
vature in the image is the heart of the analysis. While its dcriva- 
tion is beyond the scope of this paper, the most important con- 
scqucnc*ts can be stated quite simply. First, zeros of curvature 
in the object curve always project to zeros of curvature in the 
image. (This is the difFerentia1 form of the well-known fact that 
straight lines in space always project to straight lines in the 
image.) 

I 

I Critical Points 
I 

Figure 1: The stability of critical points under orthographic projection. Left, the critical points of a plane curve. On the right, the 
curve is projected orthographically at various orientations and the critical points of the resulting curves are marked. The stability 
of their critical points aids in matching the curves to models and estimating their orientation. 
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Second, as long the object plane is viewed “from above,” 
that is, if the angle between the normals to the image and the 
object planes is less than K, the sign of curvature of an object 
point does not change under projection. If the curve is viewed 
“from below ,” the sign of curvature always reverses. (In the 
degenerate case, when the object curve is viewed “edge on,” 
with the object plane orthogonal to the image plane, the object 
curve projects to a straight lint and all image curvatures are 
zero.) 

This means that the pattern of curvature sign changes along 
a curve is invariant under projection, except in the degenerate 
case. Also, since it follows that zeros of curvature are never 
introduced by the projection, except in the degenerate case, they 
too arc invariant under projection. 

The analysis of curvature extrema proceeds by differenti- 
ating the relationship between curvature in the object and cur- 
vature in the image. The interpretation of the result is more 
difficult and still continuing. bllt our preliminary conclusions 
are that t,hat curvature cxtrema in the image move about sta- 
bly and prtadictably as a function of viewpoint, that new ones 
do not appear. and old ones do not disappear, except in isolated 
or degenerate cases. 

Furthermore, as an extrcmum becomes more pronounced, 
becoming either locally straight on the one hand or a tangent 
discontinuity (a clasp or corner) on the other, the more invariant 
under projection the location of the extremum becomes. (Here 
a zero of curvature is considered a minimum of unsigned cur- 
vature.) This is not surprising. since where a curve is locally 
straight, curvature is zero, which as we have seen is a projective 
invariant. Cusps or corners. of course. remain cusps or corners 
from any viewpoint, and so are projective invarinnts as ~011. 

IV. J’tONOTONICITY OF CURVATUR& 

This section would be unnecessary but for an unfortunate 
lIli~t.lI~IIlatiCill reality: given two positions in the plane, each 
with a tangent direction and curvature, it is not always possi- 
blc to draw a smooth path between the positions which agrees 
with the information at the endpoints and contains no curva- 
ture extrema. Thus, precautions must be taken wlIcrI knots 

are assembled into lists to cnsurc that smooth pat,hs monotonic 
in curvature can be drawn between adjacent knots. Otherwise, 
the representation itself implicitly introduces spurious curvature 
extrcma. 

The test for this monotonicity curvature relation bctwccn 
knots is quite simple. First, since there are knot,s at both zeros 
and extrema, we can narrow the problem somewhat, since paths 
never need be drawn between knots with curvatures of opposite 
sign. Consider the case when both curvatures are positive, and 
recall that the osculating circle at a point on a curve is that 
circle tangent to the curve at the point with radius equal to one 
over the curvature at the point. and lying to the same side of 
the tangent as the curve itself. Two knots define two osculating 
circles. It is not hard to show that to draw a monotone curvature 
path interpolating the knots, the larger osculating circle must 
completely contain the smaller, as in the leftmost subfigure of 
Figure 2. 

This test checks thca feasibility of a monotone curvature 
path between two knots with the same sign of curvature. When 
one of the two knots to bc t&cd has zero curvature, its cur- 
vature is approximated with an arbitrarily small number of the 
same sign as the curvature at the other knot and the test pro- 
ceeds as before. 

In addition to testing two knots for the feasibility of a 
monotone curvature path, it is sometimes necessary to interpo- 
late such a path. In the figures in this paper, and for measuring 
the error in using two knots to represent a portion of an image 
curve, a spline consistin, m of three circular arcs is used. The 
spline agrees with the knot s at its endpoints in position, tan- 
gent direction, and curvature, except when curvature at a knot 
is zero, in which case its curvature is approximated. The splint 
is continuous, continuous in tangent direction, and a monotonic 
step function in curvature: that is, the curvature of the middle 
arc is between that of the first and last arcs. We shall refer to 
this spline as the monotone curvature spline. See Figure 2 for 
an example. 

V. SMOOTHING WITH GAUSSIANS. 

In this section the algorithm for finding knots which are 
canditlatt~s for assc~mbly into the final lists is tlcacribcd. The 

Figure 2: Monotone curvature splines. Left, two knots which can be interpolated with a monotone curvature path. The square 
and the triangle indicate the positions, the arrows tangent directions, and the circles curvatures. Center, a monotone curvature 
spline consisting of three circular arcs interpolates the knots. The first and last arcs coincide with the knots’ osculating circles. The 
vertices of the “V”-shaped polygonal arc are the centers of the three circular arcs. Right, the position markers and the spline are 

displayed alone. 
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Figure 3: Smoothing two-dimensional curves with gauasians. Top 
left, a hand-drawn sampled curve. The other curves are smoothed 
versions of the sampled curve, with the gaussian’s scale parameter 
increasing from top right, to bottom left, to bottom right. 

goal is to estimate position, tangent direction. and curvature 
at critical points along the sampled curve. Unfortunately, tan- 
gent direction and curvature arc not defined for sampled curves. 
Further, since the goal is to represent the curve at a variety of 
scales, they must include position, tangent direction, and cur- 
vature somehow measllrcd at a variety of scales. 

Another constraint is that knots cstimatcd at one scale 
should be consistent in the scnsc that it be possible to draw 
a monotone curvature pnth intc>rpolat,ing them. This suggests 
that f>xtracting critical points from curvature cstimatcd by lo- 
cally fitting circles AS in [Brady and Asatla 19841 is inadequate 
for this purpose. since thcrc is no gunrnntcc that the curvature 
monotonicity relation will hold bctwccn adjacent critical points. 
One way to avoid this problem is to map from thcx sampled curve 
to a smooth one and then to detect critical point,s in the smooth 
curve. 

Smoothing the sampled curve with gaussians at varying res- 
olutions meets thcsc rcquiremcnts. The smoothing technique 
discussed in this section prodllccs nn infinitely differentiable 
curve. so that a scalt> of smoothing dcfincs a map from the sam- 
pled curve to a smooth curve (in the scmse of infinitely differen- 
tiable), and critical points can then be detected in the smooth 
curve. Varyin g the scale of smoothing varies the scale at which 
position, tangent direr tion. and cluvnturc arc mcnsurcd. Figllre 
3 is a example of a simlpled curve smoothed at several diffcrcnt 
scales. 

[Witkin 19831 has taken this approach in filtering one- 
dimensional sampled curves. He points out that zero crossings 
of the second derivative, which are closely related to zeros of 
curvature, can disappear as the scale of smoothing increases, 

but new ones can never appear. While we have no correspond- 
ing claim for critical points of two-dimensional curves, it is at 
least intuitively plausible that they exhibit the same behavior, 
and our experimental evidence is consistent with this conjecture. 
One desirable consequence is that shorter lists of knots can be 
used to describe a curve if the scale of smoothing is increased 
sufficiently. 

The basic approach of the smoothing algorithm is to 
smooth each coordinate function independently after defining 
it as a function of the straightline distance between adjacent 
points. At each point: the smoothed value of the coordinate 
function is a weighted average of the values of the coordinate 
function at nearby samples; the weights decrease with distance 
from the point being smoothed. The weighted average is com- 
puted by convolving the coordinate function with a gaussian, 
-ad normalizing the result at each point to correct for the fact 
that intersample distances vary along the curve. The normal- 
ized result turns out to be infinitely differentiable, so that it is 
possible to compute position, tangent direction, and curvature 
of the smoothed curve defined by the two smoothed coordinate 
functions. 

The critical points on the smoothed curve do not neces- 
sarily lie at points corresponding to samples of the original 
curve. The method used to find critical points oversamples the 
smoothed curve at a rate that depends on the range of inter- 
sample distances and computes position, tangent direction, and 
curvature at each oversamplcd location. The pattern of sampled 
curvatures indicate when a critical point lies between samples, 
and an iterative interpolation method is used to find its loca- 
tion as accurately as necessary. Figure 4 illustrates the critical 
points of a smoothed curve found by this method. 

Given a scale parameter for the gaussian. this algorithm 
specifies how to obtain a list of critical points, with position, 
tangent direction, and curvature at each, describing the curve 
smoothed at that scale. The choice of the range of scales for 
which smoothing should be performed to obtain these lists has 
not yet been automated; ultimately it will be based on the range 
of intersample distances, noise, and expected size of image curve 
features. 

VI. ASSEMBLING KNOTS INTO LISTS 

The next step is to assemble the knots obtained from 
smoothing the curve at different scales into the lists of knots 
which best approximate the curve. The approximation here 
refers to some measure of the distance between the original 
sampled curve and the monotone curvature spline which inter- 
polates the knots OII the list. Dynamic programming is used 
to find for each number of knots the list of knots which best 
approximates the curve. 

Note that scale is used in two senses here. The scale of 
smoothing refers to the scale parameter of the gaussian. The 
scale of the representation refers to the number of knots on a 
list which approximates the curve. The two may be different 
because a list of knots output by the dynamic programming 
algorithm may contain knots obtained from various scales of 
smoothing. 

This is in part a consequence of the definition of approxi- 
mation error of a list of knots. The error between a consecutive 
pair of knots and the corresponding portion of the original sam- 
pled curve is defined as the area between the monotone curva- 
ture spline which interpolates the knots and that portion of the 
sampled curve. The error for a list of knots is the maximum of 
these consecutive knot errors. Thus the error for a list bounds 

240 



the error between any consecutive pair of knots. This rechms 
the sensitivity of a list to partial occlusion, since the error of 
most subsets of the list have the same error as the list itself. 
Mortb global ~IWFIII‘CS of error. like the sum of consecutive kiiot 
errors. do not have this property. Thus the rcprcscntation of 
subsets of the curve achieving a given approximation error is 
more likely to be stable with respect to how much of the curve 
outside the subset is present. 

As a portion of the curve 1.. ‘q smoot!ird morr and more, the 
error in using knots ol~tained frown it to approximate the sarrl- 

pled curve 011 the average increases. But the rate of increase in 
any region of the curve dcpc~ls on the behavior of the curve 
in that region. For example. shallow undulations along a ba- 
sically linear portion of the curve will result in many knots to 
capture the small changes in clirvatiire at the smallest scale of 
smoothing: but perhaps just a knot or two whc*n the scale of 
smoothing is increasing at a very small cost in increased error 
in the approximation. At a sharp corner. however, smoothing 
tends to increase error dramatically as the corner bccornes more 
rounded, but there is no corresponding savings in the number 
of knots required to describe that portion of the curve. 

Thus the tradeoff between error, the number of knots, and 
their scale of smoothing can vary alo11g ‘a curve. It follows that 
minimizing the error achieved by a list of n knots can result in 
knots obtained from different scales of smoothing. 

[Plass and Stone 19831 USC dynamic programming to find 
the best list of knots to approximate a sampled clirvc with para- 
metric cubic splints. The basic idea is to construct a graph 
which represents all possible lists of knots and to find the mini- 
mum error list using the optimal search strategy. Our problem 
is slightly different, . since our goal is to find the brst list of knots 
for each feasible length list. A new algorithm has been devel- 
oped which finds all such lists in one pass through the graph; 
Figure 5 displays an example of its output for a curve smoothed 
at one scale. Each curve is the best approximation to the orig- 
inal curve for its number of knots. 

VII. FUTURE RESEAR,CH 

The integration of knots from different scales of smooth- 
ing into t,he same list has in some cases posed problems at 
those locations 011 t,hc c11rvc where the optimal scale for the 
curve is changing rnpi’lly. The likelihood that a inonotonc cur- 
vature transition between acl.jart>nt knots will b(t feasible dc- 
creases when tlic knots arc from widely separated scales, since 
they come from two possibly quite different curves. The current 
solution is to ensure that the spacin, v in scales is dense enough 
to guarantee the possibility of a monotone curvature transition 
between adjacent knots from different scales. If scale is chang- 
ing quickly enough even in one part of the curve. this may force 
smoothing at many scales and therefore generate many sets of 
candidate knots for the final representation. The dynamic pro- 
gramming technique used to assemble the knots into lists, which 
performs the (most efficient) exhaustive search, has complexity 

. 

The aiitoniat ion of the sclcc~tion of nntliral sc,nles is ongoiiig. 
The strategy is to postlilatc a iit ility filnction of the> quality and 
cost of computin g with a rcprc~scIit;ltiorl. aricl choosc~ sc;\lcs of 
representation which arc local maxin~a of 111 ility. A prtlirtiinary 
version of this i~lq~roach has been iniplerliciitecl which uses the 
approxirnalioii errc)r of n list of knots .a’ 5 a proxy for qii;ility. and 
the length of the list as it proxy for cost. The jiistificat ion is that 
nI’l)roxinl;Ltioli error 1. ‘r: T('liLtC(l to wroh in Inotlcl 111iLt(‘lliIlg ilIld 

viewpoint WtiIlliLl ion. nrltl tlitt cost of niatchiiig and estiitintion 
is in part a function of the volume of information on which the 
rcqiiired cornpiitations are based. So filr; the irnplt~riic~ntntion 
of this irpI”.oil(.li with simple iitility functions has given mixed 
results, and snore work is necdcd. 

-~__-- 
r-- 
I 

Critical Points 

q  : max rc A : min K, K # 0 +: rc=o 

Figure 4: The critjcal points of a smoothed curve. Left, a sampled curve produced by a simple edge detection progrram written 
by the author and run on a real image. Center, the curve smoothed with a gaussian. Right, t2le same smoothed curve with critical 
points marked. Monotone curvature splines interpolate the critical points in the rightmost two figures. 
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The ultimate test of the representation will be how well the 
model-matching and viewpoint estimation algorithm performs 
using the rrprestutation as input. This goal guided the design 
of the rcprcscntntion, and while the design and implementation 
of this algorithm is far from complete, it is a crucial part of this 
research and will be the t,opic of future papers. 
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Critical Points 

Cl : max K. A: minrc, lc#O +: n=O 

Figure 5: Finding the best sets of knots to approximate a sampled curve. Each curve above is a set of knots interpolated by the 
monotone curvature splint. In this example (the same curve as iu Figure 41, only one scale of smoothing produced the candidate 
knots, although the algorithm cau handle more scales. A dynamic programming algorithm was used to f?nd the best set of knots 
to approximate the original sampled curve for each possible number of knots; some of the sets are displayed here. The number of 
knots decreases most rapidly across rows from left to right and then down columns. 

242 


