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ABSTRACT

A representation for image curves and an algorithm for its
computation are introduced. The representation is designed
to facilitate matching of image curves to completely specified
model plane curves and estimation of their orientation in space,
despite the presence of noise, variable resolution, or partial oc-
clusion. This is an important subproblem: of model-based vision.
A curve may be represented at a variety of scales, and a strat-
egy for selecting natural scales is proposed. At cach scale, the
representation is simply a list of positions in the plane, with tan-
gent directions and curvatures specified at cach position; each
curvature is cither a zero or an extremmm (hereafter critical
points). The algorithm for computing the representation in-
volves smoothing with gaussians at different scales, extracting
the critical points from the smoothed curves, and using dynamic
programiming to construct a list of critical points which best ap-
proximate the curve for cach length of list possible. We propose
to examine the tradeoff between the error of the approximation
and length of the lists to find natural scales.

I. INTRODUCTION

In this paper we describe a representation for image curves
designed to serve as input to the following computation: given
a database of model plane curves, and an image containing the
projection of one or more of them, decide which model curves it
contains and estimate their positions and orientations in space.
This is model-based vision applied to plane curves rather than
to arbitrary three-dimensional objects, as in [Brooks 1981] or
[Goad 1983]: even this drastic restriction is still an important
problem, since the edges of three-dimensional models and their
bounding contours are often plane curves.

At an abstract level, our design methodology has two
phases. The first is to identify those characteristics of image
curves which enable computing a desired level of reliability in
model matches and viewpoint estimates at minimum cost. Next,
a representation for those characteristics is selected to serve as
input to a program which matches models and estimates view-
points. Representations are judged by the extent to which they
make it possible for a program, at least in theory, to achieve
any specified reliability at minimum cost. These cousiderations
lead to the following design criteria:

1. The representation must exhibit partial invariance with re-
spect to viewpoint, so that matching can take place by
comparing models to representations, rather than compar-
ing models projected at all possible viewpoints to repre-
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sentations. The space of possible viewpoints is simply too
large for the latter approach to be feasible computationally.

2. The representation must deal effectively with changes in the
resolution of the lmage curve; since the curve can appear
at any distance from the camera, the resolution at which it
is imaged can vary widely. so that details that are clear in
the model may be unavailable in the image.

3. The representation must be insensitive to noise introduced
by imaging, which both obscures fine details and introduces
spurious ones.

4. The representation must be robust with respect to partial
occlusion of the model curve to be useful in any real appli-
cation.

5. The representation must provide a range of scales of de-
scription for image curves for reasons of computational
economy. Coarse descriptions can be used when error toler-
ances arc high enough to justify climinating irrelevant de-
tail which necedlessly overburdens the computation, while
fine descriptions are available when the demand for the
higher quality results they produce justifies the added com-
putational cost.

II. OVERVIEW OF THE REPRESENTATION

The representation described here is designed with these
requirements in mind. The representation has multiple scales.
At each scale, it consists of a list of points in the plane, with
tangent dircction and signed curvature specified at cach point;
each curvaturc is either a zero or an extremum. (We refer to
such points as critical points, and following spline terminology,
we call cach clement of these lists a knot.) The automatic se-
lection of “natural” scales is being cxplored.

A curvature-based representation has attributes which help
make it inscnsitive to changes in viewpoint. In the plane, cur-
vature is invariant with respect to rotation and translation, and
curvature ratios are invariant with respect to scale. The use
of extrema and zcros of curvature provides insensitivity with
respect to the projection of a plane curve oriented arbitrarily
in space. A representation of an image curve based on these
features will be invariant in some respects as a function of view-
point of the model curve and deform slowly or predictably in
otiers, thus facilitating matching of image curves to models and
estimation of viewpoint.

The availability of multiple, natural scales of representa-
tion serves several purposes. It helps provide insensitivity to
changes in the resolution of image curves. It provides flexibil-
ity in meeting the quality-cost tradeoff demands of a particular
task. Finally, it helps discount the effect of noise, which may
influence the representation at a very fine scale, but usually not



at coarser ones.

Insensitivity to partial occlusion is provided by the fact that
cach knot in the lists of knots comprising the representation has
local support, so that it contains information only about that
portion of the curve between the knots adjacent to it. Thus
if part of the image curve is absent, the representation of the
parts which remain is not necessarily affected. The scnsitivity
of matching and location estimation to partial occlusion of the
model curve then depends on how effectively these operations
can proceed based only on a subset of the information available
from an unoccluded curve.

The algorithin for computing the representation begins
with a list of points in the plane, perhaps the output of an
edge detector. We will refer to this list as the original sam-
pled curve. The sampled curve is smoothed with gaussians at
several different resolutions. Critical points on these smooth
curves are found, and position, tangent direction, and curva-
ture are cstimated at each. These knots from different scales of
smoothing are candidates for inclusion in the lists of knots that
will ultimately represent the curve.

All the knots are considered together without regard to
scale of smoothing in a graph structure which represents all
possible lists of knots covering the entire sampled curve. One
pass of dynamic programming is used to find each possible fixed-
length list of knots which when considered as knots in a spline
best approximates the original curve. That is, for cach possible
number of knots, that set of knots which minimizes the approx-
imation error is chosen from the candidates. Thus smoothing
at different scales produces candidate knots, while an approxi-
mation crror criterion selects from them and combines them in
the final representation. Those lists of knots which correspond
to natural scales of representation will ultimately be sclected by
examining the tradeoff between the length of the lists and their
approximation error.

III. EXTREMA AND ZEROS OF CURVATURE

Claims for the relevance of extrema and zeros of curvature
to the perception of curves have come from both psychology and
computer vision. [Attneave 1954] demonstrated experimentally
the importance of curvature maxima in recognizing known ob-
jects. [Hoffman 1982] suggested segmenting curves at (signed)
curvature minina, provided experimental evidence that humans
did so, and implemented a program to segment curves on this
basis. Others who have suggested the use of critical points
include [Duda and Hart 1973|, [Brady 1982], and [Hollerbach
1975].

Our claim for the relevance of critical points follows from
the mathematics of the specific computational task for which the
representation is to serve as input. In this section we present a

few results which demonstrate why zeros and extrema of curva-
ture provide information useful for recognizing and estimating
the orientation of known plane curves in space.

Even though the image curves to be represented are per-
spective projections of plane curves in space, our analysis is
based on orthographic projection, which for our purposes is a
suitable approximation for analyzing the behavior of of curva-
ture extrema and zeros. The basic imaging situation consists
of the image plane containing the image curve and the object
plane containing the object curve (a curve from the database
of model plane curves). The object curve is projected onto the
image plane by dropping the normal from the object point to
the image plane.

The relationship between curvature in the object and cur-
vature in the limage is the heart of the analysis. While its deriva-
tion is beyond the scope of this paper, the most important con-
sequences can be stated quite simply. First, zeros of curvature
in the object curve always project to zcros of curvature in the
image. (This is the differential form of the well-known fact that
straight lines in space always project to straight lines in the
image.)

£y

S

Critical Points

0O: max &
A: mink, £ #0
k=0

Figure 1: The stability of critical points under orthographic projection. Left, the critical points of a plane curve. On the right, the
curve is projected orthographically at various orientations and the critical points of the resulting curves are marked. The stability
of their critical points aids in matching the curves to models and estimating their orientation.
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Second, as long the object plane is viewed “from above,”
that is, if the angle between the normals to the image and the
object planes is less than m, the sign of curvature of an object
point does not change under projection. If the curve is viewed
“from below,” the sign of curvature always reverses. (In the
degencrate case, when the object curve is viewed “edge on,”
with the object planec orthogonal to the image plane, the object
curve projects to a straight linc and all image curvatures are
zero. )

This means that the pattern of curvature sign changes along
a curve is invariant under projection, except in the degenerate
case. Also, since it follows that zeros of curvature are never
introduced by the projection, except in the degenerate case, they
too are invariant under projection.

The analysis of curvature extrema proceeds by differenti-
ating the relationship between curvature in the object and cur-
vature in the image. The interpretation of the result is more
difficult and still continuing, but our preliminary conclusions
are that that curvature cxtrema in the image move about sta-
bly and predictably as a function of viewpoint, that new ones
do not appear, and old ones do not disappear, except in isolated
or degenerate cases.

Furthermore, as an extremum becomes more pronounced,

becomine either locally straicht on on
becoming either locally straight on the one hand or a

discontinuity (a cusp or corner) on the other, the more invariant
under projection the location.of the extremum becomes. (Here
a zero of curvature is considered a minimum of unsigned cur-
vature.) This is not surprising, since where a curve is locally
straight, curvature is zero, which as we have seen is a projective

tancont
tangeny

invariant. Cusps or corners. of course, remain cusps or corners
from any viewpoint, and so are projective invariants as well.

IV. MQONOTONICITY OF CURVATURE

This section would be unnecessary but for an unfortunate
mathematical reality: given two positions in the plane, each
with a tangent direction and curvature, it is not always possi-
ble to draw a smooth path between the positions which agrecs
with the information at the endpoints and contains no curva-
ture extrema. Thus, precautions must be taken when knots

are assembled into lists to ensure that smooth paths monotonic
in curvature can be drawn between adjacent knots. Otherwise,
the representation itself implicitly introduces spurious curvature
extrema.

The test for this monotonicity curvature relation between
knots is quite simple. First, since there are knots at both zeros
and extrema, we can narrow the problem somewhat, since paths
never need be drawn between knots with curvatures of opposite
sign. Consider the case when both curvatures are positive, and
recall that the osculating circle at a point on a curve is that
circle tangent to the curve at the point with radins equal to one
over the curvature at the point, and lying to the same side of
the tangent as the curve itself. Two knots define two osculating
circles. It is not hard to show that to draw a monotone curvature
path interpolating the knots, the larger osculating circle must
completely contain the smaller, as in the leftmost subfigure of
TFigure 2.

This test checks the feasibility of a monotone curvature
path between two knots with the same sign of curvature. When
one of the two knots to be tested has zero curvature, its cur-
vature is approximated with an arbitrarily small number of the

same sign as the o

ceeds as before.

t and the test pro-

vature at the other knot and the test pro

In addition to testing two knots for the feasibility of a
monotone curvature path, it is sometimes necessary to interpo-
late such a path. In the figures in this paper, and for measuring
the error in using two knots to represent a portion of an image
curve, a spline consisting of three circular arcs is used. The
spline agrees with the knots at its endpoints in position, tan-
gent direction, and curvature, except when curvature at a knot
is zero, in which case its curvature is approximated. The spline
is continuous, continuous in tangent direction, and a monotonic
step function in curvature: that is, the curvature of the middle
arc is between that of the first and last arcs. We shall refer to
this spline as the monotone curvature spline. See Figure 2 for
an example.

V. SMOOTHING WITH GAUSSIANS

In this section the algorithm for finding knots which are
candidates for assembly into the final lists is described. The

Figure 2: Monotone curvature splines. Left, two knots which can be interpolated with a monotone curvature path. The square
and the triangle indicate the positions, the arrows tangent directions, and the circles curvatures. Center, a monotone curvature
spline consisting of three circular arcs interpolates the knots. The first and last arcs coincide with the knots’ osculating circles. The
vertices of the “V”-shaped polygonal arc are the centers of the three circular arcs. Right, the position markers and the spline are

displayed alone.
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Figure 3: Smoothing two-dimensional curves with gaussians. Top
left, a hand-drawn sampled curve. The other curves are smoothed
versions of the sampled curve, with the gaussian’s scale parameter
increasing from top right, to bottom left, to bottom right.

goal is to estimate position, tangent dircction, and curvature
at critical points along the sampled curve. Unfortunately, tan-
gent direction and curvature are not defined for sampled curves.
Further, since the goal is to represent the curve at a variety of
scales, they must include position, tangent direction, and cur-
vature somehow measured at a variety of scales.

Another constraint is that knots estimated at one scale
should be consistent in the sense that it be possible to draw
a monotone curvature path interpolating them. This suggests
that extracting critical points from curvature estimated by lo-
cally fitting circles as in [Brady and Asada 1984] is inadequate
for this purpose. since there is no guarantee that the curvature
monotonicity relation will hold between adjacent critical points.
One way to avoid this problem is to map from the sampled curve
to a smooth one and then to detect critical points in the smooth
curve.

Smoothing the sampled curve with gaussians at varying res-
olutions meets these requirements. The smoothing technique
discussed in this section produces an infinitely differentiable
curve, so that a scale of smoothing defines a map from the sam-
pled curve to a smooth curve (in the sense of infinitely differen-
tiable), and critical points can then be detected in the smooth
curve. Varying the scale of smoothing varies the scale at which
position, tangent direction, and curvature arc measured. TFigure
3 is a example of a sampled curve smoothed at several different
scales.

[Witkin 1983] has taken this approach in filtering one-
dimensional sampled curves. He points out that zero crossings
of the second derivative, which are closely related to zeros of
curvature, can disappear as the scale of smoothing increases,
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but new ones can never appear. While we have no correspond-
ing claim for critical points of two-dimensional curves, it is at
least intuitively plausible that they exhibit the same behavior,
and our experimental evidence is consistent with this conjecture.
One desirable consequence is that shorter lists of knots can be
used to describe a curve if the scale of smoothing is increased
sufficiently.

The basic approach of the smoothing algorithm is to
smooth each coordinate function independently after defining
it as a function of the straightline distance between adjacent
points. At each point, the smoothed value of the coordinate
function is a weighted average of the values of the coordinate
function at nearby samples; the weights decrcase with distance
from the point being smoothed. The weighted average is com-
puted by convolving the coordinate function with a gaussian,
and normalizing the result at each point to correct for the fact

that intersample distances vary along the curve. The normal-
ized result turns out to be infinitely differentiable, so that it is
possible to compute position, tangent direction, and curvature
of the smoothed curve defined by the two smoothed coordinate
functions.

The critical points on the smoothed curve do not neces-
sarily lie at points corresponding to samples of the original
curve. The method used to find critical points oversamples the
smoothed curve at a rate that depends on the range of inter-
sample distances and computes position, tangent direction, and
curvature at each oversampled location. The pattern of sampled
curvatures indicate when a critical point lies between samples,
and an iterative interpolation method is used to find its loca-
tion as accurately as necessary. Figure 4 illustrates the critical
points of a smoothed curve found by this method.

Given a scale parameter for the gaussian, this algorithm
specifies how to obtain a list of critical points, with position,
tangent direction, and curvature at each, describing the curve
smoothed at that scale. The choice of the range of scales for
which smoothing should be performed to obtain these lists has
not yet been automated; ultimately it will be based on the range
of intersample distances, noise, and expected size of image curve
features.

VI. ASSEMBLING KNOTS INTO LISTS

The next step is to assemble the knots obtained from
smoothing the curve at different scales into the lists of knots
which best approximate the curve. The approximation here
refers to some measure of the distance between the original
sampled curve and the monotone curvature spline which inter-
polates the knots on the list. Dynamic programming is used
to find for each number of knots the list of knots which best
approximates the curve.

Note that scale is used in two senses here. The scale of
smoothing refers to the scale parameter of the gaussian. The
scale of the representation refers to the number of knots on a
list which approximates the curve. The two may be different
because a list of knots output by the dynamic programming
algorithm may contain knots obtained from various scales of
smoothing.

This is in part a consequence of the definition of approxi-
mation error of a list of knots. The error between a consecutive
pair of knots and the corresponding portion of the original sam-
pled curve is defined as the area between the monotone curva-
ture spline which interpolates the knots and that portion of the
sampled. curve. The error for a list of knots is the maximum of
these consecutive knot errors. Thus the error for a list bounds



the error between any consccutive pair of knots. This reduces
the sensitivity of a list to partial occlusion, since the error of
most subsets of the list have the same error as the list itsclf.
More global measnres of error. like the sum of consecutive knot
errors, do not have this property. Thus the representation of
subsets of the curve achieving a given approximation error is
more likely to be stable with respect to how much of the curve
outside the subset is present.

As a portion of the curve is smoothed more and more, the
error in using knots obtained from it to approximate the sam-
pled curve on the average increases. But the rate of increase in
any region of the curve depends on the behavior of the curve
in that region. TFor example, shallow undulations along a ba-
sically linear portion of the curve will result in many knots to

capture the small rhannnc in curvature at the sinallest

scale of
bmoothmg but porhdps just a knot or two when the scale of
smoothing is increasing at a very small cost in increased error
in the approximation. At a sharp corner, however, smoothing
tends to increase error dramatically as the corner becomes more
rounded, but there is no corresponding savings in the number
of knots required to describe that portion of the curve.

Thus the tradeoff between error, the number of knots, and
their scale of smoothing can vary along a curve. It follows that
minimizing the error achieved by a list of n knots can result in
knots obtained from different scales of smoothing.

[Plass and Stone 1983] use dynamic programming to find
the best list of knots to approximate a sampled curve with para-
metric cubic splines. The basic idea is to construct a graph
which represents all possible lists of knots and to find the mini-
mum error list using the optimal scarch strategy. Our problem
is slightly different, since our goal is to find the best list of knots
for each feasible length list. A new algorithm has been devel-
oped which finds all such lists in one pass through the graph;
TFigure 5 displays an example of its output for a curve smoothed
at one scale. Each curve is the best approximation to the orig-
inal curve for its number of knots.

VII. FUTURE RESEARCH

The integration of knots from different scales of smooth-
ing into the same list has in some cases posed problems at
those locations on the curve where the optimal scale for the
curve is changing rapidly. The likelihood that a monotone cur-
vature transition between euljurvut knots will be feasible de-
creases when the knots are from widel 1y \LP(Ll(u(U auuLa since
they come from two possibly quite different curves. The current
solution is to ensure that the spacing in scales is dense enough
to guarantec the possibility of a monotone curvature transition
between adjacent knots from different scales. If scale is chang-
ing quickly enough even in one part of the curve, this may force
smoothing at m:my scales and therefore generate many sets of

candidate knots for the final representation. The dynamic pro-
gramming t (h nique used to assemble the knots into lists, which

performs the (most cfficient) ezhaustive search, has complomty

O(n?) in the number of kuots. xo clearly an alternative strat-
ery is required. Assembling knots into lists more selectively. by
replacing the exhaustive search with one which more cheaply
eliminates knots from scales unsuited for represzenting that por-
tion of the curve fronw which they were estimated. is one way to
make the integration of knots from multiple scales more feasible.

The automation of the sclection of natural scales is ‘,'iguin“'
The strategy is to postulate a utility function of the quality and

cost of computing with a representation. and choose scales of
representation which are loeal maxima of utility. A preliminary
version of this approach has been implemented which uses the
approximation error of a list of kuots as a proxy for quality. and
the length of the list as a proxy for cost. The justification is that
approximation crror is related to errors in model matching and
viewpoint estimation. and the cost of matching and estimation
is in part a function of the volume of information on which the
required computations are based. So far, the implementation
of this approach with simple utility functions has given mixed
results, and more work is necded.
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Figure 4: The critical points of a smoothed curve. Left, a sampled curve produced by a simple edge detection program written
by the author and run on a real image. Center, the curve smoothed with a gaussian. Right, the samne smoothed curve with critical
points marked. Monotone curvature splines interpolate the critical points in the rightmost two figures.
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The ultimate test of the representation will be how well the
model-matching and viewpoint estimation algorithm performs
using the representation as input. This goal guided the design
of the representation, and while the design and implementation
of this algorithm is far from complete, it is a crucial part of this
rescarch and will be the topic of future papers.
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Figure 5: Finding the best sets of knots to approximate a sampled curve. Each curve above is a set of knots interpolated by the
monotone curvature spline. In this example (the same curve as in Figure 4), only one scale of smoothing produced the candidate
knots, although the algorithm can handle more scales. A dynamic programming algorithm was used to find the best set of knots
to approximate the original sampled curve for each possible number of knots; some of the sets are displayed here. The number of
knots decreases most rapidly across rows from left to right and then down columns.
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