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ABSTRACT 
Shape-from-shading and shape-from-texture methods have the 

serious drawback that they are applicable only to smooth surfaces, 
while real surfaces are often rough and crumpled. TO extend such 
methods to real surfaces we must have a model that also applies to 
rough surfaces. The fractal surface model [Pentland 831 provides a for- 
malism that is competent to describe such natural 3-D surfaces and, 
in addition, is able to predict human perceptual judgments of smooth- 
ness versus roughness - thus allowing the reliable application of shape 
estimation techniques that assume smoothness. Thia model of surface 
shape has been used to derive a technique for 3-D shape estimation 
that treats shading and texture in a uni6ed manner. 

I. INTRODUCTION 

The world that surrounds us, except for man-made environments, 
is typically formed of complex, rough, and jumbled surfaces. Current 
representational schemes, in contrast, employ smooth, analytical primi- 
tives - e.g., generalized cylinder8 or splinee - to describe tbree- 
dimensional shapes. While such smooth-surfaced representations func- 
tion well in man-made, carpentered environments, they break down 
when we attempt to describe the crenulated, crumpled surfaces typical 
of natural objects. This problem is most acute when WC attempt to 
develop techniques for recovering 3-D shape, for how can we expect 
to extract 3-D information in a world populated by rough, crumpled 
surfaces when all of our models refer to smooth surfaces only? The 
lack of a 3-D model for such naturally occurring surface8 ha8 generally 
restricted image-understanding efforts to a world populated exclusively 
by smooth objects, a sort of “Play-Doh” world [l] that is not much 
more general than the blocks world. 

Standard shape-from-shading (2,3] methods, for instance, all 
employ the heuristic of u8moOthne88” to relate neighboring points on a 
surface. Shape-from-texture [4,5] method8 make similar assumptions: 
their models are concerned either with marking8 on a smooth surface, 
or discard three-dimensional notion8 entirely and deal only witb ad hoc 
measurements of the image. Before WC can reliably employ such tech- 
niques in the natural world, we must be able to determine which sur- 
faces are smooth and which arc not - or else generalize our techniques 
to include the rough, crumpled eurfaces typically found in nature. 

To accomplish this, we must have rccour8e to a 3-D model com- 
petent to describe both crumpled surface8 and smooth ones. Ideally, 
we would like a model that capture8 the intuition that smooth surfaces 
are the limiting case of rough, textured one8, for such a model might 
allow us to formulate a unified framework for obtaining ehape from 
both shading (smooth surfaces) and texture (rough surfaces, markings 
on smooth surfaces). 

* The research reported herein wa8 eupported by National Science 
Foundation Grant No. DCR-83-12768 and the Defense Advanced 
Research Project8 Agency under Contract No. MDA 903-83-C-0027 
(monitored by the U.S. Army Engineer Topographic Laboratory) 

Figure 1. Surfaces of Increasing Fractal Dimension. 

The fractal model of surface shape [6,7] appears to possess the 
required properties. Evidence for this comes from recently conducted 
surveys of natural imagery [6,8]. These survey found that the fractal 
model of imaged 3-D surfaces furnishes an accurate description of most 
textured and shaded image regions. Perhaps even more convincing, 
however, is the fact that fractals look like natural surfaces [9,10,11]. 
This is important information for workers in computer vision, because 
the natural appearance of fractals is strong evidence that they capture 
all of the perceptually relevant shape structure of natural surfaces. 

II. FRACTALS AND THE FRACTAL MODEL 

During the last twenty years, Benoit B. Mandelbrot ha8 devel- 
oppd and popularized a relatively novel class of mathematical func- 
tions known as fractals [9,10]. Fractals are found extensively in nature 
[9,10,12]. Mandelbrot, for instance, shows that fractal surfaces are 
produced by many basic physical processes. The defining characteristic 
of a fractal is that it has a fractional dimension, from which we get the 
word “fractal.” One genera1 characterization of fractals i8 that they 
are the end result of physical processes that modify shape through lo- 
cal action. After innumerable repetitions, such processes will typically 
produce a fractal surface shape. 

The fractal dimension of a surface correspond8 quite closely to our 
intuitive notion of roughness. Thus, if we were to generate a series of 
scenes with the same 3-D relief but with increarring fractal dimension 
Z), we would obtain a sequence of surface8 with linearly increasing 
perceptual roughness, a8 is shown in Figure 1: (a) shows a flat plane 
(D = Z), (b) rolling countryside (D w 2.1), (c) an old, worn mountain 
range (D ti 2.3), (d) a young, rugged mountain range (D m 2.5), and, 
finally (e), a stalagmite-covered plane (D w 2.8). 

EXPERIMENTAL NOTE: Ten naive subjects (natural- 
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language researchers) were shown sets of fifteen 1-D curves and 
2-D surfaces with varying fractal dimension but constant range 
(e.g., see Figure 1), and asked to estimate roughness on a scale 
of one (smoothest) to ten (roughest). The mean of tbe subject’s 
estimates of rougbness bad a nearly perfect 0.98 correlation (i.e., 
96% of tbe variance was accounted for) (p < 0.001) witb the 
curve’s or surfaces’s fractal dimension. Tbe frsctal measure of 
perceptual rougbness is tberefore almost twice as accurate as any 
otber reported to date, e.g., 1131. 

Fractal Brownian finctions. Virtually all fractals encountered in 
physical models have two additional properties: (1) each segment is 
statistically similar to all others; (2) they are statistically invariant 
over wide transformations of scale. The path of a particle exhibiting 
Brownian motion is the canonical example of this type of fractal; the 
discussion that follows, therefore, will be devoted exclusively to frac- 
tal Brownian functions, which are a mathematical generalization of 
Brownian motion. 

A random function I(z) is a fractal Brownian function il for all z 
and AZ 

pr 
( 

Jb + *4 - w < y 
ll*41H 1 

= F(g) 0) 

where F(y) is a cumulative distribution function 171. Note that zc and 
I(z) can be interpreted as vector quantities, thus providing an extension 
to two or more topological dimensions. If I(z) is scalar, the fractal 
dimension D of the graph described by I(z) is D = 2-H . If H = l/2 
and F(y) comes from a zero-mean Gaussian with unit variance, then 
I(z) is the classical Brownian function. 

The fractal dimension of these functions can be measured either 
directly from I(z) by using* of Equation 1, or from I(x)‘B Fourier power 
spectrum ** P(l), as the spectral density of a fractal Brownian function 
is proportional+ to I-2H-1, 

Properties 0fFZactalBrownian Functions. Fractal functions must 
be stable over common transformations if they are to be useful as a 
descriptive tool. Previous reports [6,7] have shown that the fractal 
dimension of a surface is invariant with respect to linear transforma- 
tions of the data and to transformations of scale. Estimates of fractal 
dimension, therefore, may be expected to remain stable over smooth, 
monotonic transformations of the image data and over changes of scale. 

A. The Fractd Surface Model And The Imaging Process 

Before we can use a fractal model of natural surfaces to help us 
understand images, we must determine how the imaging process maps 
a fractal surface shape into an image intensity surface. The first step 
is to define our terms carefully. 
DEFINITION: A frrctal Brownlrn murface is a continuous function 
that obeys the statistical description given by Equation (l), with z as 

*We rewrite Equation (1) to obtain the following description of the 
manner in which the second-order statistics of the image change with 
scale: E(~A~~,~)I]Az]I-~ = E(IA1*,,1[) where E(lAla,l) is the ex- 
pected value of the change in intensity over distance Ax. To estimate 
H, and thus D, we calculate the quantities E(IAIA,I) for various AZ, 
and use a least-squares regression on the log of our rewritten Equation 

(0 

**That is, since the power spectrum P(j) is proportional to /-2H-1, we 
may use a linear regression on the log of the observed power spectrum as 
a function off (e.g., a regression using log(P(I)) - -(2H+l)log(j)+k 
for various values of /) to determine the power H and thus the fractal 
dimension. 

+Diacussion of the rather technical 
be found in Mandelbrot [lo]. 

proof of this proportionality may 

a two-dimensional vector at all scales (i.e., values of AZ) between some 
smallest (Azmin) and largest, (AZ,,,) scales. 
DEFINITION: A spatially isotropic fractal Brownlan surface 
is a surface in which the components of the surface normal N = 
(N,, N,, N,) are themselves fractal Brownian surfaces of identical frac- 
tal dimension. 

Our previous papers [6,7] h ave presented evidence showing that 
most natural surfaces are spatially isotropic fractals, with A2,in and 
AX 7na2 being the size of the projected pixel and the size of the examined 
surface patch, respectively. This flnding has since been confirmed by 
others [S]. Furthermore, it is interesting to note that practical fractal 
generation techniques, such as those used in computer graphics, have 
had to constrain the fractal-generating function to produce spatially 
isotropic fractal Brownian surfaces in order to obtain realistic imagery 
[ 111. Thus, it appears that many real 3-D surfaces are spatially isotropic 
fractals, at least over a wide range of scales* . 

With these definitions in hand, we can now address the problem 
of how 3-D fractal surfaces appear in the 2-D image. 

Proposition 1. A 3-D surface with a spatially isotropic fractal 
Brownian shape produces an image whose intensity surface is fractal 
Brownian and whose fractal dimension is identical to that of the com- 
ponents of the surface normal, given a Lambertian surface reflectance 
function and constant illumination and albedo. 

This proposition (proved in 171) demOnBhahB that the fractal 
dimension of the surface normal dictates the fractal dimension of the 
image intensity surface and, of course, the dimension of the physical 
surface. Simulation of the imaging process with a variety of imag- 
ing geometries and reflectance functions indicates that this proposition 
will hold quite generally; the “roughness” of the surface seems to dic- 
tate the “roughnessn of the image. If we know that the surface is 
homogeneous,** we can estimate the fractal dimension of the surface 
by measuring the fractal dimension of the image data. What we have 
developed, then, is a method for inferring a basic property of the 3-D 
surface - i.e., its fractal dimension - from the image data. The fact 
that fractal dimension has also been shown to correepond closely to our 
intuitive notion of roughness confirms the fundamental importance of 
the measurement. 

EXPERIMENTAL NOTEtFifteen naive subjects (mostly Ian- 
guage researchers) were shown digitized images of eight natural 
textured surfaces drawn from Brodatz 1141. They were asked “if 
you were to draw your ffnger horizontally along tbe surface pic- 
tured bere, bow rough or smootb would tbe surface feel?’ - i.e., 
they were asked to estimate tbe 3-D rougbness/smootbness of tbe 
viewed surfaces. A scale of one (smoothest) to ten (roughest) was 
used to indicate 3-D rougbness/smootbness. Tbe mean of tbe 
subject’s estimates of 3-D roughness bad an excellent 0.91 correla- 
tion (i.e., 83% of the variance accounted was for) (p < 0.001) witb 
rougbnesses predicted by use of tbe image’s 2-D fractal dimension 
and Proposition 1. This result supports tbe general validity of 
Proposition 1. 

B. Identlflcstion of Shrdlng Ver~r I’bxture 

Fractal functions with H FJ 0 do not change their statistics as a 
function of scale. Such surfaces are planar except for random varia- 
tions described by the function F(y) in Equation (1). If the variance 
of F(y) is small people judge these surfaces to be “smooth”; thus, 
the fractal model with small values of H is appropriate for modeling 

*This does not mean that the surfaces are completely isotropic, mearly 
that their fractal (metric) properties are isotropic. 

**Perhaps determined by the uze of imaged color. 
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smooth, shaded regions of the image. If the surface has significant local 
fluctuations, i.e., if F(y) is large, the surface is seen a8 being smooth 
but textured, in the sense that marking8 or Borne other 2-D effect is 
modifing the appearance of the underlying smooth surface. In contrast, 
fractals with H > 0 are not perceived a8 smooth, but rather a8 being 
rough or three-dimensionally textured. 

The fractal model can therefore encompass shading, 2-D texture, 
and 3-D texture, with shading a8 a limiting case in the spectrum of 
3-D texture granularity. The fractal model thus allows us to make a 
reasonable, rigorous and perceptually plausible definition of the cate- 
gories “textured” versus “shaded, n “rough” versus “smooth,” in terms 
that can be measured by using the image data. 

The ability to differentiate between U8moothn and “roughn 8ur- 
faces is critical to the performance of current shape-from-shading and 
shape-from-texture techniques. For surfaces that, from a perceptual 
standpoint, are smooth (H w 0) and not 2-D textured (Var(F(y)) 
small), it seem8 appropriate to apply shading techniques.* For sur- 
faces that have 2-D texture it is more appropriate to apply available 
texture measures. Thus, u8e of the fractal surface model to infer 
qualitative 3-D shape (namely, smoothness/roughness), ha8 the poten- 
tial of significantly improving the utility of many other machine vision 
methods. 

relationship: 

E(I~I)=E(IP:~~~~)I)pE(lldNll) (4 

where E(z) denotes the expected value [mean] of z. That is, we can 
estimate how crumpled and textured the surface is (i.e., the average 
magnitude of the surface normal’8 second derivative) by observing 

www 
Equation (4) provides us with a measure of 3-D texture that is (on 

average and under the above assumptions) independent of illuminant 
effects. This measure is affected by foreshortening, however, which acts 
to increase the apparent frequency of variation8 in the surface, e.g., the 
average magnitude of &N. We can, therefore, obtain an estimate of 
surface orientation by employing the approach adopted in other texture 
work [S]: if we assume that the 3-D surface texture is isotropic, the 
surface tilt* is simply the direction of maximum E&PI/I]) and the 
surface slant** can be derived from the ratio between rnw E(]d21/1]) 
and mine E(l&I/I]), h w ere # designates the [implicit] direction along 
which the texture measure is evaluated. Specifically, the surface slant 
is the arc cosine of ZN, the z-component of the surface normal, and 
for isotropic textures zN is equal to the square root of this ratio. The 
square-root factor is necessitated by the use of second-derivative terms. 

One of the advantage8 of this shape-from-texture technique is that 

III. Shape EatSmater From Texture And Shadlng 

The fractal surface model allow8 u8 to do quite a bit better than 
simply identifying smooth versus textured surfaces and applying pre- 
viously discovered techniques. Because we have a unified model of 
shading, 2-D texture and 3-D texture, we can derive a shape estimation 
procedure that treats shaded, two-dimensionally textured, and three- 
dimensionally textured eurfaces in a eingle, unitled manner. 

A. Development of a Roburt Texture Meuure 

Let us assume that: (1) albedo and illumination are constant in 
the neighborhood being examined, and (2) the surface reflect8 light 
isotropically (Lambert’a law). We are then led to this simple model of 
image formation: 

I=pX(N.L) (2) 

where p is surface albedo, X ie incident flux, N is the [three-dimensional] 
unit surface normal, and L is a [three-dimensional] unit vector point- 
ing toward the illuminant. The Brst assumption mean8 that the model 
holds only within homogeneous region8 of the image, e.g., regions 
without self-shadowing. The second assumption is an idealization of 
matte, diffusely reflecting surfaces and of shiny surfaces in region8 that 
are distant from highlight8 and specularities [3]. 

In Equation (2), image inteneity is dependent upon the surface 
normal, a8 all other variable8 have been aerrumed constant. Similarly, 
the second derivative of image intensity is dependent upon the second 
derivative of the surface normal, i.e., 

&I = pX(d2N - L) (3) 

not only can it be applied to the 2-D texture8 addressed by other 
researchers [4,5] (by simply using this texture frequency measure in 
place of theirst ), but it can alao be applied to surfaces that are 
three-dimensionally textured - and in exactly the 8ame manner. This 
texture measure, therefore, allows u8 to extend existing shape-from- 
texture methods beyond 2-D texture8 to encompass 3-D texture8 a8 
well. 

B. Development of a Roburt Shape Eatlmator 

These shape-from-texture technique8 are critically dependent 
upon the assumption of isotropy: when the texture8 are anisotopic 
(stretched), the error is substantial. Estimate8 of the fractal dimension 
of the viewed surface [6,7], by virtue of their independence with respect 
to multiplicative transforms, o5er a partial solution to this problem. 
Because foreshortening is a multiplicative effect, the computed fractal 
dimension is not a5ected by the orientation of the 8urface.tt Thus, 
if we measure the fractal dimension of an isotropically textured sur- 
face along the z and y directions, the measurements must be identical. 
If, however, we find that they are unequal, we then have prima facie 
evidence of anisotropy in the surface. 

This method of identifying anisotropic texture8 is most e5ective 
when each point on the surface ha8 the game direction and magnitude 
of anisotropy, for in these ca8e8 we can accurately discriminate change8 
in fractal dimension between the z and y directions. When the surface 
texture is variable, however, thie indicator of anisotropy becomes fess 
useful. Thus, local variation in the surface texture remain8 a major 
source of error in our estimation techniques; it is therefore important 
to develop a method of estimating surface orientation that is robust 
with respect to local variation in the surface texture. 

(Notation: we will write dr1 and dLN to indicate the second deriva- 
tive quantities computed along 8omt image direction (dt, dy) - thie 
direction to be indicated implicitly by the context.) 

*The image-plane component of the surface normal, i.e., the direction 
the surface normal would face if projected onto the image plane. 

**The depth component of the surface normal. 
The fractal model taken together with previous results [15], implies 

that on average &N is parallel to N. Consequently, if WC divide 
Equation (2) by Equation (3) we will on average obtain the following 

*Indeed, it is only in theae case8 that meaeurement noiee can be reduced 

tThis measure include8 edge information, i.e., the frequency of Marr- 
IIildreth zero-crossings as we move in a given direction appears to be 
proportional to E(]dLI/I]) along that direction; consider that Marr- 
IIildreth zero-crossings are also zero-crossings of &I/I. 

(by averaging) to the level8 required by shape-from-shading techniques ttAt least not until self-occlusion effect8 have become dominant in the 
without simultaneously destroying evidence of surface shape. appearance of the surface. 
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Figure 2. Variation in Local Texture (a) Compared with No Variation (b). 

Such robustness can be obtained by applying regional, rather than 
purely local, constraints. Natural texture8 are often uhomogeneou8n 
over substantial regions of the image, although there may be significant 
local variation within the texture, because the processes that act to 
create a texture typically a5ect region8 rather than point8 on a surface. 
This fact is the basis for interest in texture segmentation techniques. 
Current shape-from-texture technique8 do not make u8e of the regional 
nature of textures, relying instead on point-by-point estimates. By 
capitalizing on the regional nature of texture8 we can derive a substan- 
tial additional constraint on our shape estimation procedure. 

Let us assume that we are viewing a textured planar surface whose 
orientation is a 30” slant and a vertical tilt. Let us further suppose 
that the surface texture varies randomly from being isotropic to being 
anisotropic (stretched) up to an aspect ratio of 3:1, with the direction 
of this anisotropy also varying randomly. Such a surface, covered with 
small crosses, is shown in Figure 2(a); for comparison, the same surface, 
minus anisotropies, is shown in Figure 2(b). 

If we apply standard ahape errtimation technique8 - i.e., estimat- 
ing the amount of foreshortening (and thue aurfaco orientation) by the 
ratio of Some texture meaSure along the [apparently] unforshortened 
and [apparently] maximally foreshortened direction8 - our estimates 
of the foreshortening magnitude will vary widely, with a mean error of 
65% and an rms error of 81%. If, however, WC eetimate the value a 
of the unforshortened texture mea8urc by examining the entire region, 
and then compare this regional estimate to the texture measure along 
the (apparently) maximally foreshortened direction then our mean er- 
ror is reduced to 40% and the rms error to 49%. 

By combining this notion of regional estimation with the texture 
measure developed above, i.e., E(]#I/I]), we can conlstruct the follow- 
ing shape-from-texture algorithm that ie able to deal with both smooth 
two-dimensionally textured surface8 and rough, three-dimensionally 
textured 8urface8, and that L robuet with respect to local variation8 
in the surface texture. 

C. A Shape E&rmation Algorithm 

We may construct a rather elegant and efficient ehape estimation 
algorithm based on the notion of regional estimation and on the texture 
measure introduced above by employing the fact that 

(5) 

for any orthogonal u, II. This identity will allow ua to estimate the 
surface slant immediately rather than having to search all orientations 
for the directions along which we obtain the maximum and minimum 
values of E( Id2 I/I]). 

Let us assume that we have already determined (Y = 

mine E(l@I/Jl), which is the regional estimate of unforeshortened 
E(]dZN]). When the estimate of a is exact, Equation (5) gives ua the 

(b) 

L- 

Figure 3. Tuckerman’s Ravine. 

result that 

(6) 

as the directions of maximum and minimum E ( > 
]q] are orthogonal. 

VZ’e may therefore estimate ZN, the z component of the surface 
normal, by 

where 0 = E(lV21/I]) an d a is the regional estimate of the unforeshor- 
tened value of E(]GI/I]). Th e constant (Y can be estimated either by 
the median of the local [apparently] unforeshortened texture-measure 
values, or by use of the constraint that 0 5 ZN 5 1 within the region. 
The direction of surface tilt can then be estimated by the gradient of 
the resulting slant field - e.g., the local gradient of the zN values - 
or (as in other methods) by examining each image direction to find the 
one with the largest-value of the texture frequency measure. In actual 
practice we have found that the gradient method is more stable. 

D. A Unifled Treatment of Shadfng and Texture 

The fractal surface model capture8 the intuitive notion that, if 
we examine a series of surface8 with successively less three-dimensional 
texture, eventually the surfaces will appear shaded rather than tex- 
tured. Because the shape-from-texture technique developed here was 
built on the fractal model, we might expect that it too would degrade 
gracefully into a shape-from-shading method. This is in fact the case: 
this shape-from-texture technique is identical to the local shape-from- 
shading technique previously developed by the author [15]. That ie, we 
have developed a shape-from-x technique that appliea equally to 2-D 
texture, 3-D texture and shading. 

As an example of the application of this shape-from-texture- 
and-shading technique,* Figure 3 8hOW8 (a) the digitized image of 
Tuckerman’s ravine (a skiing region on Mt. Washington in New 
Hampshire), and (b) a relief map giving a side view of the estimated 
surface shape, obtained by integrating the slant and tilt estimates.** 

*This example was originally reported in Pentland (151 a8 the output 
of a local shape-from-shading technique followed by averaging and in- 
tegration. This algorithm is identical to the shape-from-texture tech- 
nique described here; in fact, investigation of the shape-from-texture 
properties of this method was motivated by the coneternation caused 
by this successful application of a ebsding technique to a textured nur- 
face. 
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This relief map may be compared directly with a topographic map of 
the area; when we compare the estimated shape with the actual shape, 
WC find that the roll-off at the top of Figure 3(b) and the steepness of 
the estimated surface are correct for this surface; the slope of this area 
of the ravine averages 60’. 

[15] Pentland, A. P. (1984) “Local Shape Analysis,” IEEE Transactions 
on Pattern Analysis and Machine Intelligence, March 1984, pp. 
170-187 

IV. Summary 

Shape-from-shading and texture methods have had the serious 
drawback that they are applicable only to smooth surfaces, while 
real surfaces are often rough and crumpled. We have extended these 
methods to real surfaces using the fractal surface model [6,7]. The 
fractal model’s ability to distinguish successfully between perceptually 
“smooth” and perceptually ?ough” surfaces allows reliable application 
of shape estimation techniques that assume smoothness. Furthermore, 
we have used the fractal surface model to construct a method of es- 
timating 3-D shape that treats shading and texture in a unified manner. 
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