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Abstract 

1. INTRODUCTION 

A ni~mbcr of ccmputAionn1 Lhks in lou -Ic\cl niacllinc dsion 

lid\ c hccn fimiit~l.ircd dc \ ,iri,ltion,ll principh (Inininll/,lti~lll problcn~s) 

or ‘13 (elliptic) p,11u,11 dlft’crcntul cqu,ttion~ (f’IX:s) (c.g., 11. 2, 8. 
9. IO, 15. 171). C:ndcr ccmin (~clf ,IdJointncss) miditions, PIX 

formul,lrions can 1~ linked to \,ari.ltion,il principles. as ncccssary 
condirion~ for minimi. through the I-Alcr-l ‘igr‘lngc cqu,itions of Lhc 
calculus of 1 ariationc 141. .2n ,ittracti\ c fcatiirc of many variational 
PI Inclplc and assoc~~cd Pl)E formulations. once discrctircd, is that 
thclr solutions can he computed by itcrati\e algorithms requiring 
onl! local computations uhich CAM hc pcrfolmcd in pnrailcl by 
man> simple processors in locall! -conncctcd networks or grids. Such 
algorithmic structures arc appealing. both in L icw of the apparent 
structure of biolog]cA vision s>rtcms and the imminent proliferation 
of m,issi\cly parallel, locally conncctcd VI SI processors for vision. 

Visual rcprcscntations visually possess certain csscntial global 
propertics (consistcnc>. smoothncsb. minimal cncrgy. etc.) which the 
variational principle or IWE formulations aim to csprurc formally. 
Gi\,cn onl!, local processing capabililics. global propcrtics must be 
s:irisiicd indircctlt. tl pically by propagating \ isual information across 
grids through iteration. Substantial computational inefficiency can 
result since the computatlonal grids tend to bccomc cxtrcmcly large 
in mncl:inc vicion ,ipplications. Convcrgencc of the iterative process 
is often so slow as to nearly nullify the potential bcncfits of massive 
par,~llclism. A cast in point is the local. itcrativc computation of 
\ isiblc-surface rcprcscntations from scattered, local cstimatcs of surface 
shnpc [14-161. 

Multircsolution processing in hierarchical rcprescntations can 
hc effccti\c in counteracting the computational sluggishness of local, 
itcrativc solutions to vision problems posed as variational principles 
or WEs. Multigrid methods [7]. cfficicnt tcchniqucs for solving PI)& 
numerically. hale been adapted successfully in our previous work 
to the computation of visible-surface rcprcscnt;itions (14, 151. An 
objccti\c of this paper is to dcmonstratc that this methodology has 
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I~I~~LIJ ,~l~I~l~c.~hilit~ in \ Gn (\cc ,~IuI [ 14, 01). After ;I brief o\cr\.icM 
of‘ mullisl Ed mcrhod~. ~c stud!. III turn. rhc itcrA\c comput,~tion 
ot’ Il~htfic\4. ~li,lllc-l’l.olii-sh,tdiii~. illld OlJtiC,ll 1lOH flom imdgcs. LVC 

l>rc~nt cmpiric.ll c\ idcncc th,lt our ti~iiltirc~olution ,rlgcJrithms can 
hc cjrdcr\ 01‘ m,l_rnitudc ~I~I~C Clkicnt ULIII con\ cntional single Ic\cl 
\ cr4ions. 

2. MULTIGRID METHODS 

Progress h,l< rcccntl! hccn made in applied numerical analysis 
M Ith rcg,tldb to multigrid methods (4cc. c.g.. 13, 71). WC have 
dr,l\r 11 upotl thc~ tcchnlquc\ ,rnd the ‘1+4oci,ltcd thcorq in our work 
on multlrc~c)lutio~l colnI,ut,ltic,n,ll 1 ijion w g.rin colnput,ltion~tl and 
rcprc~crit~1tic,n~ll Ic\cr,lgc. Our .Id.ipr;rtion of‘ thcsc? methods provide 
‘III cfticient mc,~nj of‘ compurinr conxi\icnt \,isu,il rcprcscntations at 
niultiplc sc~lcs. In multigrid mcrhod~. ;: hicr;lrcliy ol‘di~rctc problems 
ij formtll,~tcd and local. mulrilc\ cl r’clax,ltlon schcmcs arc applied to 
ilCCCl~I2W con\ cr_ecncc. Our ,ilgorithms ha\ c scvcral compcmcnts: (i) 
multiple \ i\ual rcprcscntAm\ o\ cr a range of spati;ll resolutions, (ii) 
loc,ll intralc\cl proccsscs that itcr;lti\ cl! propagate constraints within 
each rcprcscntatic,li;11 Ic\,cl. (iii) 10~11 coarhc-to-fine (prolongation) 
proccsscs that iillOW coarser rcprcscntations to constrdin finer ones, 
(i! ) fine-to-codrsc (restriction) processes that allow finer rcprcscntstions 
to improic the accuracy of coarser ones, and (i\ ) adaptive (recursive) 
coordination stratcyicj [3] that cnahlc the hicrarchg of rcprcscntations 
and component p~occsscs to coopcrate towards incrcnsing cficicncy 
(see [14, 151 for details). 

Gcncrally, the intralcvcl proccsscs arc familiar Gauss-Scidel or 
Jacobi rcl,lxation 151. the prolongation proccsscs are local 1,agrange 
(pol!,nominl) interpolations, and the restriction proccsscs are local 
avcr,lging opcrntions [3]. The precise form of these processes is 
problem-dcpcndcnt. The nlgorithm~ in this paper employ simple 
injection for the fine-to-coarse restrictions and bilinear interpolation 
fclr coarse-to-fine prolongation. Appropriate relaxation operations are 
derived by discrctiying the continuous vision problems. The finite 
dlfl‘crcncc method [5] can be cmploycd when a problem is posed 
as a PI)E, whcrcas the finite clcmcnt method [13], a more gcncral 
and po\vcrful discrctizition technique, can be applied directly to 
variational principle formulations [14-161. 

3. THE LIGHTNESS PROBLEM 

‘I’hc lightness of a surface is the perceptual correlate of its 
rcficctancc. Irrddiancc at a point in the image is proportional to 
the product of the illuminancc and rcflcctancc at the corresponding 
point on the surface. ‘I‘hc lightncbs prublcm is to compute lightness 
from image irradinncc, assuming no prccisc knowledge about either 
rcflcctnncc or illuminance. 

‘I’hc rctincx theory of lightness and color proposed by Land 
and ,\lcCann 1121 is b;iscd on the observation t!at illuminance and 
rciicctancc patterns differ in their spatial propcrtics. llluminance 
changes arc usually gradual and, thcrcforc, typically give rise to 
smooth illumination gradjcnts, while reflccrnncc changes tend to 
bc sharp. since they often originijte from abrupt pigmentation 
changes and surfllcc occlusions. Horn 191 proposed a two-dimensional 
gcncralization of the l-and-hlcCann algorithm for computing lightnsss 
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in .IIuurlrih/t sccncs consisting of pl,tnar arc;ts di\ idcd into subregions 
of uniform matte color. 

I.ct /l(r, y) bc tl1c rcflcct;lncc Of 1llC \LII.f~ICC ilt i1 point 
corrc\ponding to the iln,igc point (.r,y) illld ICt S(.r,!/) IX! 1hC 
Ill~lllllnil~~CC &It lhilt S130int. ‘I IlC irr,idi,incc iit 1hC IlTlilgL2 point is gi\Cn 
b> /l(s, !I) = S(T, tj) x /{(I, !I). I)cnoting the Ic+lr-ithmc of rhc a!wvc 
function4 ;I\ lo~crc~~sc qimnlitic5. MC hale L(s, !I) -- .q(~, ~1) t 7(x,1/). 
\c\t. I lorn cmplo;~cd the I ,~pl;ici,ni opcr‘lt~~r A H hlch gibes rl(.r, 1~) = 
Ab(.r, ~1) -2 A.q(;r, !I) P Ar(r, !I). In the Xlondri,tn $ituiltion illuminancc 
ic ,Issumcd to ear’! smoothI! so th‘~t A.*(r, !I) bill be finitc cvcry\chcrc, 
N hilc AT(J. y) N ill cxhiblt pulp doublets ;rt intcnriry edges scp,u-sting 
nci$boring regions. 11 thrcsholding opcr,wr 7’ con bc itpplicd to 
disc& the finite pirt: ‘Tjd(~, y); -= A+, y) -T--Z j(x, y). Ilcncc, the 
rcllcctancc II is given b! the in\crsc logilrithm of the solution to 
Poisson’s equation 

A+, Y) = Jk, Y), in II, 
where I2 is the planar region covered by the image. 

Horn WI\ cd the abo\ c PI)E by con\ olution with the approprintc 
Green’s functmn. WC will instead pursue an itcrati\c solution 
\ 11~3 is also local and parallel, hcncc apparently biologically 
feasible. ~I’hc finite diffcrcncc method can be applied directly. 
Suppose that II is cnlcrcd by a uniform square grid with 
spacing h. We can approximate Ar = T,, + ryy using the order 
h? approximations r,, = (r,h,,,3 - 2rf,j + rIh_,,j)/hz and ryy = 

(rf;3+1 - 2rp,, + rF,j-,)/h2 to obtain a swdard discrctc version 
of Poisson’s equation (rt+,,, + rtP,,3 + r:,j+l -t rt,,,-l - 4rt3)/h2 = 
r,, . This dcnotcs a sybtcm of linear equations whose coefficient matrix 
is sparse and banded [5]. 

Rearranging, the Jacobi relaxation step is given by 

p ,(n+') 1 rh =- CT3 4 ( 
(71) 

l+I,j 
(-1 + r+ 

s-1 ,j + rF,j+l(n) + rFj-l(n) - /L*?~). 

Jacobi relaxation is suitable for parallel implcmcntation, whereas 
Gauss-Scidel relaxation is better suited to a serial computer and, 
morcovcr, rcquircs less storage. 

The synthcsixcd Mondrjan images shown in Figure 1 were input 
to a four lcvcl lightness algorithm (uith grid siLes 129 x 129, 65 x 65, 
33 x 33, and 17 x Ii’). The grid function e,j was computed by 
maintaining only the local peaks in the Laplacian of r;“,j at each 
Icvcl. Zero boundary conditions wcrc provided around the cdgcs of 
the images. and the computation was started from the zero initial 
approximation ri,] h - 0. E‘igurc 2 shows the rcconstructcd Mondrian, 
which lacks much ofthe illumination gradient. Reconstruction required 
33.97 work units, whcrc a work unit is the amount of computation 
required for an iteration on the finest grid. ‘l‘hc total number of 
itcrntions performed on each lcvcl f?om coarsest to finest respcctivcly 
is 142, 100, 62, and 10. In comparison, a single-lcvcl algorithm 
requircc! about 500 work units to obtain a solution of the same 
accuracy at the Jincst level in iso!ation. ‘l‘hc single-lcvcl algorithm 
requires at least as many iterations for convcrgcncc as thcrc are nodes 
across the surface. since information at a node propagntcs only to its 
ncartlst neighbors in one jtcration. ‘I‘hc multilcvcl algorithm is much 
more cficicnt because it propagates information more effccti\ely at 
the coarser scales. 

4. THE SHAPE-FROM-SHADING PROBLEM 

In gcncral. image irradiancc dcpcnds on surface gcomctry. 
5CCIlC illUl~lillilllCC. SUI’filCC rcflcctancc, iind im,lging gcomctry. ‘I‘hc 
slli~pc-frown-sll;lding prohlcm is to rwn’cr Lhc rJla~lc of 5urfXcs from 
image irradiancc. 13) ilssuming th;~t illuminancc. rcflcctancc, and 
imaging gcomctry arc constan t .md knw n, image irradiancc can IX 
rclafcd directly to surfjcc orientation. 

I.ct U(T, .v) bc a surface patch with constant albcdo defined 
over a hounded planar region (2. l‘hc rcLltionchip bctwccn the 
>urfacc orientation at a point (s! w) i\nd the image irrndi,rncc there 
11(~, ?/) is dcnotcd by Q,g). uhcrc IJ = U, and (I = ‘1~~ arc 

Figure 1. Synthetic Mondrian images containing patches of uniform 
reflectance and an illumination gradient which increases quadratically from 
left to right. The three smaller images are increasingly co;1rscr sampled 
versions of the largest image which is 1~1 x 129 pixels, quahtircd to 256 
irradjance levels. _____ 

Figure 2. The reconstructed hlondrinn computed nftcr 33.07 work units by 
t-he four-level multiresolution lightness alguritbm. Most of the illumination 
gradient in FIgtIre 1 has been eliminated. -_-- 

the fir.,t J>iil’tlilI dcri\iltl\ Cc of IhC \llifiiCC f’tlll~ti~~ll At (1, y). ‘!‘JlC 

sh,~pc-f~~)m-slli~ding problem can bc posed ‘14 ;I nonlinear. first-order 
PI>E in t\co unknon ns. cilllcd the Iln~rffc-irrHdiilll~~ cqwltion [I 11: 
Ij(.r, y) - 1+, q) =- 0. ClcCu4)~. surfhcc oricnt,ltion cClnnot bc computed 
strict]) IoC~Ill~ bCc~lll~c illlilgc iI riidiilllCC proi ides a sinflc mc,lsurcmcnt, 
while surfilcc oricnt;rtion has two indc\pcndcnt compo~~cncs. .l‘hc 
image irradiancc cquiltion pro\ ides one cxpllcit conwClint on surface 
orientation. I kcuchi and Ilor-n [ 11) cmploqcd an .idditional surface 
~moothncss constraint. An ,IJipiVpriittC wt of boundary conditions is 
ncccwry to solve the problem. and the) suggested the USC of occluding 
boundaries of surfitccs. Since LI~C 1j-g pal.i~rnctcri/~ttio~~ of surface 
orientation bccomcs unbounded ,lt occluding boundaries however, 
t.hc!, rcparametcrilcd surfilcc orientation in terms of the stereographic 
mapping: j = 2prr. CJ = 24tr. where a = (&$Ti9--- l)/(p’+ 9.‘). 

The above considcr,ltions ucrc form;rJi/.ed in a variational 
principle in\ol\ ing the minimi/.ation of the functional 

CC/t d = JJ .(I:‘J:)+(~:+~t)d3.dy+S JJ ni+t~)- ~~(J,.r1)]2d4/ 

The first integral incorporates the surface smoothness constraint. 7%~ 
second is a least-squares term which attempts to cocrcc the solution 
into satisfying the image irradiancc equation. thus treating the image 
irradiancc equation as a penalty constraint wcightcd by a factor X. 
‘l‘hc Euler-Lagrange equations are giicn by the following system of 
coupled Pl>Es 

AI - X[JJb, Y> - W, s)iQ = 0, 
Ag - X[U(z, y) - R( j, g)] 12, = 0. 

Discrctizing the above equations on a uniform grid with spacing 
h using the standard finite diffcrcnce approximations, we obtain the 
Jacobi relaxation scheme 
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$,j(n+l) = @[$Fjj(“) + X[Bi,J - Z”(ff:j’“‘,g~,j’“‘)][z~~]~~‘l 

g;, j(n+l) ZZZ @[gf,j](“) + X[Bi,j - R( Gj’“‘, g,“, j’“‘)][R,]!:,!, 

whcrc @[c,j] = [Q-l,j + c+l,j + Q,j-l + e,j+l]/4 and @[$,j] =I 
id- 1 ,3 + g;“,, , j + g:, j-l + g11,i+l]/4 are local averages of /‘l and gh at 
node (;, j) (a factor of l/4 has been absorbed into X), 1~1 = i3R/i3j, 
and Rg = ~II/&J. WC employ the Gauss-Scidcl form of the relaxation 
in our multilcvcl algorithm. Appropriate boundary conditions may 
be obtained from occluding boundaries in the image (see [ll] for a 
discussion). 

A four level shape-from-shading algorithm (with grid sizes 
129 x 129, 65 x 65, 33 x 33. and 17 x 17) was tcstcd on he 
4! ntltctic~~ll~ -gcncr,itcd I ,imbcrti.in \phcri‘ im,fgcs sho\r 11 in tCtgiirc 
3. SLI~I;ICC oricnt&on M;I\ spccificd ;~round the occluding houndnry 
of' Illc‘ yhTc. M IIICII was m,~rkcd ,I\ ,I dixxmttnult), and the 
comput,ition \t,l\r \t,irlcd fron1 the /cro lnlti,ll ilp~llc~xi~~l~itiOl~. j -= 
!I o M ithIn the ~phcrc. I hc ~llut~on \j ,I\ obt,~~ncd .Ilicr 6.175 work 
un114. I hc tot,11 1111i~ilx2r of‘ itcr,itionj pcrfilrlllcd on c,ich Ic\cl from 
co~~r~~\t to firic\t rc\pccti\cl! I\ 3-. ) 10. 4. ;ind 1. In conip,iricon. ;I 
\I nslc-lc\ cl ,ilgorlrhni rcqiiircJ ~10~2 to 200 work tInit\; to obtain ‘1 
v~Iu~I~u~ of‘ the \;unc’ accllrac! ,II the finest Ic\cl in i\ol,ition. Unlike 
the li$trlc\c ,llg~xithm. ~OHC\ cr. rhc sh‘lpc-from-sll,ldin_c algorithm 
cmplo! \ +,idm_r infiirm,ition ‘ind the imlfc irr,ldi.incc equation to 
con\tr‘lin the 4urf;Icc sh:~pc M irhln rhc surfxc boundaries. For this 
rc,l\on. con\crgcncc is cxpcctcd to bc faster. 

I‘hc sur-fxc norm,tl~ computed b! the sh;rl’c-frown-shading 
~iIc~,rillim at rhc three ccxirsc\t rc5olution*l iII’C rcprcscntcd in Figure 
-1 ;I\ “necdlcs.” 1 hcsc nccdlcs ;Irc‘ sho\r II I! ing on ;I pcrspcctii e view 
or’ the surt’acc in depth. ‘I‘hc depth rcprcscnt:ition was computed 
b! ;I (four-lc\cl) multircsolutio~~ surf,lcc reconstruction algorithm 
(l4-IO] u+g the norm,rls ;IS sur~‘ICC oricntaticm constr,rints. Nodes 
on the occluding bo\lndar~ of the sphere uc’rc m,trkcd ;IS depth 
disctlntlnuitic\ and the comput,ltion was started from the zero depth 
initial ,Ipproximation. ‘I‘he surfacc rcconsIruction rcquircd 8.8 work 
units. 

5. THE OPTICAL FLOW PROBLEM 

Optical flow is the distribution of apparent vclocitics of irradiance 
pattClXS in the dynamic imilgC. I hc optical flow field and its 
discontinuitics can bc an important source of infonnstion about the 
drrangcmcnt and the motions of I isiblc surfaces. ‘l‘hc optical flow 
problem is to compute optical flow from a discrctc scrics of images. 

Ilorn and Schunck [lo] suggcstcd a technique for dctcrmining 
optical flow in the rcstrictcd cast v,hcrc the obser\,cd velocity of 
image irradiancc patterns can be attributed directly to the movement 
of surfaces in the scent. Under thcsc circumstances, the relation 
belu ccn the change in image irradiancc at a point (I, g) in the image 
plane at time t and the motion of the irradiancc pattern is given 
by the flow cqaation &U + L&V + ZI, = 0, whcrc Zj(z,y,t) is the 
image irradiance, and u = dx/dt and v = dy/dt arc the optical flow 
components. 

An additional constraint is nccdcd to solve this linear equation 
for the two unknowns, ZL and 71. If opaque objects undergo rigid 
motion or dcfonnation. most points have a iclocity similar to that 
of their neighbors. csccpt \vhcrc surfaces occlude one nnothcr. Thus, 
tilt velocity field will \‘ary smoothly almost cvcrywhere. Horn and 
Schunck formulated the optical flow problem as finding the flow 
functions ~(2, y) and V(X, 21) which minimize the functional 

whcrc cx is a constant. The first term is the smoothness constraint, 
while the second term is a Ic;lst-squnrcs penalty ftlnctional Hhich 
cocrccs the flow field into s:r!isfying the flow equation as much as 
poss~l~lc. The E&r-l .a_rrangc equations for the above fimctional are 
given by [lo] 

Figure 3. Synthetic images of a Lambertian sphere illuminated by a distant 
point source perpendicular to the image plane. The three smaller images 
are increasingly coarser sampled versions of the largest image which is 
129 x 1211 pixels. quantized to 256 irradiance levels. 

Figure 4. Surface normals which were computed after 0.125 work units by 
~?e four-level mulCrcsolut.ion shape-from-shading algorithm are shown as 
“needles” for the three coarsest levels (the finest resolution surface is too 
dense to illustrate as a 3-D plot). The surfaces were computed from the 
normals by a multiresolution surface reconstruction algorithm after 8.8 work 
units. ---- -- 

I&, $ I~,I~,7~ ru’?Au I), 4 7 
/I, I& IL + I$, = a AV I&, IIt. 

:255itiiiing ;i cubical network of no&\ M ith spicing 1,. where i. 
j. illld k index n(Jdcls iil(Jng the r. !/. 2nd t ,~xcs rc\pccti\cly. 
WC USC the lilllowlllg stand;trd tinitc dltt;‘rcncc formul,ls to dis- 
crcti/c the dill2rcntiJ O~~c’l‘irt~ll‘s: !/j,]j’,,.k :- 21,) (/I:+ I .j.k - I{:- ,.g.k); 
I~XJ.~ = $,(I~!:,+I.k - IC-I.k): iW3qk -- @l’.,.k tl - tt,.J: 
A” II. = i,l2 (+[u~,,,] - of.,.,): Ah7r - i;L(+;l,.k] - I:;~,~): where 
+i4t,.kl = :;(Cl.3.k + 4tJ +l.k + C I.3.k + $J ,.J ;d Wt,.A = 
f(L,,k + C’.,,,., 7 \I’, I.J.k + 9.,-L,). 0 1 1 PI t ICI I >ioxim,itions ;lrc 
po\siblc: for example. tho\c suggc$rcd hq t lorn ,md Schunck [IO] 
Mhich. ho\+ c\ cr. rcquirc o\ cr four time\ the cornput,ition per iteration. 
GI\CII d! n,lmic images o\cr at least Utrcc frxncs. ;t s!mmctric central 
dilrcrcncc formul:l [IIljff,,k = ,:, (llt,,,k+, - II!‘,.,- l) i3 prcfcr,iblc. 

Substituting the iih(lVC approxilnations into the t-Iulcr-I .agrangc 
equations and solving for II:,,, and \!:,*I, yields the following Jacobi 
rclaxJtion formula 

t%;j,k 
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where pf,j,k = ([II~]!‘~,~)~ + ([/Iyjp,j,k)2 + +n2 and 
h 

= [nz],hj,k@[l]lhj k ] + [r~,]fj k~[vthj k] + i&]l”.,,ke Al?propriate 
;%idary conhitions ‘a& the &t&al b;&ndary conditions of zero 
normal derivative at the boundary of fl. They can bc enforced by 
copying ~;rlucs to boundary nodes from neighboring interior nodes. 

A four lcvcl optical flow algorithm (with grid sizes 129 x 129, 
65 x 65. 33 x 33, and 17 x 17) was tested on a s]vnthctically-gencratcd 
image of a Lambcrtian sphere expanding uniformly over two frames 
(Figure 5). l’hc velocity field was specified around the occluding 
boundary of the sphere, and the compurarion was started from 
the zero initial approximation, u = 2) -_ 0 within the sphere. The 
occluding boundary itself was marked as a velocity field discontinuity. 
The solution computed on the three coarsest lcvcls after 4.938 work 
units is shown in Figure 6 as velocity vectors in the 2-y plane. ‘Ihe 
total number of iterations pcrfonncd on each level from coarsest to 
finest rcspcctivcly is 40, 5, 4, and 3. In comparison, a single-level 
algorithm rcquircd 37 work units to obtain a solution of the same 
accuracy at the finest level in isolation. The comrncnts about the 
convergence speed of the shrlpc-from-shading algorithm apply here 
also. Employing the Horn-Schunck relaxation formulas, Glarcr [6] 
also reports improvements in the convcrgcncc rate of a multilevel 
optical flow algorithm relative to a single lc\cl algorithm. 

6. CONCLUSION 

Once discrctizcd, problems in machine vision posed as variational 
principlcls or partial diffcrcntial equations arc amcnablc to local 
support. parallel. and iterative solutions. lhc to the locality of 
the irerntivc process, howcvcr. these computations arc inhcrcntly 
inctficicnt at propagating constraints over the large rcprcscntations 
[J plc,rll! encountcrcd. Mtilt~r~\olurion procc4sing c‘111 o~c~~con~c this 
inclficicncl I~! exploiting CO‘II-scr ~cprcccnt,ltlolls which tr,idc off 
Ic~olilticu~ for direct inlcraction4 o\cr I,ircc’r di\tancc\,. ,Ac \v~I~ chown 
111 0111’ prcl iou4 ~l[~~~liCiltlOlll* 10 lhc wrfdcc recon\lruclion prc)blcm 
[IA- IO] .~nd. in [Ill\ p~pcr. to lhc ligh[nc44. ~lli~pc-fi~)~~l-sh;ldin~. and 
opr~l tlow prol~lcms. dr,nn;ltlc incrc,lsch in c‘flicicnc> c,~n rrsult. 

I’4ing our ~Ip~~[.OilCll. it is clc,~rI! po~41blc to dc\clop niulti- 
rc\olution Ilcr;iti\c ,Ilgorithm\ for other \l\ion prohlcms, including 
imG1pc rcgisrration 111. interpolating the motion field ciLhcr along 
contoun 181 or o\ cr regions. computing 31~1~ I‘rom-contour [J]. itnd 
liar hoI\ iiig itcr,rti\cl!, the strucltlrc-1’ic,nl-ulotion problem [I?]. In f;ict. 
,111) iter,itilc (rclijx,ltton) l~roccsscs \rhich \ccks global ct)n\istcncy, 
burr M hose proccs\ors ,~rc‘ rc~ti.icUXI to 4implc. local intcr,ictions can 
bcncfir from the appro:ich. most c\ idcntlq when it is go\crncd by a 
~iiriilti~~n~ll pl inciplc or p‘irtial difTcrcntia1 equation. 
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