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Abstract

Problems in machine vision that are posed as variational principles or
partial differential equations can often be solved by local. iterative, and
parailel algorithms. A disadvantage of these algorithms is that they are
ineflicient at propagating constrainis across large visual representations.
Application of multigrid methods has overcome this drawback with
regard to the computation of visible-surface representations. We argue
that our multiresolution approach has wide applicability in vision. In
particular, we describe efficient multiresolution iterative algorithms
Jor computing lightness, shape-from-shading. and optical flow, and
evaluate the performance of these algovithms using synthesized images.

1. INTRODUCTION

A number of computational tasks in low-level machine vision
have heen formulated as variational principles (minimization problems)
or as (elliptic) partal differential equations (PDEs) (cg., [1. 2. 8.
9. 10, 15. 17]). Under certain (self adjointness) conditions, PDE
formulations can be linked to variational principles, as necessary
conditions for minima, through the Fuler-1 agrange cquations of the
caleulus of variations [4]. An attractive feature of many variational
principle and associated PDE formulations. once discretized, is that
their solutions can be computed by iterative algorithms requiring
only local computations which can be performed in parailel by
many simple processors in locally-connected networks or grids. Such
algorithmic structures are appealing. both in view of the apparent
structure of biological vision systems and the imminent proliferation
of massively paratlel, locally connected VI.SI processors for vision.

Visual representations usually possess certain essential global
propertics (consistency. smoothness. minimal cnergy. ctc.) which the
variational principte or PDE formulations aim to capture formally.
Given only local processing capabilitics, global properties must be
satisfied indirectly. typically by propagating visual information across
erids through iteration. Substantial computational inefficiency can
result since the computational grids tend to become extremely large
in machine vision applications. Convergence of the iterative process
is often so slow as to nearly nullifv the potential benefits of massive
parallelism. A casc in point is the local, itcrative computation of
visible-surface representations from scattered, local estimates of surface
shape [14-16].

Multiresolution processing in hierarchical representations can
be effective in counteracting the computational sluggishness of local,
iterative solutions to vision problems posed as variational principles
or PDEs. Multigrid methods [7], efficient techniques for solving PDEs
numerically. have been adapted successfully in our previous work
w the computation of visible-surface representations [14, 15 An
objective of this paper is to demonstrate that this methodology has
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broad applicability in vision (see also [14, 0]). After a brief overview
of muliigrid methods, we study. in turn. the iterative computation
of lightness, shape-from-shading. and optical flow from images. We
present empirical evidence that our multiresolution algorithms can
be orders of magnitude more cfficient than conventional single level
VeIsions.

2. MULTIGRID METHODS

Progress has recently been made in applied numerical analysis
with regards 10 multigrid methods (see. e.g.. |3, 7). We have
drawn upon these techniques and the associated theory in our work
on multresolution computational vision to gain computational and
representational Teverage. Our adaptation of these methods provide
an efficient means of computing consistent visual representations at
multiple scales. In multigrid methods, @ hicrarchy of discrete problems
is formulated and local. muliilevel relaxation schemes are applied to
accelerate convergence. Qur algorithms have several components: (i)
multiple visual representations over a range of spatial resolutions, (ii)
local intralevel processes that iteratively propagate constraints within
cach representational level. (ili) local coarse-to-fine (prolongation)
processes that allow coarser representations to constrain finer ones,
(iv) fine-to-coarse (restriction) processes that allow finer representations
to improve the accuracy of coarser ones, and (iv) adaptive (recursive)
coordination strategies [3] that enable the hicrarchy of representations
and component processes to cooperate towards increasing cfficiency
(sce {14, 15] for details).

Generally, the intralevel processes are familiar Gauss-Seidel or
Jacobi relaxation [3]. the prolongation processes are local Lagrange
(polynomial) interpolations, and the restriction processes are local
averaging operations {3). The precise form of these processes is
problem-dependent. The algorithms in this paper employ simple
injection for the fine-to-coarse restrictions and bilincar interpolation
for coarsc-to-fine prolongation. Appropriate relaxation operations are
derived by discretizing the continuous vision problems. The finite
difference method [S] can be employed when a problem is posed
as a PDE, whereas the finite element method [13], a more general
and powerful discretization technique, can be applied dircctly to
variational principle formulations [14~16].

3. THE LIGHTNESS PROBLEM

The lightness of a surface is the perceptual corrclate of its
reflectance. Irradiance at a point in the image is proportional to
the product of the illuminance and reflectance at the corresponding
point on the surface. The lightness problem is to compute lightness
from image irradiance, assuming no precise knowledge about either
reflectance or illuminance.

The retinex theory of lightness and color proposed by Land
and McCann [12] is based on the obscrvation that illuminance and
reflectance patterns differ in their spatial properties. Hluminance
changes are usually gradual and, therefore, typically give rise to
smooth illumination gradients, while reflectance changes tend to
be sharp, since they often originate from abrupt pigmentation
changes and surface occlusions. Horn (9] proposed a two-dimensional
generalization of the L.and-McCann algorithm for computing lightness



in Mondrian scenes consisting of planar arcas divided into subregions
of uniform matte color.

let R(r,y) be the reflectance of the surfuce at a point
corresponding o the image point (x,y) and let S(r,y) be the
illuminance at that_point. The irradiance at the image point is given
by 13(r,y) = S(x,y) X £2{r,y). Denoting the logarithms of the above
functions as lowercase quantities. we have b(x, y) = s(x,y) + r(x, y).
Next. Horn employed the aplacian operator A which gives d(r, y) =
Ab(r, y) = As(x, y)-+ Ar(r,y). In the Mondrian situation illuminance
is assumed o vary smoothly so that As(r, y) will he finite everywhere,
while Ar(r. y) will exhibit pulse doablets at intensity cdges separating
neighboring regions. A thresholding operator 77 can be applicd to
discard the finite part T'[d(z, y)] = Ar(z,y) = f(z,y). Hence, the
reflectance 2 is given by the inverse logarithm of the solution to
Poisson’s equation

Ar(z,y) = f(=,¥), in N,
where 1 is the planar region covered by the image.

Horn solved the above PDE by convolution with the appropriate
Greer's function. We will instcad pursuc an iterative solution
which is also local and parallel, hence apparently biologically
feasible. The finite difference method can be applied directly.
Suppose that 1 is covered by a uniform square grid with
spacing h. We can approximate Ar = rz, + ry, using the order
h® approximations ., = (1, ;—2rf; + 1% ;)/k?* and r,, =
(thipy—2rt; +02, )/h? to obtain a standard discrete version
of Poisson’s equation (r¥, ;41 + 18, + 18, — 41} ) /A2 =
ﬁ‘_j. This denotes a system of linear equations whose cocfficient matrix
is sparsc and banded [5).

Rearranging, the Jacobi relaxation step is given by

ptntt) ey (m)  p () h () () _ 2
T = (W, +rly +1] — 2.

¥ i,7+1
Jacobi relaxation is suitable for parallel implementation, whercas
Gauss-Scidel relaxation is better suited to a serial computer and,
morcover, requires less storage.

The synthesized Mondrian images shown in Figure 1 were input
to a four level lightness algorithm (with grid sizes 129 X 129, 65 X 65,
33 x 33, and 17 X 17). The grid function f}; was computed by
maintaining only the local peaks in the Laplacian of r*; at each
level, Zero boundary conditions were provided around the edges of
the images, and the computation was started from the zero initial
approximation rf"j == 0. Figure 2 shows the reconstructed Mondrian,
which lacks much of the illumination gradient. Reconstruction required
33.97 work units, where a work unit is the amount of computation
required for an iteration on the finest grid. The total number of
iterations performed on cach level from coarsest to finest respectively
is 142, 100, 62, and 10. In comparison, a single-level algorithm
required about 500 work units to obtain a solution of the same
accuracy at the finest level in isolation. The single-level algorithm
requires at least as many iterations for convergence as there are nodes
across the surface, since information at a node propagates only to its
nearest neighbors in one iteration. ‘The multlevel algorithm is much
more cfficient because it propagates information more effectively at
the coarser scales,

h
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4. THE SHAPE-FROM-SHADING PROBLEM

In general. image irradiance depends on surface geometry,
scene illuminance, surface reflectance, and imaging geometry. The
shape-from-shading problem is to recover the shape of surfaces from
image irradiance. By assuming that illuminance, reflectance, and
imaging geometry are constant and known, image irradiance can be
related directly to surface orientation.

Let u(x,y) be a surface pach with constant albedo defined
over a bounded planar region 1. the relationship between the
surface orientation at a point (z,y) and the image irradiance there
B(x,u) is denoted by R(p,g). where p = u; and ¢ == u, are
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Figure 1. Synthctic Mondrian images containing patches of uniform
reflectance and an illumination gradient which increases quadratically from
left to right. The three smaller images are increasingly coarser sampled
versions of the largest image which is 129 X 129 pixels, quantized to 256
irradiance levels.

Figure 2. The reconstructed Mondrian computed after 33.97 work units_by
the four-level multiresolution lightness algorithm. Most of the illumination
gradient in Figure 1 has been eliminated.

the first partial derivatives of the surface function at (x,y). The
shape-from-shading problem can be posed as & nonlincar, first-order
PDE in two unknowns. called the image-irradiance equation [11]:
B(r,y)- R(p, g) = 0. Clearly. surface orientation cannot be computed
strictly locally because image irradiance provides a single measurement,
while surface orientation has two independent components. The
image irradiance equation provides one explicit constraint on surface
orientation. lkcucht and Horn [11] employed an additional surface
smoothness constraint. An appropriate set of boundary conditions is
neeessary 1o solve the problem, and they suggested the use of occluding
boundarics of surfaces. Since the p—g parameterization of surface
orientation becomes unbounded at occluding boundaries however,
they reparameterized surface orientation in terms of the stereographic
mapping: f = 2pa. g = 2qa, where o = (/1 +p2 1+ ¢2—1)/(p* + ¢°).

The above considerations were formalized in a variational
principle involving the minimization of the functional

A .
e = [ [uterstoieiae ey [ [ ne - ruop asa

The first integral incorporates the surface smoothness constraint. The
sccond is a least-squares term which attempts to cocrce the solution
into satisfying the image irradiance equation, thus treating the image
irradiance equation as a penalty constraint weighted by a factor X.
The Euler-l.agrange equations are given by the following system of
coupled PDEs

Af - )‘[B(I! y) - R(f: 9)]3/ =0,

Ag — \B(x,y) — R(f, g)|Ry = 0.

Discretizing the above equations on a uniform grid with spacing

h using the standard finite difference approximations, we obtain the
Jacobi rclaxation scheme
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where d>[f*l ] = [ froy;+ iy +ff;,)/4 and d>[g,"3] =
g +8h,; +gw_1 + g‘ ;+1)/4 are local averages of /" and g* at
node (i, ) (a factor of 1/4 has been absorbed into \), Ry = 8R/3],
and R, = 01 /dg. We ecmploy the Gauss-Scidel form of the relaxation
in our multilevel algorithm, Appropriatc boundary conditions may
be obtained from occiuding boundaries in the image (see [11} for a
discussion).

A four level shape-from-shading algorithm (with grid sizes
129 x 129, 65 X 65, 33 X 33, and 17 X 17) was tested on the
synthetically-generated Tambertian sphere images shown in Figure
3. Surface orientation was specified around the occluding boundary
of the sphere. which was marked as a discontinuity, and  the
computation was started from the zero initial approximation, [ =
¢ 0 within the sphere. ‘The solution was obtained after 6.125 work
units. The total number of iterations performed on cach level from
coarsest to finest respectively is 320 100 4, and 4. In comparison, a
single-level algorithm required close to 200 work units to obtain a
solution of the same accuracy at the finest level in isolation. Unlike
the lightness algorithm, however. the shape-from-shading algorithm
employs shading information and the image irradiance cquation to
constrain the surfiace shape within the surface boundaries. For this
reason, comereence i cxpec ted to be faster.

gence ccted

The surface normals computed by the  shape-from-shading
aleorithm at the three coarsest resolutions are represented in Figure
4 as “needles.” These needles are shown Iving on a perspective view
of the surface in depth. ‘The depth representation was computed
by a (four-level) multiresolution surface reconstruction algorithm
[14-16] using the normals as surface orientation constraints. Nodes
on the occluding boundary of the sphere were marked as depth
discontinuitics and the computation was started from the zero depth
initial approximation. The surface reconstruction required 8.8 work
units.

5. THE OPTICAL FLOW PROBLEM

Optical flow is the distribution of apparent velocitics of irradiance
patierns in the dynamic image. The optical flow ficld and its
discontinuities can be an important source of information about the
arrangement and the motions of visible surfaces. The optical flow
problem is to compute optical flow from a discrete serics of images.

Horn and Schunck [10] suggested a technique for determining
optical flow in the restricted case where the observed velocity of
image irradiance patterns can be attributed directly to the movement
of surfaces in the scene. Under these circumstances, the relation
between the change in image irradiance at a point (z,y) in the image
planc at time ¢ and the motion of the irradiance pattern is given
by the flow equation Byu + Byv + B, = 0, where B(x,y,t) is the
image irradiance, and v = dz/d.t and v = dy/dt arc the optical flow
components.

An additional constraint is nceded to solve this lincar equation
for the two unknowns, » and ». If opague objects undergo rigid
motion or deformation. most points have a velocity similar to that
of their neighbors. except where surfaces occlude one another. Thus,
the velocity field will vary smoothly almost cverywhere. Horn and
Schunck formulated the optical flow problem as finding the flow
functions u(z, y) and v(z,y) which minimize the functional

(u,v) = a // (e 4u ' ‘1’1/ )dx dy L// B,u+DB v+B¢)2 dz dy, relaxation formula

where o is a constant. The first term is the smoothness constraint,
while the second term is a least-squares penalty functional which
coerces the flow ficld into satisfying the flow equation as much as
possible. The Euler-lLagrange equations for the above functional are
given by [10]

Figure 3. Synihetic images of a Lambertian sphere illuminated by a distant

point source perpendicular 1o the image plane, The three smaller images

are increasingly coarser sampled versions of the largest image whlch is
129 x 129 pixels, quantized to 256 irradiance levels.

Figure 4. Surface normals which were computed after 6€.125 work units by
the four-level multiresolution shape-from-shading algorithm are shown as
“needles™ for the three coarsest levels (the finest resolution surface is too
dense to illustrate as a 3-D plot). The surfaces were computed from the
normals by a multiresolution surface reconstruction algorithm after 8.8 work
units.

B+ By Byo — o Au — BBy,

B Byu~+ Biv = o Av - B, 3.
Assuming a cubical network of nodes with spacing h. where 1,
J. and & index nodes along the r. y. and ¢ axes respectively.
we use the following standard finite difference formulas to dis-

cretize the differential operators: [0, == o8 (B — Bl )
l“ J‘ljk - ’h(“|J+Ik “l'.j—l.k): i“fnjk = h(”ij kfl_lgl_;k)
Ay = (@l ) - ul, i) At = (¢|\” ) = Vi)t where

4),[]?] K = "‘(“511 gkt “:h.]+l.k +uly 1.kt ”.ﬁ, Lk) and &)y 1.j.k.1 =
O e+ VE e VIt s )- Other approximations are
possible; for example. those suggested by Horn and Schunck [10)
which. however. require over four times the computation per iteration,
Given dynamic images over at least three frames. a symmetric central
difference formula [1]5, = (B, oo — BE, ) is preferable,

Substituting the above approximations into the Fuler-l.agrange
equations and solving for ug; , and v}, , yiclds the following Jacobi

(n)

h

p o (n+1) R n Vijk o (n)

i,k = ¢“]i.],k]( V- _‘h'] l,,)[lfz].',j.k H
Hijk

(n+1) v )

h _ h o (n
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where pf; , = ([Ifz]ﬁfjl,()2 + ([I},,]f‘,j,,‘)2 + #a® and

l’fl,j.k = [Bzw.j.k‘p[u:z.j,k] + [”v]:",j.k"’[":‘,j.k] + [Bt}:f],k: .Appropriate
boundary conditions are the natural boundary conditions of zero
normal derivative at the boundary of 1. They can be enforced by

copying values to boundary nodes from neighboring interior nodes.

A four level optical flow algorithm (with grid sizes 129 X 129,
65 X 65. 33 X 33, and 17 X 17) was tested on a synthetically-gencrated
image of a Lambertian sphere expanding uniformly over two frames
(Figure 5). The velocity field was specified around the occluding
boundary of the sphere, and the computation was started from
the zero initial approximation, w = v == 0 within the sphere. The
occluding boundary itself was marked as a velocity ficld discontinuity.
The solution computed on the three coarsest levels after 4.938 work
units is shown in Figure 6 as velocity vectors in the z—y plane, The
total number of itcrations performed on cach level from coarsest to
finest respectively is 40, 5, 4, and 3. In comparison, a single-level
algorithm required 37 work units to obtain a solution of the same
accuracy at the finest level in isolation. The comments about the
convergence speed of the shape-from-shading algorithm apply here
also. Employing the Horn-Schunck relaxation formulas, Glazer [6]
also reports improvements in the convergence rate of a multilevel
optical flow algorithm relative to a single level algorithm.

6. CONCLUSION

Once discretized, problems in machine vision posed as variational
principles or partial differential cquations arc amenable to local
support, parallc]. and iterative solutions. Duc to the locality of
the iterative process, however, these computations are inherently
inetficient at propagating constraints over the large rcpresentations
typically encountered. Multiresolution processing can overcome this
incfficiency by exploiting coarser representations which trade off
resolution for direct interactions over larger distances. As was shown
in our previous applications to the surface reconstruction problem
[14-16] and. in this paper. to the lightness. shape-from-shading. and
optical flow problems, dramatic increases in efficiency can result.

Using our approach. it is clearly possible to develop multi-
resolution iterative algorithms for other vision problems, including
image registration [1}. interpolating the motion field either along
contours [8] or vver regions. computing shape-from-contour 2], and
for solving iteratively the structure-from-motion problem [17]. In fact,
any iterative (relaxation) processes which sceks global consistency,
but whose processors are restricted to simple. local interactions can
benefit from the approach. most evidently when it is governed by a
variational principle or partial differential cquation.
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Figure 5. Synthetic images of a Lambertian sphere at four resolutions
illuminated by a distant point source perpendicular to the image plane (top).
The three smaller images are increasingly coarser sampled versions of the
largest image which is 126 x 124 pixels, quantized o 256 irradiance levels.
The frames for the second time instant (bottom) show an expanded sphere.
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