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Abstract. We prove that the scale map of the .zero-crossings 
of almost all signals filtered by a gaussian of variable size deter- 
mines the signal uniquely, up to a constant scaling. Exceptions 
are signals that are antisymmetric about all their zeros (for in- 
stance infinitely periodic gratings). Our proof provides a method 
for reconstructing almost all signals from knowledge of how the 
zero-crossing contours of the signal. filtered by a gaussian filter, 
change with the size of the filter. The proof assumes that the 
filtered signal can be represented as a polynomial of finite, albeit 
possibly very high, order. The result applies to zero- and level- 
crossings of signals filtered by gaussian filters. The theorem is 
extended to two dimensions, that is to images. These results 
imply that extrema (for instance of derivatives) at different scales 
are a complete representation of a signal. 

1. introduction 

Images are often described in terms of “edges”, that are usually 
associated with the zeros -of some differential operator. For in- 
stance, zero-crossings in images convolved with the laplacian 
of a gaussian have been extensively used as the basis repre- 
sentation for later processes such as stereopsls and motion 
(Marr, 1982). In a similar way. sophisticated processing of 1-D 
signals requires that a symbolic descnption must first be ob- 
tained, in terms of changes in the signal. These descriptions 
must be concise and. at the same time, they must capture the 
meaningful information contained In the signal. It is clearly im- 
portant, therefore, to charactenze in which sense the information 
in an image or a signal is captured by extrema of derivatives. 

Ideally, one would like to establish a unique correspondence 
between the changes of intensity in the image and the physical 
surfaces and edges which generate them through the imaging 
process. This goal is extremely difficult to achieve in general, al- 
though it remains one of the pnmary objectives of a comprehen- 
sive theory of early visual processing. 

A more restricted class of results, that does not exploit the 
constraints dictated by the signal or image generation process, 
has been suggested by work on zero-crossings of images filtered 
with the laplacian of a gaussian. Logan (1977) had shown 
that the zero-crossings of a 1-D signal ideally bandpass with a 
bandwidth of less than an octave determine uniquely the filtered 
signal (up to scaling). The theorem has been extended-only 
in the special case of oriented bandpass filters-to 2-D images 
(Poggio, et al., 1982; Marr, et al., 1979) but it cannot be used 
for gaussian filtered signals or images, since they are not ideally 
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bandpass. Nevertheless. Marr et al. (1979) conjectured that the 
zero-crossings maps, obtained by filtering the image with the 
second derivative of gaussians of variable size, are very rich in 
information about the signal itself (see also Marr and Poggio, 
1977; Grimson, 1981; Marr and Hildreth, 1980; Marr, 1982; for 
multiscale representations see also Crowley, 1982 and Rosenfeld, 
1982 also for more references). 

More recently, Witkin (1983) (see also Stansfield, 1980) intro- 
duced a scale-space description of zero-crossings, which gives 
the position of the zero-crossing across a continuum of scales, 
i.e., sizes of the gaussian filter (parameterized by the u of the 
gaussian). The signal-or the result of applying to the signal a 
linear (differential) operator-is convolved with a gaussian filter 
over a continuum of sizes of the filter. Zero- or level- crossings of 
the (filtered) signal are contours on the T--O plane (and surfaces 
in the 2, ?I,U space). The appearance of the scale map of the 
zero-crossing is suggestive of a fingerprint. Witkin has proposed 
that this concise map can be effectively used to obtain a rich and 
qualitative description of the signal. Furthermore, it has been 
proved in 1-D (Babaud et al, 1983; Yuille and Poggio, 1983a) 
and 2-D (Yuille and Poggio, 1983a) (J. Koenderink, pers. comm., 
1984) has now obtained similar results exploiting properties of 
the diffusion equation.) that the gaussian filter is the only filter 
with a “nice” scaling behavior, i.e., a simple behavior of zero- 
crossing across scales, with several attractive properties for fur- 
ther processing. In this paper, we prove a stronger completeness 
property: the map of the zero-crossing across scales determines 
the signal uniquely for almost all signals (in the absence-of noise). 
The scale maps obtained by gaussian filters are true hngerprints 
of the signal. Our proof is constructive. It shows how the 
original signal can be reconstructed by information from the zero- 
crossing contours across scales. It is important to emphasize 
that our result applies to level-crossings of any arbitrary linear 
(differential) operator of the gaussian, since it applies to functions 
that obey the diffusion equation. These results were originally 
reported In Yuille and Pogglo (1983b). The proof is constructive 
and applies in both 1-D and 2-D. Reconstruction of the signal 
is of course not the goal of early signal processing. Symbolic 
primitives must be extracted from the signals and used for later 
processing. Our results imply that scale-space fingerprints are 
complete primitives, that capture the whole informatlon in the 
signal and characterize it uniquely. Subsequent processes can 
therefore work on this more compact representation instead of 
the original signal. 

Our results have theoretical interest in that they answer the 
question as to what information is conveyed by the zero- and 
level-crossings of multiscale gaussian filtered signals. From a 
point of view of applications, the results in themselves do not 
justify the use of the fingerprint representation. Completeness 
of a representation (connected with Nishihara’s sensitivity) is 
not sufficient (Nishihara, 1981). A good representation must, 
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in addition, be robust (i.e. slab/e in Nishihara’s terms) against 
photometric and geometric distortions (the general point of view 
argument). It should also possibly be compact for the given 
class of signals. Most importantly it should make explicit the 
information that is required by later processes. 

two points on the zero-crossing contours Exploitation of the 
whole zero-crossings contours should make the reconstruction 
considerably more robust. The second question is about the 
stability of the recovery of the unfiltered signal l(z) from E(~,fl). 
This is eouivalent to inverting the diffusion equation, which is 
numericaliy unstable since it-is a classically ill-posed problem, 

2. Assumptions and results 
Reconstruction is, however, possible with an error depending on 
the signal to noise behavior (see Yuille and Poggio, 1983b). 

We consider the zero-crossings of a signal I(X), space-scale 
filtered with the second derivative of a gaussian, as a function 
of Z, 6. Let E be defined by 

2.1. Outline of the 1 -D Proof 

We summarize here the 1-D proof from a slightly different point 
of view that clarifies its bare structure. 

E(s, u) = I * G 

h-(x, u) = 1(x) * [G(x, u)] = / I(<)i &?xp-5K&. Pll 

Notice that E(z,a) obeys the diffusion equation in x and a: 

The proof starts by taking derivatives along the zero CrOSSing 
contours at a certain point. Such derivatives split into combina- 
tions of 5 and t derivatives (where t = a’/fl). Because the filter iS 

assumed to be gaussian, however. derivatives can be expressed 
In terms of s derivatives. This is a key point: since the filtered 
signal I:(s, f) satisfies the diffusion equation, the t derivatives can 
be expressed in terms of the s derivatives simply by /Ct = /5,,. 
The next stage is to find the s derivatives of /<(I, 1) up to an 

IPE 1 al3 -- 
a22 = u au’ WI 

We restrict ourselves to images, or signals, P such that E can be 
expressed as a finite Taylor series of arbitrarily high order and 
such that K is not antisymmetric about all its zeros. Observe 
that any filtered image can be approximated arbitrarily well in 
this way, because of the classical Weierstrass approximation 
theorem, except for those functions antisymmetric about all 
their zeros. This class of functions is discussed in detail in a 
forthcoming paper (Yuille and Poggio, 1984a) where it is shown 
that additronal information about the gradient of the function on 
the zero-crossings is sufficient to determine the signal. Note 
that, for a finite order polynomial, functions antisymmetric about 
all their zeros only have one zero-crossing contour. 

We will show that the local behavior of the zero.crossing curves 
(defined by /S[~.U) .= 0) on the s CJ plane determines the 
image. Our reconstruction scheme provides the image I in 
terms of Hermite polynomials. The proof of this result can be 
generalized to 2-D and extended to zero- and level-crossings of 
linear (differential) operators. More precisely we have proven the 
following theorem: 

Theorem 1: The derivatives (including the zero-order derivative) 
of the zero-crossings contours defined by k’(~,a) = 0, at two 
distinct points at the same scale, uniquely determine a signal of 
class P up to a constant scaling (except on a set of measure 

arbitrary degree ~1 from such derivatives along the zero crossing 
contours in the T - f plane. We show that this can be done by 
using 2 points on 2 contours. (It is possible that one point is 
sufficient, but we are as yet unable to prove this.) Since /S(r, t) is 
entire analytic, because of the gaussian filtering, it can be rep- 
resented by a Taylor series expansion in J-. Since we know the 
values of the tl derivatives of I:‘(s, I) with respect to .r, we know its 
Taylor series expansion and hence I:‘(s, t). The unfiltered signal 
I(:r), (K(s, t) = I(X) * C:(S, I)) can then be recovered in the ideal 
noiseless case by deblurring the gaussian. A particularly simple 
way of doing this is provided by a property of the function 9, 
in which we will expand the function II’: the coefficients of an 
expansion of I(S) in terms of & are equal to the coefficients of 
the Taylor series expansion of IS(z,l). In the presence of noise, 
the recovery of I(r) from IC(r, t) is obviously unstable, since it is 
a classically ill-posed problem. It is limited by S/N ratio since 
high spatial frequencies in the signal are masked by the noise for 
increasing t. (For instance, if j’(r) = C IL,,c”‘~, the filtered signal 
is 1<(5, t) = CCJ~@C-~~‘~ .) Note that since the zero-crossing 
contours are available at all scales a reconstruction scheme that 
exploits more than 2 points will be significantly more robust. As 
one would expect, the reconstruction of the unfiltered signal is 
therefore affected by noise. The reconstruction of the filtered 
signal I’r’(~,t) is likely to be considerably more robust. We plan 
to study theoretically and with computer simulations the noise 
sensitivity of the reconstruction scheme. 

zero). 

Note that the theorem does not apply to signals that do not have 
at least two distinct zero-crossings contours. Yuille and Poggio 
(1983b) have extended Theorem 1 to the two dimensional case: 

Theorem 2: Derivatives of the zero-crossings contours, defined 
by 1s(z, IJ, 0) = 0, at two distinct points at the same scale, uniquely 
determine an image of class P up to a scaling factor (except on 
a set of measure zero). 

These theorems break down when all the zero-crossing contours 
are independent of scale (i.e. the contours go straight up in 
the scale-space fingerprint). This is a rare, though interesting, 
special case and is discussed in detail in a future paper (Yuille 
and Poggio 1984a). It can only occur for functions which are 
antisymmetric about all their zeros, such as sinusoidal functions, 
and for odd polynomials with only one real zero. 

The theorems do not directly address the stability of this recon- 
struction scheme. The first question concerns stability of the 
reconstruction of the filtered function I<(z,o) at the u where 
the derivatives are taken. Note that our result relies only on 

the coefficients of the expansion of I(Z) = E(x,O) in functions 

3. Proof of the Theorem in 1-D 

Our proof can be divided into three main steps. The first 
shows that derivatives at a point on a zero-crossing contour put 
strong constraints on the “moments” of the Fourier transform of 
~CC(Z,O) (see eq. 3.1.4). The second relates the “moments” to 

related to the Hermite polynomials. Finally the “moments” can 
be uniquely determined by the derivatives on a second point of 
a different zero-crossing contour. We outline here only the first 
part of the proof, which is given in full in Yuille and Poggio 
(1983b). 

3.1. The “moments” of the signal are constrained by the 
zero-crossing contours 

Let the Fourier transform of the signal I(Z) be j(u) and the 
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gaussian filter be C(Z,U) = k,ig with Fourier transform c(w) = 
au2 L.+ e . 

The zero crossings are given by solutions of ZS(z, t) = 0. Using 
the convolution theorem we can express 1S(z, t) as 

and t = a?/?. The Implicit Function theorem gives curves r(t) 
which are (IX (this is a property of the gaussian filter and of the 
diffusion equation. see Yuille and Poggio, 1983a,b). Let c be a 
parameter of the zero crossing curve. Then 

[X I.21 

On the zero-crossing surface, 1:’ = 0 and $‘:; 15 = 0 for all 
integers ~1. Knowledge of the zero crossing curve is equivalent 
to knowledge of all the derivatives of .r and i with respect to c. 

We compute the derivatives of I:’ with respect to c at (I,, to). The 
first derivative is : 

-$iT(x, t) = $ J e-w2te’wz(iw)i(w)dw 

dt 
I +;i; 

e-“‘“(-w2)eiwzi(w)dw 
[X1.3] 

and is expressed in terms of the first and second moments of 
the function e--wzt~lwz I(W). The moment of order n is defined by: 

J 

47 
M, = -oo(iw)ne- %~~~i(W)dW. [3.1.4] 

The second derivative is 

$-E(x, t) = $ / emw2’eiw’(iw)T(w)dw 

d2t 
+p J e-wZt(-u2)eiwz?(~)d~ 

+ dx 2 (>J q e --w2teiuz(-w2)?(u)dw [3.1.5] 

+2dzdt -- 
4 4 J 

e-Wa’(-wz)eiwz(;w)i(w)dw 

e-w”(w”)e-i~zi(w)dw. 

Since the parametric derivatives along the zero crossing curve 
are zero, equation [3.1.3] is a homogeneous linear equation 
in the first two moments. Similarly, [3.1.5] is a homogeneous 
linear equation in the first four moments. In general, the ath 
equation, &IS(x,t) = 0, is a homogeneous equation in the first 
2n moments. We choose our axes such that L, = 0. We can 
then show that the moments of e-w21/(~) are the coefficients a, 
in the expression of the function I(X) in Hermite polynomials. 
So we have r~ equations in the first 2n coefficients (2,. To 
determine the n, uniquely, we need n. additional and independent 
equations which can be provided by considering a neighboring 
zero crossing curve at (x1, to) (see Yuille and Poggio,h 983b). 

4. Conclusions 

We conclude with a brief discussion of a few issues that are 
raised by this paper and that will require further work. 

a)sjtabi//ty of the reconstruction. Although we have not yet 
rigorously addressed the question of numerical stability of the 
whole reconstruction scheme, there seem to be various ways 

for designing a robust reconstruction scheme. The first step to 
consider i9 the reconstruction of the filtered signal I:‘(r, 1). One 
could exploit the derivatives at II points - at the given t - and 
then solve the resulting highly constralned linear equations with 
least squares methods. Alternatively, it may be possible to fit a 
smooth curve through several points on one contour, and then 
obtain the derivatives there in terms of this interpolated curve. 
The same process must be performed on a second separate 
zero-crossing contour. This scheme provides a rigorous way 
of proving that instead of derivatives at two points, the location 
of the whole zero-crossing contour across scales can be used 
directly to reconstruct the signal. 

The second step involves the reconstruction of the unfiltered 
signal f(r). This reconstruction step is unstable if only one 
scale is used, but it can be regularized and effectively performed 
in most situations, especially by using information from zero- 
crossings at smaller scales. 

b) Degenerate fingerprints. Our uniqueness result applies to 

almost all signal: a restricted but well known class of signals, with 
vertical zero-crossings in the scale-space diagram. correspond 
to nonunique fingerprints. These signals, which will be discussed 
in a forthcoming paper (Yuille and Poggio, 1984a), and which 
correspond to functions antisymmetric about all their zeros, do 
not belong to the class P introduced in Theorem 1 and 2. 
Interestingly, elements of this class can be distinguished by 
level-crossing (with a level different from zero) or by knowledge 
of the gradient (Yuille and Poggio, 1984a). 

c) Extensions. Our main results apply to zero- and level- 
crossings of a signal filtered by a gaussian filter of variable size. 
They also apply to transformations of a signal under a linear 
space-invariant operator - in particular they apply to the linear 
derivatives of a signal and to linear combinations of them. In 
both 1-D and 2-0, local information at just two points is sufficient. 
In practice, since many derivatives are needed at each point, 
information about the whole contour, to which the point belongs, 
is in fact exploited. 

d) Are the fingerprints redundant? The proof of our theorem 
implies that two points on the fingerprint COntOUrS are sufficient. 
As we mentioned earlier, several points are probably required 
to make the reconstruction robust and to ensure the avoidance 
of a non-generic pair of points. We conjecture, however, that 
the fingerprints are redundant and that appropriate constraints 
derived from the process underlying signal generation (the im- 
aging process in the case of images) should be used to charac- 
terize how to collapse the fingerprints into more compact rep- 
resentations. Witkin (1983) has already made this point and 
discussed various heuristic ways to achieve this goal. 

e) hnplications of the results. As we discussed in the introduc- 
tion, our results imply that the fingerprint representation is a 
COmpkfe representation of a signal or an image, Zero- and 
level-crossings across scales of a filtered signal capture full in- 
formation about it. These results also suggest a central role 
for the gaussian in multIscale frltering that assure that zero- and 
level-crossing indeed contain full information, Note, however, 
that the fingerprint theorems do not constrain or characterize 
in any way the differential filter that has to be used. The filter 
may be just the identity operator, provided of course that enough 
zero-Crossings contours exist. Independent arguments, based on 
the constraints of the signal formation process, must be exploited 
to characterize a suitable filter for each class of signals. For 
images, second derivative operators such as the Laplacian are 
suggested by work that takes into account the physical properties 
Of objects and of the imaging process (Grimson. 1983; Torre and 
POWiO, 1984; Yuille, 1983). We plan to explore this approach in 
the near future. 
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63) Zero-crossings and slopes. A natural question to ask is 
whether gradient information across scales at the zero-crossings, 
in addition to their location, can be used to reconstruct the 
original. Hummel (1984, pers. comm.) has recently shown that 
this is the case, as one would of course expect in the light of 
our results (Yuille and Poggio, 1983b; Yuille & Poggio, 1984a). 
We have been able to simplify and extend the elegant proof 
by Hummel and obtain the following result (Yuille and poggio, 
1984b): knowledge of zero-crossing surfaces and magnitude of 
the z - t gradient over a finite, nonzero interval of the zero- 
crossing surface is sufficient to determine the image. 
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