
Task Frames in Robot Manipulation

Dana H. Ballard
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

Most robotics computations refer to a single world-
based frame of reference; however, several advantages
accrue with the introduction of a second frame, termed a
task frame. A task frame is a coordinate frame that can be
attached to different objects that are to be manipulated.
The task frame is related to the world-based coordinate
frame by a simple geometric transformation. The virtues
of such a frame are: (1) certain actions that are difficult to
specify in the world frame are easily expressed in the task
frame: (2) the task-frame to task-uorld transformation
provides a formalism for describing physical actions; and
(3) the task frame can be related to the world frame by
proprioception.

*This research was supported in part by the National
Science Foundation under Grant WCS-8203920.

1. Introduction

Robotics problems are best considered at different
levels of abstraction. This is because many problems can
be analyzed effectively vvithin a given abstraction level
without appealing to other levels. For example, in robot
planning it is often helpful to consider actions
symbolically without involving details of the
servomechanisms that implement such actions. The
standard symbolic description for the action move xfiom
y to z in a STRIPS-like expression [Fikes and Nilsson,
19711 is:

MOVW, Y, d
Preconditions: CLEAR(x): CLEAR(z): On(x,y)
Postconditions: ON(x,z); CLEAR(y).

The principal advantage of such a system is that
symbolic plans involving several actions which achieve a
set of goal conditions can be created systematically. The

disadvantage of this level is that important geometric
details are suppressed. For example, the predicate
CLEAR(x) may depend on the geometry of the
environment and the manipulator. Objects that might be
CLEAR with respect to a multiple degree-of-freedom
manipulator might not be CLFAR to a loh-degree-of-
freedom Cartesian manipulator.

Similar kinds of arguments can be made for the
lowest level of abstraction, the servomechanism itself. The
basic problem of the servomechanism is to exert forces on
objects in the world and transport them along desired
trajectories. The control problem of “given a trajectory,
find the actuator torques required to follou it,” can be
solved independently from the symbolic plan using only
the inverse dynamics of the manipulator. At the symbolic
level, problems can be solved independent of the details;
just as important, at the servomechanism level problems
can be solved independent of the context.

The natural level of abstraction to introduce between
the symbolic level and servo level is a geometric level.
The geometric level provider an explicit representation of
space that includes geometrical and mechanical structure.
For example, while CLEAR(x) may be a necessary
property for an action at the symbolic level, the
geometrical level contains the necessary structure that
allows this property to be established. Another element of
the geometrical level is that it must be able to
communicate with the servomechanism level. More
specifically, we argue that the geometrical level must
contain structure that functions as a command language

for the servomechanism level. To first order, we argue
that manipulators need only these three levels, which are

described in Table 1.

16

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

Table 1: Levels of Abstraction in Robot Manipulation 9 (b) Trajectory as a transformation locus.

Level Description

symbolic STRIPS-like description of actions;
planning done by chaining
appropriate actions to change current
state to goal state

geometric

servomechanism

representation of space in which
actions take place: command
language for servomechanism level

detailed description of manipulator:
inertial parameters, friction models,
manipulator internal geometry

The central idea of this paper is that of a task fww.
A task frame is described at the geometric level and is a
geometric coordinate frame that is attached to the object
being manipulated. To understand the notation for a task
frame, one must appreciate that current robot
manipulation and control strategies tend to refer
computations to a single reference frame, termed the
wor/Li frame. An example of such a strategy is that of
compliance [Paul, 19811, where the manipulator is
constrained to move along given geometric surfaces. Such
surfaces have been termed C-surfaces [Mason, 19811. For
example, when turning a crank. the crank handle will
traverse a given path in the world frame, as shoun by
Figure la, which is taken from [Brady et al.. 19821.

Figure 1: (a) Trajectory as a world-frame locus.
- -u-

The crux of the rest of the paper is to describe these
advantages in detail. Section 2 contains the basic notions
from geometry and mechanics needed to understand the
subsequent material. Section 3 describes the interface
between the geometric and symbolic levels. The focus is
on the recognition and implementation of actions that

\ I .a involve mechanics. Section 4 describes the interface

A task frame is related to C surfaces but is different
in a crucial way. Rather than thinking about the C-
surface in the world frame, the task frame is intrinsically
fixed to the object being manipulated (for the duration of
the task) and is related to the world frame by the obvious
geometric transformation. That is, given any two of the
set (task frame, world frame, task-world transformation),
the third is easily computed. Figure lb shows the
characterization of the task frame for the problem of
turning the crank. The two representations are equivalent
in the sense that either one could be transformed into the
other. The important difference is that uithin the task
frame formalism, the problem of turning the crank can be
simply described as “push in the el-direction until hou

meet resistence.” The expedient of introducing an

intrinsic frame and separating thz intrinsic frame from its
transformation has the following adv an tages:

1)

2)

3)

many actions that are difficult to express in the
world frame have very srmplr: expressions with
respect to the task frame and tranbfortnation (in
fact, they can be described by invariants with
respect to these two entities);

the frame-transformation decoupling allous us to
relate simply geomtitric and mechanical changes
in the world with corresponding symbolic
descriptions; and

the transformation betueen the task frame and
world frame can be ccjmputed via both visic~n and
proprioception.

17

between the geometric and servomechanism levels. The
focus is on the self-calibration necessary to relate the task
and world frames, and the automatic relations between
the two levels introduced by the task frame formalism.

2. Geometry and Mechanics

A. Geometry

An orthogonal geometric coordinate frame consists of
three vectors, el, e2, e3, such that any two pair are

mutually perpendicular (ei * ej = 0, for i f j), they form
a right-handed coordinate system (e3 = el x e2), and all

the vectors are unit vectors (ei . ei = 1). To denote the
task frame the subscript t is used, i.e., elt, e2t, e3t, and to
denote the world frame the subscript w is used. Each
frame has an origin x = (x, y, z), so that xt is the origin
of the task frame and xw is the origin of the world frame.
The world frame can be thought of as described in terms
of master coordinates. In this case xw = 0, elw = (1, 0,
0), e2w = (0, 1, 0), and e3w = (0, 0, 1). To denote a
frame (x, eL, e2, e3) we use E.

Given the task frame and world frame. the
transformation between them can be specified by a
rotation and a translation. The understanding is that the
rotation is done first since rotation and translation do not
commute. The transformation is specified by an origin
change Ax = (AK, A}‘, AZ) and a rotation (n, 8). The later
notation stands for a rotation 8 about a unit vector n
where n is expressed in world coordinates. The
transformation can be computed directly as:

Ax = xt - xw

and, assuming a quaternion representation for rotations
[Per-tin and Webb, 19831:

n = Normalize((elt - eLw) x (e2t - eZ,))

e = (-(n x q)(n x qw>) l/2

B. Mechanics

A robot manipulator is a series of links. Each link is
independently controlled by its own servomotor. The
links can be described by joint angles e (rotary joints)
which are controlled by applying torques 7. One such

configuration is the two-link. planar manipulator

suggested by [Horn, 19751. Figure 2 shows the
manipulator geometry. The force and torque applied at

the tip of the manipulator can be described by a vector(f,
n). The external force and torque can be related to the
joint torques by general dynamic equations

F (1, 8, f, n) = 0 (1)

To drive the arm, S, f, n are assumed known and
Equation 1 is solved for the control torques 1. This way
of solving (1) is known as the inverse dynamics. That is,
the torques 7 can be related to (f, n) by a set of equations:
I. = f-l@, f, n). Recently developed solution techniques
have made it practical to solve the inverse dynamics
equations in real time [Luh et al., 1980: Hollerbach,
1980). The easier problem is readily also solved: that is,
given 2, f, and n, determine 8.

‘T

Figure 2: Two-link planar manipulator.

Besides the dynamics problem there is the kinematics
problem. Given the state of the system in terms of @,
d@/dt, d2g/dt2, one must determine the motion of the
manipulator tip xp, dxp/dt, d2xp/dt2. This is the easy
part. The reverse problem--given x find &-is harder but
can be solved analytically by designing manipulators with
special geometries. One such geometry is a spherical wrist
[Feather-stone, 19831.

In c’ery simple manipulator geometries both the

inverse dynamics and inverse kinematics may have
analytical solutions. For example, in the two-link planar
manipulator, the joint torques 71 and 72 may be

expressed as

71 = A + B + Cfx + Dfy + n

?2 - - E + F + Gf, + Hfy + n (2)

18

where A, B, C, D, E, F, G, and H are expressions
involving the manipulator joint angles S, joint angular
velocities and accelerations, mass, and inertial parameters.
The letters A and E denote terms dependent on velocity
and acceleration: the letters B and F denote terms
dependent on gravity. These equations show that the
problem of controlling (n, f) in this case is
underdetermined. However, if the problem is simplified
slightly, e.g., the gripper is a finger such that n = 0, then
the external forces at the tip can be directly related to the
control torques. Our example assumes such a gripper.

3. Geometry and Symbols:
Recognizing and Implementing Actions

This section shows how the geometrical notions of a
task frame and transform can be of general use in a
symbolic planner. In particular: (1) the framework allows
the interrelation of symbolic and geometric descriptions
of actions; (2) the task frame and transformation allows a
simple description of tasks in terms of invariants; and (3)
the task frame allows checking for collisions between
objects.

To start with the first point. consider the description
of falling. If an object is falling then its origin is
approaching that of the world frame origin such that the
z-velocity is negative. In other words,

FALLING(obj) < = > (vz < 0)

where the understanding is that expressions involving
positions and orientations and changes in such are

statements about the world-frame to task-frame

transformation. Expressing the process of falling as a rate
of change has the effect of making it comparable to a
static situation. The logical expression (vz < 0) must hold
throughout the falling process. The task frame orientation
may also play a role in the description. For example:

RIGHT-SIDE-UP(obj) < = > ALIGNED(e3,, e3w)

In this as in the previous example, a first order logic

syntax is assumed with expressions consisting of

predicates denoted by upper case, terms denoted by
lower case. The point of these examples is that for
problems involving Newtonian mechanics, the task-frame

to world-frame transformation provides the basis for
systematically relating symbolic expressions and

geometrical expressions.

19

The task frame structure leads naturally to a
formalism at the geometric level for describing actions.
This formalism has three principal advantages: (1) its
elements are all invariants: (2) the formalism is
sufficiently abstract that the same action can be used in a
variety of contexts; and (3) its structure can bc
interpreted by the servomechanism.

The format that we adopt for representing actions has

a STRIPS-like syntax. Each action has a set of
preconditions that must be true for the ,action to be
applicable, a set of while conditions that must hold
during the execution of the action, and a set of stopping
conditions. Thus an action is described as:

ActionName(params)
if (preconditions) then do (whileconditions}
until (stoppingconditions)

where the parameters are used by the various conditions.

This structure takes advantage of the previous
development which related symbolic constraints and
geometric constraints. Consider the example of closing a
door. This can be expressed symbolically as:

DOORCLOSI%G(door)
if TOUCHING(door) then do PUSH(door)
until ARRESTED(door)

but also can be expressed geometrically as

DOORCLOSING(door)
if (E,O,O) then do (f,O,O) & .4LIGNED(Et,Ehandle)
until (O,O,O)

This syntax illustrates a number of important points
which we will nou elaborate. In the first place. note that
we have been able to decouple the force constraints from
the geometric constraints. (A similar decoupling is seen in
C-surfaces for the cases of pure force or pure position
control [Mason, 19811.) Thus rather than specify that force
control of the handle in the world frame [Mason, 19311
uhere it has a varying locus, it is specified in the task
frame where it has a very simple structure. The notation
ft = (fl, f2, f3) stands for exertjbrce ft in the task frame

coordinate s?lstem. Ihe quantity E is a small contact force,
less than that required to move the object, v+ hereas f is
large enough to start the object moving. The key virtue of
the task frame is that the force ft can be an invariant
during the action.

The second part of the while condition for closing the
door expresses the relationship between the task frame
and some other frame expressed in world frame
coordinates. For the earlier discussion one can appreciate
that given Et and Ehandle. *e predicate
ALIGNED(E,,Eh) is easy to compute.

The following scenario is imagined for the action
DOORCLOSING. Given that the handle is grasped, the
servomechanism applies a force in the elt direction of the
task frame to move the door. The door moves until it
bumps into the door frame, at which time the frame
exerts a force f to cancel the manipulator torques. This
satisfies the stopping condition. Details such as the
microdynamics of the contact are left to the
servomechanism, and we will defer the discussion of
these details until the next section.

The above strategy does not address the problem of
slamming the door. This can happen when the force is
too large. To deal with this example we will add one
condition and change notation slightly. First we add the
while condition (11~11 E [YO - AU, ~0 f A”]). This states
that the speed of the task frame with respect to the world
frame is to be constrained in the interkal YO -t AU. As a
shorthand, we use capital letters to specify interFals, i.e.,
vo f AU = VO. The second change we will make is to
relax the force specification in the task frame to just the
specification of the axis to be controlled, in this case ‘1.
The while condition becomes:

{whilecondition) = FORCECO\TROL(etl)

and (11~11 f L’o)
and ALIGhED(E,,Eh)

The understanding is that the servomechanism can use
this to generate the appropriate commands. One
simplistic possibility is:

if llvll > YO + AV then fl : = fl + A

if llvll < ~0 + AU then fl : = fl - A

Notice that although the while conditions have become
more complex, their essential structure has been
maintained in that they are invariants with respect to the
action.

We now turn to the second advantage of the
formalism, which is that, once appropriate bindings have
been established, a wide variety of different situations can
be described by the same task frame description of the

action. Figure 3 shows two different tasks which can be
handled by DOORCLOSING. In the first, gravity is
assumed to be perpendicular to the plane, i.e., the figure
shows a top view.

Figure 3: Different tasks which can be handled by
DOORCLOSING.

In these examples, recognizing that the described action is
one of DOORCLOSING from the geometric features
would be difficult but perhaps not impossible. More
plausibly, the relevant geometric features of the problem.
which in this case are specified by Et, may already be
known. In any case, the geometric level is the essential
starting point from which the relevant constraints can be
synthesized.

We note that some details are being finessed at this
lebel of description. For example, what if the masses in
these examples are such that the servomechanism cannot
achieve II\11 E Vg? This case of failure has to be resolved
at the planning level, and aside from characterizations of
the failure mode, we are not addressing these kinds of
problems in this paper.

20

Another problem is that of collision detection. Task
frames provide a partial mechanism for handling this
problem. First instantiate all the geometrical objects with
respect to the task frame, and then use the details of the
geometric representation, e.g., constructive solid
geometry, to check for solid material from two or more
objects occupying the same physical space.

4. Geometry and Servomechanisms: Self-Calibration

In order for the task frame scheme to work there
must be some way of computing the transformation
between the task frame and the world frame. [r-r this
section we discuss ways of doing this and show how they
can be integrated into the real-time control program of
the servomechanism.

One way of establishing the desired transformation is
through visual input. This much-researched problem can
be done in constant time on a parallel machine if suitable
visual features can be identified [Ballard and Sabbah,
1983; Hrechanyk and Ballard, 19831. But from a robotics
context, a more interesting method is to use the inverse
dynamics and kinematics of the servomechanism itself.
To see how this might work, let us reconsider the
problem of closing the door. From the inverse kinematics
of the manipulator it is possible to calculate the end
effector velocity. In the normal case of door closing, once
the door moves, its velocity vector is available in world-
frame coordinates. In this case of compliant motion, the
door can only move in the direction oj’ the el axis of the
task frame. Thus, el can be computed as el =
Normalize(v), where v can be measured from the
kinematic equations. Since el is the crucial axis in the
closing task, the other axes may not need to be updated
beyond enforcing the orthogonality condition. If they
should be updated, an additional constraint is that, for
two different times tl and t2, then e3 can be computed as
e3 = Norrnalize(v(tl) x v(t2)), where the two velocities
must have different directions. This is a natural constraint
in the door closing situation. In pushing the block the
velocity needs to wobble arbitrarily while being pushed to
establish the second direction vector.

Another way to calculate the transform is via force
proprioception. Assuming the velocity parallel to the door
surface is clamped at zero, the transformation parameter,
which in 2D is a single angle (denoted by, OL in Figure 3)
can be readily computed. The transform is assumed to be

initialized at the beginning of the action and continuously
updated during the action. One way of updating is:

1) use I(t), f(t) to solve for e(t):

2) use g(t) to solve for x,(t);

3) a’ = tan-l((dyp/dt)/(dxp/dt));

4) if la - all < ~1, then CI := CX’:
else failure.

(3)

Now we turn to the stopping condition. If stopped, B
= F = 0 in (2). This leads to:

1) compute zs using B = F = 0 and f, measured
from proprioception:

2) if]x - zs] < ~2, then stop.

T

; I I

B-e can d.

start CO&O/ SC0p

Siyngl + Low
4 Sr’q nal

c

I

1&

Toverse

%f namics

Figure 4 Details of servomechanism level.

c
Prop rio -

Ception

9 c

21

These kinds of computations can be utilized by a
servo controller in the manner depicted in Figure 4. To
see how the controller works, consider again the door
closing action. First, at the symbolic level, the symbolic
description of the action can be automatically translated
into task-frame constraints. Second, actions at the
geometric level can be automatically translated into
servomechanism commands: the ifconditions are utilized
to generate a start signal, the while conditions are utilized
to synthesize a control function, and the until conditions
are utilized in a termination monitor. In other words, the
invariants at the geometric level become set points for the
controller at the servomechanism level. Third, at the
servo level, the controller computes a command signal in
the task frame. This command is translated into world-
frame coordinates by the task-world transformation. The
inverse dynamics allows the actuator torques to be
synthesized from the desired control signal. The actuator
torques have an effect on the plant which is monitored by

proprioception. Proprioception uses the inverse dynamics
but assumes the torques and system state are known in
order to estimate the world forces and velocities. These
are checked against the termination conditions and also
used to update the task-world transformation. The
termination condition is propagated to the symbolic level
where ARRESTED(door) is set to TRUE.

5. Summary

Task frames make many issues that arise in robot
planning and manipulation simpler. The change from
earlier work has been inspired in part by recent work at
the servomechanism level which has allowed the

deh elopment of dynamically accurate plant models
[Mukerjee et al., 19841 and aforementioned fast solutions
to the problems of inverse kinematics and dynamics. This
means that the main portion of manipulator control can
be carried out as an open loop rather than a closed loop.
Before these advances, manipulator control has had to be
segregated into a planning phase and an acting phase,
and the dynamics of the acting phase could not be
introspected during the planning phase. With accurate
plant models and open loop control strategies, the
planning and acting phases can be more intimately
linked.

It is important to acknowledge that this paper does
not tackle many issues that must be solved to make robot
manipulation practical. Some of these are: trajectory

planning, recovering from failures, and the representation
of large amounts of detailed spatial information. The
exposition is limited to characterizing single actions and
showing how they may be characterized as geometrical
and mechanical invariants. Hopefully this
representational strategy will make the solution of the
other problems easier.

6. References

Ballard, D.H. and D. Sabbah, “Viewer independent shape
recognition,” IEEE Trans. on Pattern Analysis and
Machine Intelligence 5, 6, November 1983.

Brady, M., J.M. Hollerbach, T.L. Johnson, T. Lozano-
Perez, and M.T. Mason. Robot Motion: Planning and
Control. Cambridge, MA: The MIT Press, 1982.

Featherstone, R., “Position and velocity transformations
between robot end effector coordinates and joint
angles,” Int. J. Robotics Research 2, 1983.

Fikes, R.E. and X.J. Nilsson, “STRIPS: A new approach
to the application of theorem proving to problem
solving,” Art$cial Intelligence 12, 3/4, 184-209, 1971.

Hollerbach, J.M., “A recursive formulation of Lagrangian
manipulator dynamics,” IEEE Trans. Systems, Man.
Cybernetics SMC- IO, 11, 730-736, 1980.

Horn, B.K.P., “Kinematics, statics, and dynamics of two-
d manipulators,” MIT AI Lab, Working Paper 99,
June 1975.

Hrechanyk, L.M. and D.H. Ballard. “A connectionist
model for shape perception,” Computer Vision
Workshop, Ringe, NH, August 1982; also appeared as
“Viewframes: A connectionist model of form
perception,” DARPA Image Understanding
Workshop. Washington, D.C., June 1983.

Luh, J.Y.S., M.W. Walker, and R.P.C. Paul, “On-line
computational scheme for mechanical manipulators,”
J. Dynamic Systems, Measurement, Control 102, 69-
76, 1980.

Mason, M.T., “Compliance and force control for
computer controlled manipulators,” IEEE Trans.
Systems, Man, and Cybernetics 1 I, 6, 418-432, 198 1.

Mukerjee, A., R.C. Benson, and D.H. Ballard, “Towards
self-calibration in robot manipulator sq stems:
Dynamics enhancement through trajectory deviation
analysis,” Working Paper, Depts. of Mechanical
Engineering and Computer Science, U. Rochester,
March 1984.

Paul, R.P. Robot Manipulators: Mathematics.
Programming, and Control. Cambridge, 41A: MIT
Press, 1981.

Pervin, E. and J.A. Webb, “Quaternions in computer
vision and robotics,” Proc., IEEE Computer Vision
and Pattern Recap-nition Conf., 382-383, Washington,

DC, June 1983.

22

