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Abstract 

Most robotics computations refer to a single world- 
based frame of reference; however, several advantages 
accrue with the introduction of a second frame, termed a 
task frame. A task frame is a coordinate frame that can be 
attached to different objects that are to be manipulated. 
The task frame is related to the world-based coordinate 
frame by a simple geometric transformation. The virtues 
of such a frame are: (1) certain actions that are difficult to 
specify in the world frame are easily expressed in the task 
frame: (2) the task-frame to task-uorld transformation 
provides a formalism for describing physical actions; and 
(3) the task frame can be related to the world frame by 
proprioception. 

*This research was supported in part by the National 
Science Foundation under Grant WCS-8203920. 

1. Introduction 

Robotics problems are best considered at different 
levels of abstraction. This is because many problems can 
be analyzed effectively vvithin a given abstraction level 
without appealing to other levels. For example, in robot 
planning it is often helpful to consider actions 
symbolically without involving details of the 
servomechanisms that implement such actions. The 
standard symbolic description for the action move xfiom 
y to z in a STRIPS-like expression [Fikes and Nilsson, 
19711 is: 

MOVW, Y, d 
Preconditions: CLEAR(x): CLEAR(z): On(x,y) 
Postconditions: ON(x,z); CLEAR(y). 

The principal advantage of such a system is that 
symbolic plans involving several actions which achieve a 
set of goal conditions can be created systematically. The 

disadvantage of this level is that important geometric 
details are suppressed. For example, the predicate 
CLEAR(x) may depend on the geometry of the 
environment and the manipulator. Objects that might be 
CLEAR with respect to a multiple degree-of-freedom 
manipulator might not be CLFAR to a loh-degree-of- 
freedom Cartesian manipulator. 

Similar kinds of arguments can be made for the 
lowest level of abstraction, the servomechanism itself. The 
basic problem of the servomechanism is to exert forces on 
objects in the world and transport them along desired 
trajectories. The control problem of “given a trajectory, 
find the actuator torques required to follou it,” can be 
solved independently from the symbolic plan using only 
the inverse dynamics of the manipulator. At the symbolic 
level, problems can be solved independent of the details; 
just as important, at the servomechanism level problems 
can be solved independent of the context. 

The natural level of abstraction to introduce between 
the symbolic level and servo level is a geometric level. 
The geometric level provider an explicit representation of 
space that includes geometrical and mechanical structure. 
For example, while CLEAR(x) may be a necessary 
property for an action at the symbolic level, the 
geometrical level contains the necessary structure that 
allows this property to be established. Another element of 
the geometrical level is that it must be able to 
communicate with the servomechanism level. More 
specifically, we argue that the geometrical level must 
contain structure that functions as a command language 

for the servomechanism level. To first order, we argue 
that manipulators need only these three levels, which are 

described in Table 1. 
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Table 1: Levels of Abstraction in Robot Manipulation 9 (b) Trajectory as a transformation locus. 

Level Description 

symbolic STRIPS-like description of actions; 
planning done by chaining 
appropriate actions to change current 
state to goal state 

geometric 

servomechanism 

representation of space in which 
actions take place: command 
language for servomechanism level 

detailed description of manipulator: 
inertial parameters, friction models, 
manipulator internal geometry 

The central idea of this paper is that of a task fww. 
A task frame is described at the geometric level and is a 
geometric coordinate frame that is attached to the object 
being manipulated. To understand the notation for a task 
frame, one must appreciate that current robot 
manipulation and control strategies tend to refer 
computations to a single reference frame, termed the 
wor/Li frame. An example of such a strategy is that of 
compliance [Paul, 19811, where the manipulator is 
constrained to move along given geometric surfaces. Such 
surfaces have been termed C-surfaces [Mason, 19811. For 
example, when turning a crank. the crank handle will 
traverse a given path in the world frame, as shoun by 
Figure la, which is taken from [Brady et al.. 19821. 

Figure 1: (a) Trajectory as a world-frame locus. 
- -u- 

The crux of the rest of the paper is to describe these 
advantages in detail. Section 2 contains the basic notions 
from geometry and mechanics needed to understand the 
subsequent material. Section 3 describes the interface 
between the geometric and symbolic levels. The focus is 
on the recognition and implementation of actions that 

\ I .a involve mechanics. Section 4 describes the interface 

A task frame is related to C surfaces but is different 
in a crucial way. Rather than thinking about the C- 
surface in the world frame, the task frame is intrinsically 
fixed to the object being manipulated (for the duration of 
the task) and is related to the world frame by the obvious 
geometric transformation. That is, given any two of the 
set (task frame, world frame, task-world transformation), 
the third is easily computed. Figure lb shows the 
characterization of the task frame for the problem of 
turning the crank. The two representations are equivalent 
in the sense that either one could be transformed into the 
other. The important difference is that uithin the task 
frame formalism, the problem of turning the crank can be 
simply described as “push in the el-direction until hou 

meet resistence.” The expedient of introducing an 

intrinsic frame and separating thz intrinsic frame from its 
transformation has the following adv an tages: 

1) 

2) 

3) 

many actions that are difficult to express in the 
world frame have very srmplr: expressions with 
respect to the task frame and tranbfortnation (in 
fact, they can be described by invariants with 
respect to these two entities); 

the frame-transformation decoupling allous us to 
relate simply geomtitric and mechanical changes 
in the world with corresponding symbolic 
descriptions; and 

the transformation betueen the task frame and 
world frame can be ccjmputed via both visic~n and 
proprioception. 
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between the geometric and servomechanism levels. The 
focus is on the self-calibration necessary to relate the task 
and world frames, and the automatic relations between 
the two levels introduced by the task frame formalism. 

2. Geometry and Mechanics 

A. Geometry 

An orthogonal geometric coordinate frame consists of 
three vectors, el, e2, e3, such that any two pair are 

mutually perpendicular (ei * ej = 0, for i f j), they form 
a right-handed coordinate system (e3 = el x e2), and all 

the vectors are unit vectors (ei . ei = 1). To denote the 
task frame the subscript t is used, i.e., elt, e2t, e3t, and to 
denote the world frame the subscript w is used. Each 
frame has an origin x = (x, y, z), so that xt is the origin 
of the task frame and xw is the origin of the world frame. 
The world frame can be thought of as described in terms 
of master coordinates. In this case xw = 0, elw = (1, 0, 
0), e2w = (0, 1, 0), and e3w = (0, 0, 1). To denote a 
frame (x, eL, e2, e3) we use E. 

Given the task frame and world frame. the 
transformation between them can be specified by a 
rotation and a translation. The understanding is that the 
rotation is done first since rotation and translation do not 
commute. The transformation is specified by an origin 
change Ax = (AK, A}‘, AZ) and a rotation (n, 8). The later 
notation stands for a rotation 8 about a unit vector n 
where n is expressed in world coordinates. The 
transformation can be computed directly as: 

Ax = xt - xw 

and, assuming a quaternion representation for rotations 
[Per-tin and Webb, 19831: 

n = Normalize((elt - eLw) x (e2t - eZ,)) 

e = (-(n x q)(n x qw>) l/2 

B. Mechanics 

A robot manipulator is a series of links. Each link is 
independently controlled by its own servomotor. The 
links can be described by joint angles e (rotary joints) 
which are controlled by applying torques 7. One such 

configuration is the two-link. planar manipulator 

suggested by [Horn, 19751. Figure 2 shows the 
manipulator geometry. The force and torque applied at 

the tip of the manipulator can be described by a vector(f, 
n). The external force and torque can be related to the 
joint torques by general dynamic equations 

F (1, 8, f, n) = 0 (1) 

To drive the arm, S, f, n are assumed known and 
Equation 1 is solved for the control torques 1. This way 
of solving (1) is known as the inverse dynamics. That is, 
the torques 7 can be related to (f, n) by a set of equations: 
I. = f-l@, f, n). Recently developed solution techniques 
have made it practical to solve the inverse dynamics 
equations in real time [Luh et al., 1980: Hollerbach, 
1980). The easier problem is readily also solved: that is, 
given 2, f, and n, determine 8. 

‘T 

Figure 2: Two-link planar manipulator. 

Besides the dynamics problem there is the kinematics 
problem. Given the state of the system in terms of @, 
d@/dt, d2g/dt2, one must determine the motion of the 
manipulator tip xp, dxp/dt, d2xp/dt2. This is the easy 
part. The reverse problem--given x find &-is harder but 
can be solved analytically by designing manipulators with 
special geometries. One such geometry is a spherical wrist 
[Feather-stone, 19831. 

In c’ery simple manipulator geometries both the 

inverse dynamics and inverse kinematics may have 
analytical solutions. For example, in the two-link planar 
manipulator, the joint torques 71 and 72 may be 

expressed as 

71 = A + B + Cfx + Dfy + n 

?2 - - E + F + Gf, + Hfy + n (2) 
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where A, B, C, D, E, F, G, and H are expressions 
involving the manipulator joint angles S, joint angular 
velocities and accelerations, mass, and inertial parameters. 
The letters A and E denote terms dependent on velocity 
and acceleration: the letters B and F denote terms 
dependent on gravity. These equations show that the 
problem of controlling (n, f) in this case is 
underdetermined. However, if the problem is simplified 
slightly, e.g., the gripper is a finger such that n = 0, then 
the external forces at the tip can be directly related to the 
control torques. Our example assumes such a gripper. 

3. Geometry and Symbols: 
Recognizing and Implementing Actions 

This section shows how the geometrical notions of a 
task frame and transform can be of general use in a 
symbolic planner. In particular: (1) the framework allows 
the interrelation of symbolic and geometric descriptions 
of actions; (2) the task frame and transformation allows a 
simple description of tasks in terms of invariants; and (3) 
the task frame allows checking for collisions between 
objects. 

To start with the first point. consider the description 
of falling. If an object is falling then its origin is 
approaching that of the world frame origin such that the 
z-velocity is negative. In other words, 

FALLING(obj) < = > (vz < 0) 

where the understanding is that expressions involving 
positions and orientations and changes in such are 

statements about the world-frame to task-frame 

transformation. Expressing the process of falling as a rate 
of change has the effect of making it comparable to a 
static situation. The logical expression (vz < 0) must hold 
throughout the falling process. The task frame orientation 
may also play a role in the description. For example: 

RIGHT-SIDE-UP(obj) < = > ALIGNED(e3,, e3w) 

In this as in the previous example, a first order logic 

syntax is assumed with expressions consisting of 

predicates denoted by upper case, terms denoted by 
lower case. The point of these examples is that for 
problems involving Newtonian mechanics, the task-frame 

to world-frame transformation provides the basis for 
systematically relating symbolic expressions and 

geometrical expressions. 
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The task frame structure leads naturally to a 
formalism at the geometric level for describing actions. 
This formalism has three principal advantages: (1) its 
elements are all invariants: (2) the formalism is 
sufficiently abstract that the same action can be used in a 
variety of contexts; and (3) its structure can bc 
interpreted by the servomechanism. 

The format that we adopt for representing actions has 

a STRIPS-like syntax. Each action has a set of 
preconditions that must be true for the ,action to be 
applicable, a set of while conditions that must hold 
during the execution of the action, and a set of stopping 
conditions. Thus an action is described as: 

ActionName(params) 
if (preconditions) then do ( whileconditions} 
until (stoppingconditions) 

where the parameters are used by the various conditions. 

This structure takes advantage of the previous 
development which related symbolic constraints and 
geometric constraints. Consider the example of closing a 
door. This can be expressed symbolically as: 

DOORCLOSI%G(door) 
if TOUCHING(door) then do PUSH(door) 
until ARRESTED(door) 

but also can be expressed geometrically as 

DOORCLOSING(door) 
if (E,O,O) then do (f,O,O) & .4LIGNED(Et,Ehandle) 
until (O,O,O) 

This syntax illustrates a number of important points 
which we will nou elaborate. In the first place. note that 
we have been able to decouple the force constraints from 
the geometric constraints. (A similar decoupling is seen in 
C-surfaces for the cases of pure force or pure position 
control [Mason, 19811.) Thus rather than specify that force 
control of the handle in the world frame [Mason, 19311 
uhere it has a varying locus, it is specified in the task 
frame where it has a very simple structure. The notation 
ft = (fl, f2, f3) stands for exertjbrce ft in the task frame 

coordinate s?lstem. Ihe quantity E is a small contact force, 
less than that required to move the object, v+ hereas f is 
large enough to start the object moving. The key virtue of 
the task frame is that the force ft can be an invariant 
during the action. 



The second part of the while condition for closing the 
door expresses the relationship between the task frame 
and some other frame expressed in world frame 
coordinates. For the earlier discussion one can appreciate 
that given Et and Ehandle. *e predicate 
ALIGNED(E,,Eh) is easy to compute. 

The following scenario is imagined for the action 
DOORCLOSING. Given that the handle is grasped, the 
servomechanism applies a force in the elt direction of the 
task frame to move the door. The door moves until it 
bumps into the door frame, at which time the frame 
exerts a force f to cancel the manipulator torques. This 
satisfies the stopping condition. Details such as the 
microdynamics of the contact are left to the 
servomechanism, and we will defer the discussion of 
these details until the next section. 

The above strategy does not address the problem of 
slamming the door. This can happen when the force is 
too large. To deal with this example we will add one 
condition and change notation slightly. First we add the 
while condition (11~11 E [YO - AU, ~0 f A”]). This states 
that the speed of the task frame with respect to the world 
frame is to be constrained in the interkal YO -t AU. As a 
shorthand, we use capital letters to specify interFals, i.e., 
vo f AU = VO. The second change we will make is to 
relax the force specification in the task frame to just the 
specification of the axis to be controlled, in this case ‘1. 
The while condition becomes: 

{whilecondition) = FORCECO\TROL(etl) 

and (11~11 f L’o) 
and ALIGhED(E,,Eh) 

The understanding is that the servomechanism can use 
this to generate the appropriate commands. One 
simplistic possibility is: 

if llvll > YO + AV then fl : = fl + A 

if llvll < ~0 + AU then fl : = fl - A 

Notice that although the while conditions have become 
more complex, their essential structure has been 
maintained in that they are invariants with respect to the 
action. 

We now turn to the second advantage of the 
formalism, which is that, once appropriate bindings have 
been established, a wide variety of different situations can 
be described by the same task frame description of the 

action. Figure 3 shows two different tasks which can be 
handled by DOORCLOSING. In the first, gravity is 
assumed to be perpendicular to the plane, i.e., the figure 
shows a top view. 

Figure 3: Different tasks which can be handled by 
DOORCLOSING. 

In these examples, recognizing that the described action is 
one of DOORCLOSING from the geometric features 
would be difficult but perhaps not impossible. More 
plausibly, the relevant geometric features of the problem. 
which in this case are specified by Et, may already be 
known. In any case, the geometric level is the essential 
starting point from which the relevant constraints can be 
synthesized. 

We note that some details are being finessed at this 
lebel of description. For example, what if the masses in 
these examples are such that the servomechanism cannot 
achieve II\11 E Vg? This case of failure has to be resolved 
at the planning level, and aside from characterizations of 
the failure mode, we are not addressing these kinds of 
problems in this paper. 
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Another problem is that of collision detection. Task 
frames provide a partial mechanism for handling this 
problem. First instantiate all the geometrical objects with 
respect to the task frame, and then use the details of the 
geometric representation, e.g., constructive solid 
geometry, to check for solid material from two or more 
objects occupying the same physical space. 

4. Geometry and Servomechanisms: Self-Calibration 

In order for the task frame scheme to work there 
must be some way of computing the transformation 
between the task frame and the world frame. [r-r this 
section we discuss ways of doing this and show how they 
can be integrated into the real-time control program of 
the servomechanism. 

One way of establishing the desired transformation is 
through visual input. This much-researched problem can 
be done in constant time on a parallel machine if suitable 
visual features can be identified [Ballard and Sabbah, 
1983; Hrechanyk and Ballard, 19831. But from a robotics 
context, a more interesting method is to use the inverse 
dynamics and kinematics of the servomechanism itself. 
To see how this might work, let us reconsider the 
problem of closing the door. From the inverse kinematics 
of the manipulator it is possible to calculate the end 
effector velocity. In the normal case of door closing, once 
the door moves, its velocity vector is available in world- 
frame coordinates. In this case of compliant motion, the 
door can only move in the direction oj’ the el axis of the 
task frame. Thus, el can be computed as el = 
Normalize(v), where v can be measured from the 
kinematic equations. Since el is the crucial axis in the 
closing task, the other axes may not need to be updated 
beyond enforcing the orthogonality condition. If they 
should be updated, an additional constraint is that, for 
two different times tl and t2, then e3 can be computed as 
e3 = Norrnalize(v(tl) x v(t2)), where the two velocities 
must have different directions. This is a natural constraint 
in the door closing situation. In pushing the block the 
velocity needs to wobble arbitrarily while being pushed to 
establish the second direction vector. 

Another way to calculate the transform is via force 
proprioception. Assuming the velocity parallel to the door 
surface is clamped at zero, the transformation parameter, 
which in 2D is a single angle (denoted by, OL in Figure 3) 
can be readily computed. The transform is assumed to be 

initialized at the beginning of the action and continuously 
updated during the action. One way of updating is: 

1) use I(t), f(t) to solve for e(t): 

2) use g(t) to solve for x,(t); 

3) a’ = tan-l((dyp/dt)/(dxp/dt)); 

4) if la - all < ~1, then CI := CX’: 
else failure. 

(3) 

Now we turn to the stopping condition. If stopped, B 
= F = 0 in (2). This leads to: 

1) compute zs using B = F = 0 and f, measured 
from proprioception: 

2) if ]x - zs] < ~2, then stop. 

T 

; I I 
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These kinds of computations can be utilized by a 
servo controller in the manner depicted in Figure 4. To 
see how the controller works, consider again the door 
closing action. First, at the symbolic level, the symbolic 
description of the action can be automatically translated 
into task-frame constraints. Second, actions at the 
geometric level can be automatically translated into 
servomechanism commands: the ifconditions are utilized 
to generate a start signal, the while conditions are utilized 
to synthesize a control function, and the until conditions 
are utilized in a termination monitor. In other words, the 
invariants at the geometric level become set points for the 
controller at the servomechanism level. Third, at the 
servo level, the controller computes a command signal in 
the task frame. This command is translated into world- 
frame coordinates by the task-world transformation. The 
inverse dynamics allows the actuator torques to be 
synthesized from the desired control signal. The actuator 
torques have an effect on the plant which is monitored by 

proprioception. Proprioception uses the inverse dynamics 
but assumes the torques and system state are known in 
order to estimate the world forces and velocities. These 
are checked against the termination conditions and also 
used to update the task-world transformation. The 
termination condition is propagated to the symbolic level 
where ARRESTED(door) is set to TRUE. 

5. Summary 

Task frames make many issues that arise in robot 
planning and manipulation simpler. The change from 
earlier work has been inspired in part by recent work at 
the servomechanism level which has allowed the 

deh elopment of dynamically accurate plant models 
[Mukerjee et al., 19841 and aforementioned fast solutions 
to the problems of inverse kinematics and dynamics. This 
means that the main portion of manipulator control can 
be carried out as an open loop rather than a closed loop. 
Before these advances, manipulator control has had to be 
segregated into a planning phase and an acting phase, 
and the dynamics of the acting phase could not be 
introspected during the planning phase. With accurate 
plant models and open loop control strategies, the 
planning and acting phases can be more intimately 
linked. 

It is important to acknowledge that this paper does 
not tackle many issues that must be solved to make robot 
manipulation practical. Some of these are: trajectory 

planning, recovering from failures, and the representation 
of large amounts of detailed spatial information. The 
exposition is limited to characterizing single actions and 
showing how they may be characterized as geometrical 
and mechanical invariants. Hopefully this 
representational strategy will make the solution of the 
other problems easier. 
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