
Path Relaxation: Path Planning for a Mobile Robot

Charles E. Thorpe

Computer Science Department, Carnegie-Mellon University

Abstract. Path Relaxation is a method of planning safe paths around
obstacles for mobile robots. It works in two steps: a global grid starch
that finds a rough path, followed by a local relaxation step that adjusts
each node on the path to lower the overall path cost. The representation
used by Path Relaxation allows an explicit tradeoff among length of
path, clearance away from obstacles, and distance traveled through
unmapped areas.

1. Int reduction

Path Relaxation is a two-step path-pl;lr~ning process for mobile robots.
It finds a safe path for a robot to traverse a field of obstacles and arrive at
its destination. The first step of path relaxation finds a preliminary path
on an eight-connected grid of points. The second step adjusts, or
“relaxes”, the position of each preliminary path point to improve the
path.

One advantage of path relaxation is that it allows many different
factors to be considered in choosing a path. Typical path planning
algorithms evaluate the cost of alternative paths solely on the basis of
path length. The cost function used by P%h Relaxation, in contrast, also
includes how close the path comes to objects (the further away, the lower
the cost) and penalties for traveling through areas out of the Ii&i of view.
The cffcct is to produce paths that neither clip the corners of obstacles
nor make wide deviations around isolated objects, and that prefer to stay
in mapped terrain unless a path through unmapped regions is
substantially shorter. Other factors, such as sharpness of corners or
visibility of landmarks, could also bc added for a particular robot or
mission.

Path Relaxation is part of Fido, the vision and navigation system of the
CMU Rover mobile robot. [7] The Rover, under Fido’s control, navigates
solely by stereo vision. It picks about 40 points to track, finds them in a
pair of stereo images, and calculates their 3D positions relative to the
Rover. The Rover then moves about half a meter, takes a new pair of
pictures, finds the 40 tracked points in each of the new pictures and
recalculates their positions. The apparent change in position of those
points gives the actual change in the robot’s position.

Fido’s world model is not suitable for most existing path-planning
algorithms. They usually assume a completely known world model, with
planar-faced objects. Fido’s world model, on the other hand, contains
only the 40 points it is tracking. For each point, the model records its
position, the uncertainty in that position, and the appearance of a small
patch of the image around that point. Furthermore, Fido only knows
about what it has seen; points that have ncvcr been within its field of
view are not listed in the world model. Also, the vision system may fail
to track points correctly, so there may be phantom objects in the world
mode! that have been seen once but arc no longer being tracked. All this
indicates the need for a data structure that can rcprcscnt unccrt,Gnty and
inaccuracy, and for algorithms that can USC such data.

Section 2 of this paper outlines the constraints avnilablc to Fide’s path

planner. Sccrion 3 discusses some common types of path planners. and
shows how ~hcy are inadequate for our application. The Path Relaxation
algorithm is explained in detail in Section 4, and some additions to the
basic scheme are presented in Section 5. Finally, Section 6 discusses
shortcomings of Path Relaxation and some possible extensions.

2. Constraints

in intclllgcnt path planner needs to bring lots of information to bear
on the problem. This section discusses some of the information ~rxfi~l

for mobile robot path planning, and shows how the constraints for
mobile robot paths differ from those for manipulator trajectories.

Low dirncnsionality. A ground-based robot vehicle is constrained to
three degrees of freedom: x and y position and orientation. In particular,
the CMU Rover has a circular cross-section, so for path planning the
orientation does not matter. This makes path planning only a 2D
problem, as compared to a 6 dimensional problem for a typical
manipulator.

Imprecise control. Even under the best of circumstances, a mobile
robot is not likely to be very accurate: perhaps a few inches, compared to
a few thousandths of an inch for manipulators. The implication for path
planning is that it is much less important to worry about exact fits for
mobile robot p&hs. If the robot could, theoretically, just barely fit
through a certain opening, then in practice that’s probably not a good
way to go. Computational resources are better spent exploring alternate
paths rather than worrying about highly accurate motion calculations.

Cumul;lti~c error. Errors in a dead-reckoning system tend to
accumulate: a small error in heading, for instance, can give rise to a large
error in position as the vehicle moves. The only way to reduce error is to
periodically measure position against some global stiindard, which can be
time-consuming. The Rover, for example, does its measurement by
stereo vision, taking a few minutes to compute its exact position. So a
slightly longer path that stays farther away from obstacles, and allows
longer motion between stops for measurement, may take less time to
travel than a shorter path that requires more frequent stops. In contrast,
a manipulator can reach a location with approximately the same error
rcgardlcss of what path is taken to arrive there. There is no cumulative
error, and no time spent in reorientation.

Unknown arcas. Robot manipulator trajectory planners usually know
about all the obstacles. The Rover knows only about those that it has
seen. This leaves unknown areas outside its field of view and behind
obstacles. It is usually prcfcrable to plan a path that traverses only
known empty regions. but if that path is much longer than the shortest
path it may bc worth looking at the unknown regions,

Fur/ly ohjcrts. Not only do typical m,uriptrlator path-planners know
about all the objects, they know precisely hhcre each object is. ‘I’his
information might come, for instance. from the CAD system that
designed the robot workstatlon. Mobile robots. on the other hand,
usually sense the world as they go. Fide. instead of having precise

318

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

bounds for objects, knows only about fuzzy points. ‘I’hc location of a
point is only known to the precision of‘ the stcrco vision system, and the
extent of an object beyond the point is cntircly unknown.

In summary, a good system for mobile robot path planning will be
quite different from a manipulator path planner. Mobile robot path
planners need to handle uncertainty in the sensed world model and
errors in path execution. They do not have to worry about high
dimcnsionality or extremely high accuracy. Section 3 of this paper
discusses some existing path planning algorithms and their shortcomings.
Section 4 then presents the algorithms used by Path Relaxation, and
shows how they address these problems.

short paths and obstacle avoidance is the Regular Grid m&hod. This
covers the world with a regular grid of points, each connected with its 4
or 8 neighbors to form a graph. In existing regular grid impli.mentations,
the only information stored at a node is whether it is inside an object or
not. Then the graph is searched, and the shortest grid path returned.
This straightforward grid search has many of the same “too close”
problems as the vertex graph approaches.

3. Approaches to Path Planning

This section outlines several approaches to path planning and some of
the drawbacks of each approach. All of these methods except the
potential fieids approach abstract the search space to a graph of possible
paths. This graph is then searched by some standard search tcchniquc,
such as breadth-first or A* IS], and the shortest path is returned. The
important thing to note in the following is the information made explicit
by each representation and the information thrown away.

Free Space methods. [2, 3,9] One type of p&h planner explicitly deals
with the space between obstacles. Paths are forced to run down the
middle of the corridors between obstacles, for instance on the Voronoi
diagram of the free space. Free space algorithms suffer from two related
problems, both resulting from a data abstraction that throws away too
much information. The first problem is that paths always run down the
middle of corridors. In a narrow space, this is desirable, since it allows
the maximum possible robot error without hitting an object, But in some
cases paths may go much filrther out of their way than necessary. The
second problem is that the algorithms do not use clearance information.
The shortest path is always selected, &en if it involves much closer
tolerances than a slightly longer path.

Path Relaxation combines the best features of grid search and potential
fields. Using the rolling marble analogy, the first step is a global grid
search that finds a good valley for the path to follow. The second step is
a local relaxation step, similar to the potential field approach, that moves
the nodes in the path to the bottom of the valley in which they lie. The
terrain (cost function) consists of a gradual slope towards the goal, hills
with sloping sides for obstacles, and plateaus for unexplored regions.
The height of the hills has to do with the confidence that there really is
an object there. Hill diamctcr depends on robot precision: a more
precise robot can drive closer to an object, so the hills will be tall and
narrow, while a less accurate vehicle will need more clearance, requiring
wide, gradually tapering hillsides.

This section first presents results on how large the grid size can be
without missing paths. It next discusses the mechanism for assigning cost
to the nodes and searching the grid. Finally, it presents the relaxation
step that adjusts the positions of path nodes.

Grid Size. How large can a grid be and still not miss any possible
paths? That depends on the number of dimensions of the problem, on
the connectivity of the grid, and on the size of the vehicle. It also
depends on the vehicle’s shape: in this section, we discuss the simplest
case, which is a vchiclc with a circular cross-section.

319

Vertex Graphs. [S, 10,6] Another class of algorithms is based on a
graph connecting pairs of vertices. For each pair of vertices, if the line
between them does not intersect any obstacle, that line is added to the
graph of possible paths. Vertex graph algorithms suffer frotn the “too
close” problem: in their concern for the shortest possible path. they find
paths that clip the corners of obstacles and even run along the cdgcs of
some objects. It is, of course, possible to build in a margin of error by
growing the obstacles by an extra amount; this may, however, block
some paths.

Jjoth free space and vertex graph methods throw away too much
information too soon. All obstacles arc modeled as polygons, all paths
arc considcrcd cithcr open or blocked, and the shortest path is always
best. There is no mechanism for trading a slightly longer path for more
clearance, or for making local path adjustments. Thcrc is also no clean
way to deal with unmapped regions, other than to close them off entirely.

The Potential Fields [l, 41 approach tries to make those tradeoffs
explicit. Conceptually, it turns the robot into a marble, tilts the floor
towards the goal, and watches to SW which way the marble rolls.
Obstacles arc represented as hills with sloping sides, so the marble will
roll a prudent distance away from them but not too far, and will seek the
passes between adjacent hills. The problem with potential field paths is
that they can get caught in dead ends: once the marble rolls into a box
canyon, the algorithm has to invoke special-case mechanisms to cut off
that route, backtrack, and start again. Moreover, the path with the lowest
threshold might turn out to bc a long and winding road, while a path that
must climb a small ridge at the start and then has an easy run to the goal
might never be investigated.

The arca to be traversed can be covered with a grid in which each node
is connected to either its four or its eight nearest neighbors. For a four-
connected grid, if the spacing were r, there would be a chance of missing
diagonal paths. At left in Figure 1, for instance, there is enough room for
the robot to move from (1,l) to (2,2), yet both nodes (1,2) and node (2,l)
arc blocked. To guarantee that no paths are missed, the grid spacing
must be reduced to r * sqrt(2) / 2, as in the center of bigure 1. That is
the largest size allowable that guarantees that if diagonally opposite
nodes are covered, there is not enough room between them for the robot
to safely pass. Note that the converse is not ncccssarily true: just because
there is a clear grid path does not guarantee that the robot will fit. At this
stage, the important thiilg is to find all possible paths, rather than to find
only possible paths.

Another approach that could explicitly represent the conflicts between

If the grid is tight-ccnncctcd, as in the right of Figure 1, (each node
connected to 11s diagonal, as well as orthogonal, neighbors), the problem
with diagonal paths disappears. The grid spacing can be a full r, while
guaranteeing that if there is a path it will bc found.

4. Path Relajtation

// @ /
1

~
1

1 2
Figure 1: Grid Size Problems

Grid Senrcit, Once the grid size has been fixed, the next step is to
assign costs to paths on the grid and then to search for the best path
along the grid from the start to the goal. “I&J”. in this case, has three
conflicting requirements: shorter path Icngth. greater margin away from
obstacles, and less distance in uncharted arcas. Thcsc three are explicitly
balanced by the way path costs are calculated. A path’s cost is the sum of
the costs of the nodes through which it passes, each multiplied by the
distance to the adjacent nodes. (In a 4-connected graph all lengths are
the same, but in an &connected graph we have to distinguish between
orthogonal and diagonal links.) The node costs consist of three parts to
explicitly represent the three conflicting criteria.

1. Cost for distance. Each node starts out with a cost of one
unit, for length traveled.

unlikely to bc exactly on a grid point. If the grid path is topologicaily
cquivalcnt to the optimal path (i.c. goes on the same side of each object),
the grid path can bc iteratively improved to approximate the optimal
path (see Section 5). But if the grid path at any point goes on the
“wrong” side of an obstacle, then no amount of local adjustment will
yield the optimal path. The chance of going on the wrong side of an
obstacle is rclatcd to the sic.e of the grid and the shape of the cost VS.
distance function. For a given grid size and cost firnction, it is possible to
put a limit on how much worse the path found could possibly be than the
optimal path. If the result is too imprecise, the grid size can bc decreased
until the additional computation time is no longer worth the improved
path.

2. Cost for near objects. Each object near a node adds to that
node’s cost. The ncarcr the obstacle, the more cost it adds.
‘I’hc exact slope of the cost function will dcpcnd on the
accuracy of the vchiclc (a more accurate vchiclc can afford to
come closer to object\), and the \&clc’s speed (a faster
vehicle can afford to go farther out of iis way), among other
factors.

3. Cost for within or near an unmapped region. The cost for
traveling in an unmapped region will depend on the vehicle’s
mission. If this is primarily an exploration trip, for example,
the cost might be relatively low. ‘I’hcrc is also a cost added
for being near an unmapped region, using the same sort of
function of distance as is used for obstacles. This provides a
buffer to keep paths from coming too close to potentially
unm‘lppcd hazards.

320

The first step of Path Relaxation is to set up the grid and read in the list
of obstacles and the vehicle’s current position and field of view. The
system can then calculate the cost at each node, based on the distances to
nearby obstacles and whether that node is within the field of view. The
next step is to create links from each node to its 8 neighbors. The start
and goal locations do not necessarily lie on grid points, so special nodes
need to be crcatcd for them and linked into the graph. Links that pass
through an obstacle, or between two obstacles with too little clearance fo{
the vehicle, can bc detected and deleted at this stage.

A few details on the shape of the cost fimction deserve mention. Many
different cost functions will work, but some shapes are harder to handle
properly. ‘fhc first shape we tried was linear. This had the advantage of
being easy to calculate quickly, but gave problems when two objects were
close together. l’hc sum of the costs from two nearby objects was equal
to a linear function of the sum of the distances to the objects. This
creates ellipses of equal cost, including the dcgeneratc ellipse on the line
between the two objects. In that case, there was no reason for the path to
pick a spot midway between the objects, as we had (incorrectly)
expected. Instead, the only change in cost came from changing distance,
so the path went wherever it had to to minimize path length. In our first
attempt to rcmcdy the situation we replaced the linear slope with an
exponentially decaying value. This had the desired effect of creating a
saddle between the two peaks. and forcing the path towards the midpoint
between the objects. The problem with hxponentials is that they never
reach zero. For a linear tinction, there was a quick test to see if a given
object was close enough to a given point to have any influence. If it was
too far away, the function did not have to be evaluated. For the
exponential cost tinction. on the other hand, the cost tinction had to be
calculated for every obstacle for each point. We tried cutting off the size
of the exponential, but this left a small ridge at the cxtremum of the
function, and paths tended to run in nice circular arcs along those ridges.
A good compromise, and the function WC finally scttlcd on, is a cubic
function that ranges from 0 at some maximum distance, set by the user,
to the obstacle’s maximum cost at 0 distance. This has both the
advantages of having a good saddle between neighboring obstacles and
of being easy to compute and bounded in a local area.

The system then searches this graph for the minimum-cost path from,
the start to the goal. The search itself is a standard A” [8] search. The
estimated total cost of a path, used by A* to pick which node to expand
next, is the sum of the cost so far plus the straight-line distance from the
current location to the goal. This has the effect. in regions of equal cost,
of finding the path that most closely approximates the straight-line path
to the goal.

The path found is guaranteed to be the lowest-cost path on the grid,
but this is not necessarily the overall optimal path. First of all, even in
areas lvith no obstacics the grid path may bc longer than a straight-line
path simply because it has to follow grid lines. For a 4-connected grid,
the worst case is diagonal lines, where the grid path is sqrt(2) times as
long as the straight-lint path. For an 8-ionnccted grid, the cquivalcnt
worst case is a path that goes equal distances forward and diagonally.
This gives a path about 1.08 times as long as the straight-line path. In
cases where the path curves around several obstacles, the extra path
length can be even more significant. Secondly, if the grid path goes
bctwecn two obstacles, it may bc non-optimal because a node is placed
closer to one obstacle than to the other. A node placed exactly half way
between the two obstacles would, for most types of cost functions, have a
lower cost. The placement of the node that minimizes the overall path
cost will dcpcnd both on node cost and on path length, but in any case is

No& motion has to be rcstrictcd. If nodes were allowed to move in
any direction. they would all end up at low cost points, with many nodes
bunched together and a few long links bctwccn them. This would not
give a very good picture of the actual cost along the path. So in order to
keep the nodes spread out, a node’s motion is restricted to be
perpendicular to a line between the preceding and following nodes.
Furticrmore, at any one step a node is allowed to move no more than
one unit.

AS a node moves, all three factors of cost arc affcctcd: distance traveled
(from the preceding node, via this node, to the next node), proximity to
objects, and relationship to unmapped regions. The combination of
thcsc factors makes it difficult to directly solve for minimum cost node

Reluxatiun. Grid search finds an approximate path; the next step is
an optimization step that fine-tunes the location of each node on the path
to minimize the total cost. One way to do this would be to precisely
define the cost of the path by a set of non-linear equations and solve
them simultaneously to analytically determine the optimal position of
each node. This approach is not, in general. computationally feasible.
The approach used here is a relaxation method. Each node’s position is
adjusted in turn, using only local information to minimize the cost of the
path sections on either side of that node. Since moving one node may
affect the cost of its neighbors, the entire procedure is repeated until no
node moves farther than some small amount.

position. Instead, a binary search is used to find that position to
whatever accuracy is desired.

The relaxation step has the cffcct of turning jagged lines into straight
ones where possible, of finding the “saddle” in the cost function between
two objects, and of curving around isolated objects. It also does the
“right thing” at region boundaries. The least cost path crossing a border
between different cost regions will follow the same path as a ray of light
refracting at a boundary between media with different transmission
velocities. The relaxed path will approach that path.

5. Additions to the Basic Scheme

One extension we have tried is to vary the costs of individual obstacles.
The current vision system sometimes reports phantom objects, and
sometimes loses real objects that it had been tracking correctly. The
solution to this is to “fade” objects by decreasing their cost each step that
they are within the field of view but not tracked by the vision module.

Another extension implcmcnted is to rc-use existing paths whenever
possible. At any one step, the kehiclc will usually move only a fraction of
the length of the planned path. If no new objects are seen during that
step, and if the vehicle is not too far off its planned course, it is possible
to USC the rest of the path as planned. Only if new objects have been
seen that block the planned path is it necessary to replan from scratch.

The relaxation step can bc greatly speeded up if it runs in parallel on
several computers. Although an actual parallel implementation has not
yet been done, a simulation has been written and tested.

6. Remaining Work

Path Relaxation would be easy to extend to higher dimensions. It
could be used, for example, for a 3D search to bc used by underwater
vehicles maneuvering through a drilling platform. Another use for
higher-dimensional scarchcs would be to include rotations for
asymmetric vehicles. Yet another application would bc to model moving
obstacles; then the third dimension becomes time, with the cost of a grid
point having to do with disL?nce to all objects at that time. This would
have a slightly different flavor than the other higher-dimensional
extensions; it is possible to go both directions in x, y, z, and theta, but
only one direction in the time dimension.

Another possible cxtcnsion has to do with smoothing out sharp
corners. All wheels on the Rover steer, so it c,m follow a path with sharp
corners if necessary. h4any other vehicles. arc not so maneuverable; they
may steer like a car, with a minimum possible turning radius. In order to
accommodate those vehicles, it would be necessary to restrict both the
graph search and relaxation steps. A related problem is to use a
smoothly curved path rather than a series of linear segments.

An interesting direction to pursue is multiple-precision grids. This
could make it possible to spend more effort working on precise motion
through cluttered areas, and less time on wide open spaces.

Path relaxation, as well as almost all existing path planners, deals only
with geometric information. A large part of a robot’s world knowledge,
bowever, may be in partially symbolic form. For example, a map
assembled by the vehicle itself may have very precise local patches, each
mcasurcd from one robot location. The relations between patches,
though, will probably be much less precise, since they depend on robot
motion from one step to the next. Using such a mixture of constraints is
a hard problem.

Aclcnon~led~ert~errts ‘I‘hanks to tI,ms Moravcc. I>arry Matthics, and
Rich Wallace ti)r advice and cncouragcmcnt. This rcscarch was partially
supported by Office of Naval Research contract N00014-81-K-0503.

Example Run. Figure 2 is a run from scratch, using real data
extracted from images by the Fido vision system. The circles are
obstacles, where the size of the circle is the uncertainty of the stereo
vision system. The dotted line surrounds the arca out of the field of
view. The start position of the robot is approximately (0, -.2) and the
goal is (0, 14.5). The grid path found is marked by 0’s. After one
iteration of relaxation. the path is marked by l’s, and after the second
(and, in this case, last) relaxation, by 2’s.

--- ---.

References

1. J. Randolph Andrcws. Impedance Control as a Framework for
Implcrncnting Obstacle Avoidance in a Manipulator. Master Th., MIT,
1983.
2. Rodney I3rooks. Solving the Find-Path Problem by Representing
Free Space as Generalized Cones. Al Memo 674, Massachusetts
Institute of ‘l‘cchnology, h/lay, 1982.
3. Georgcs Giralt, Ralph Sobck, and Raja Chatila. A Multi-Level
Planning and Navigation System for a Mobile Robot; A First Approach
to Hilarc. Proceedings of IJCAI-6, August, 1979.
4. Oussama Khatib. Dynamic Control of Manipulators in Operational
Space. Sixth CISM-IFToMM Congress on Theory of Machines and
mechanisms, New Delhi, India, Dcccmber, 1983.
5. Tomas I.ozano-Perez and Michael A. Wesley. “An Algorithm for
Planning Collision-Free Paths Among Polyhedral Obstacles.” CACM
22,10 (October 1979).
6. Hans Moravcc. Obstacle Avoidance and Navigation in the Real
World by a Seeing Robot Rover. Tech. Rept. CMU-RI-TR-3, Carnegie-
Mellon Univesity Robotics Institute, September, 1980.
7. Hans Moravec. The CM U Rover. Proceedings of AAAI-82,
August, 1982.
8. N. Nilsson. Problem Solving Methods in Arfificial Infelligence.
McGraw-Hill, 1971.
9. Colm O’Dunlaing, Micha Sharir, and Chee Yap. Retraction: a new
approach to motion-planning. Courant Institute, November, 1982.
10. Alan M. Thompson. The Navigation System of the JPL Robot.
Proceedings of IJCAI-$1977.

321

