
‘l‘hrer findpath problcrns are considered. First, ihe probkrn of finding
a collision frrc trajectory for a tentacle niariipulator is examirlcd. Sec-

Abstract

Three Findpath Problems

Richard S. Wallace
Department of Computer Science

Carnegie-Mellon Univeristy
Pittsburgh, PA 15213

Olld, a nrw firidpalh nlgorithrn for a mobile robot rover is prcsl~Jltcl~.
‘I’h is :~lgorilhrr~ dill& froJn clarlicr ones in its USC Oi- qll:tJl tilativc in-

formation about the uncertainty in the position of the robot to keep
the robot away from obstaclrs without going too near them and with-
out going too far out of its way to avoid them. Third, a method for
coordinating two rrioving arms so thilt Lhcy avoid collisions with each
other is presented. The two-arJn fiudpath algorithm here is restricted
to cases where coordirlated collision- free trajectories can bc found by
controlling the velocities of the arnls. Each of these findpath problems
suggests a hc>uristic
end of the paper.

to find its solution and these are discussed at the

0. Introduction

With the rnnturaLion of the theory of Configuration Space[l] and
the fouutf~t,ional work of Schwartz and Sharir on the ‘Piano Movers’
problcrJli2] it is tcmpGJlg to conclude that the final word on the findpath
probleJu has been said. Indeed for the case of a two-dimensional robot
moving around fixed plarlar obstacles (or a three-dimensional robot
who can be reduced to a two-dimensional one by projection) many al-
gorithms for Lhc findpath problem have been proposed [3,4,5,6,7,8,9],
no one of which is obviously best for simple cases. I3ut the theory of
configuration space tr:ls us that for an n-dof robot we must search an
n dimensional Euclidean space for a collision-free path when the ob-
stacles are fixed. Also, theoretical work on the findpath problem for
linkages indicates that its algorithm is Nh’P-complete[lO]. So the issue
for computer scicrlce becomes not solving the findpath problem in gcn-
era1 but examining special cases one by one, to see if WC can find an
etlicicnt solution for any.

Three !iJidpaLh problems are exarnirled here: for a planar tentacle
Jnanipulator; for a mobile robot, with tljc additional twist that we
don’t want, the robot to come Loo near any obstacles nor to navigate
too far away from them when avoiding them and; for two coordinated
Jnanipulafor arms. Each solutions to a findpath problem discussed
here suggests a heuristic that may bc useful for solving other findpath
prGblcms. The l.ccristirs are discussttd at the end of the paper.

1. Tentacle Findpath Problem

Spiral fuiictioris (i.e. monotonically increasiJig polar furlctioris of the
form r = f(0)) app ear to be reasonable carldidntes for modeling ten-
tar&. The important ronsideratiorl from the robot theoretical point
of view is that the total length of such a r,lanipulator is constant. The
diagram in figure 1 illustrates a tentacle marlipulator modeled by a
logarithmic spiral (a function of the form r = CO). This tentacle robot
can “spiral out” or “wind up” arid also rotat,c at its shoulder about the
origin. The parameters for this type of arm are its rotational orienta-
tion q5 and a parameter a, which dcterrniJ!es how much thr JnaJGpula%or
has “spiraled out.” For the findpath problcrn, the logarithmic spiral
tentacle has the advantage that a closed form of its inverse kinematic
solution is obtained easily [L2].

The method used to solve the tentacle Lindpath problem is an approx-
~J~~;r.Liorl Iilolhod, in which obstacles in the iij;irjipul:tLor’s l)o:;itir,jj sp;jcc

are hounded by instanccas of a class of obstacles, called tentacle obata-
cles, which arc simple to snap into tho robot’s configuration SURCC. The
obstacles under considcrntion have four sic&. The IL/~ side is the side
first illtcrscctcd by the ~~r~taclc if iL is rotating clockwisr arourltl the
origin. The right side is the side First intcrscctod by the tcrltaclc as it
rotates counter-clockwise. The near side is the side first intersected
by the tentacle as it holds its $ value corlstanl arid increases u, that
is, ~hc side nearest the origin ‘I’l~c fur side is the side of Lhc obstacle
farthest from the origin. For rcasoIjs described below, the near and far
sides are always circular arcs and the right and left sides are particular
polyliiies.

The near side of a tentacle obstacle is a circular arc between two
angles 41 and 42 so that when ~$1 5 (b 5 42 the tentacle parameter
a must be sufficiently small to ensure that the point on the tentacle
furthest from tbc origin is closer to the origin than the circular arc. In
figure 2 the near sides of the two obstacles correspond with thr sides
of the configuration space obstacles nearest the 4 axis and parallel to
it. The relationship between a and the point on the tentacle furthest
from the origin is non-linear but is bounded by a linear function which
is asymptotically equal to the precise relation.

Figure 1. Tentacle JnanipJJlator JJlod&d by a logarithmic spiral func-
tion showrl in several configurations. These drawings were produced by
a program which solves the irlversc kiiicrrlatics of this type of arm.

Figure 2. A collisiorl free path for a tcntaclc robot manipulator.
IkCXI obstacles in lhc tc:Jlt.ack!‘~ psiLioJt space arc hounded by tentacle
o6stcafc.s that look like the 01~s Jrlarkcd OHSI arid OIH2 hero. Thcsc
obstacle map into thr tcnteclc’s configuration space a8 shown. 111 the

configuratiorl space the vertical boundary amaz rcprcscnts the maxi-
JJIUTJI reach of the tcrltach! in ariy direction.

326

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

Figure 3 illustrates the area swept out by the tentacle as its (z value
varies while its r$ value remains fixed. A polygon is shown which closely
bounds this area. In the diagram shown call the boundary of the poly-’
gon above the x axis the top side and those below the bottom side. The
right side of a tentacle obstacle is a rotated portion of the top side and
the left side of a tentacle obstacle is a rotated portion of the right side.
This can be seen by comparing the contours of the obstacles in figure 2
with the sides of the bounding polygon in figure 3. These contours cor-
respond to the sides of the configuration space obstacles parallel to the
u axis. In other words, they represent linlits on the value of (b outside
of which the manipulator is guaranteed to not intersect the obstacle,
for any value of a.

Given the forcgoirlg understanding of the left, right, and near sides of
a tentacle obstacle it, is relatively sirJJple to plan collisioJJ--free trajecte
ries for the manipulator around these obstacles, because (ignoring for
the monJeJJt the far sides) these obstacles map into the configuration
space as rectangles (the obstacles in the configuratiorl space of figure
2 wilhout the V-shaped notches or1 top). There is, however, the addi-
tional problem of planning paths so that the manipulator Jnay reach
points on or beyond the top side of an obstacle. Exarnirling the ten-
tacle obstacles in figure 2 it can be seen that for a given value of 4
there might be a range of values of (I for which the hand is beyond
the top of the obstacle but for which the arm does riot irltcrscct the
obstacle. As a becomes suffJciently small or sufflcicntly large the arm
will intersect the obslacle, however. These considerations give rise to
the V-shaped notches in Ihe configuration space obstacles. The exact
relationship between 4 and a for which the hand reaches beyond the
obstacle and the arm doesn’t intersect the obstacle is non-linear, but
can be conservatively bounded by the linear function represented by
the V-shape in figure 2.

A program to map tentacle obstacles into configuration space ha9 been
implcrncnted in C. Using this program the collision-free trajectory il-

iust,r:rtcJI in Jigurc 2 wan found.

2. “Not Too Near, Not Too Far” Findpnth Problem

ColJsidcr;lble work hits bccrl donc on the problcrn of IiJJtiiJlg a collision -
free trajectory for a rigid two-dimensional robot nJoving arouJJt1 1&d
obstacles in a plane. A new algorithm called the “Not too Near, Not
too Far” algorithm has been developed and iJJJI)lemenlcd. Where this
algorithm dilrers from others previously developed is in its quantitative
assessment of the uncertainty in the position of the rover and how that
inforJnation is used to plan a path for the robot that takes it, “not too
Jlcar” obstacles but “not too far” front them tither.

The robot rovers built in the Mobile Robotics Laboratory at, C-MU
C~JJ be viewed as rigid two-dimensional robots’ moving around in a plane
if the robot aJJd obstacles are projected onto the floor. Many algorithms
have been developed t,o solve the findpath problem for this siJnp1c case.
1t can be observed, however, that they all share one or another basic
fl;lw. A two-diJncJJsional findpath algorithm may find a collision-free
pat,lJ for a robot, but the path may not be suitable for a real robot
either because it brings the robot so close to obstacles that the robot
might actually hit them if there is any uncertainty about its position or,
coversely, the robot may be sent, far out of its way to avoid very small

obstacles. The problem then becomes to write a findpath program
which keeps the robot ‘<not too near” to obstacles but “not too far”

from them.

Figure 3. A polygon bounds the region W,X:~L out, by t,ho Icrltaclc
m 4 k hC!ld COJd2iIlt (hro # = 0) ;rnd (L v;irics. ‘rhc “t,~~~ si&y or
this I)O1ygoJl are USCC~ Lo construct, thr: “rigtIC” sides of hIltac]c obstacles
and h “bottom” sides am used Lo corlstruct i,lJe “1efL” sides of tc!JJtacle
obstacles.

Figure 4. A PatAt four~d by a V-graph .scarctl algorithm.

One of the earliest fiJJdpath algorithms is the visibility graph or V-
graph algoritIim developed at SRI[5] for the robot Shakey in the late
1960’s. The V-graph algorithm works like this: Given the obstacles are
a11 fixed convex polygons and the robot, is a moving point (if the robot is’.
not a point, grow the obstacles by including within their walls all points”
less thar~ or equal to thr radius of the robot and shrink the robot to
a poiJJt), construct the set of line segrncnts linking all the vertices of
the polygons with each other and with the start and goal positions.
Delctc l’rorn I,his srt all scgrnenls which intersect polygons (but not, the
srgn~cnts lying along the edges of polygons). The renlaining scgnicnts
forJJJ a V-graph, which may be searched for a collision-free palh frorn
start to goal. Figure 4 illustrates a path found by a V-graph algorithm.

The V-graph algorithm clearly has the property that the robot comes
too near the obslaclcs, in fact it often must, follow path right, along the
walls of obstacles. (Imagine walking through the corridors of a building
while staying as close s possihlc to the walls). The obvious solution
to this “too near” problem is to grow the obstacles. But what is a
reasonable amourit of “growth?” An answer to this question appears
below.

A more recrnt findpath algorithm is the “freeway” algorithJn devel-
oped by Rod Brooks[6]. In tl Jis algorithm grnernlizcd ribbons (roughly
syJnmctric polygoJJs with a well-defined axis) are fit to the free space
betwcrtn obslaclt s. Path-planning for a simple pointlike robot consists
or finding the nc:lrest gc:nrralisetl ribbon axis and following a conJJected
set of the LYCS to a point on aJ1 axis nearest. the goal. Figure 5 illus-
trates a collision free path found by this algorithm.

The freeway algorithm has the unfortunate drawback that for cases
where there arc few obstacles and they are sparsely distributed the
c0liisltifl-l’rcc pallI;; pl:lIlJlc~d Illilj !,akc the rob,)! far out of it’s way.
(IJnngine w;tlkirJg through .a gyJJJn;lsiuJJJ-sixcd ~-00111 from one corner to

its di;\gon;rl opposite but walking along a long IAiaped path to avoid a sri~;~ll box: placed in the ccJitcr.)

-1--------i--
Figure 5. A Path found by a Preewsy Algorithm.

327

‘l’hcl “Not too Near, Not too Far” algorithm has two p.arts. First,
obstacles are grown into uirtuul obataclev such that the obstacles nearer
the robot arc grown less than those furthrr away, taking into account
the fact that the certainty in the position of the rover dcgradcs with

search distancr away
applied Lo find

from its start

a path around
posi Con. , bSecorid, a
the virtual obstacles.

program is

I assume that the robot is a circle capable of omnidirectional motion
in tht: plane and that the obstacles are convex polygons. This type
of robot, was sclccted in part because the Pluto rover in the Mobile
Robotics Laboratory is cylinder shaped and omnidirectional. When
Pluto and obstacles are projected onto the floor, this algorithm models
the situation exactly. IL is assumed also that the uncertainty in the
position of thr robot inrrcxsrs according to a linear function of distance
away from the robot’s start posilion. ’ Illquivalcntly, wc can say that the
size of the robot grows as R = kd + T wbcrc R is the radius of the
grown robot, d is distance from the start position and r is the radius
of the actual robot and k is some empirically selected constant. This
assumption is of course only an approximation of the uncertainty in the
position of the robot, which actually yaries as a function of distance
traveled by the robot rather than distance from the start. Ijut distance
traveled cannot be known before a path is selected so we :~ssume that
the uncertainty in the robot’s position can at least be bounded by the
linear function above. Over the short distances traveled by the robots’
in the Mobile Robotics Laboratory this assumption is ccrt:Gnly valid.

Given the linear-growth assumption we proceed to expand the obsta-
cles and to shrink the robot. The robot transforms to a point. If an
obsLacle has an edge e and p is a point along e then we look for a point
p‘ d011g a perpendicular to e from p so that the distance from p to
pw is R = kd -I r where k and r arc as above and d is the dist.ance
from the robot’s start position to p*. It is cnsy to see t!laL u~ilcsu the
wall is aligned with a ray from the robot start position the transformed
virt#ual obstacle wall will have a complicated shape. Fortunately, the
virtual obstacle walls can bc approxirnatcd in the following way: At
each vertex of the original polygonal obstacle consLruct circles of ra-
dius II’ = kd +- r where k and r are again as before and d is now the
di&aricc from the start posilion Lo the vcrkx. The approxirnatcd walls
of the virtual obstacle are the outside tangents bctwccn these circles.
The Lransformation is illustrated in figure 6.

The second part of the algorithm involves searching for a collision-
free path around the transformed obst,acles. It is easi!y seen that if
the shortest collision-fret path lies along segments linking the start and
goal positions with the obstacles such that the segments arc tangent to

328

Figure 6. Transformation of an obstacle into a virLua1 obstacle by
“Not too Near, Not too Far” algorithm. The original obstacle is the
polygon whose vertices are the centers of the circles. The virtual ob-
stacle is bounded by the circular arcs and Langcntial cdgcs shown in
bold. The dashed line indicates the path selected by the program.

the circles at the verticrs of the obstacles (this can be proved with a
string-tighLening argument), or along a straight -line path from start
to goal.

The algorithm proceeds by constructing the tangential lint segments
and eliminating those which intersect obstaclm. A search graph is
construct,ed so that each node represents either a circle or lhe start or
goal. Links in the graph rcprcsent tangential segments which may be
foilowcd from one circle Lo another. Thcsc Langcntial scgrncnta may be
cilher edges of virtual obstacles or tangents between virtual obstacles.
WC assume that the robot won’t “back up” along a circle, that is,
when iL reaches a circle by a Larigcnl it will continue around the circle
unlil iL rcaclics a sccolid Larrgc‘riL along which it can srrioothly rxiL.

Thus each circle is represented as two circlrs, a clockwise one and a
counterclockwise one. From the clockwise circle Lhe counterclockwise
one may not be rcachcd directly, but any other circle rnay be reached.
The resultanL starch graph may bt> scarchrd using any of a variety of
conventional search procedures.

A version of the “not too near, not too far” algorithrn has been imple-
mentcd in C. The diagram in figure 6 was produced by this program.

3. Two-Arm Findpath Problem

~yslca~s of multiple robot rnanipulators must be coordinated so that
the arms are not always crashing into each other. The general findpath
problem for multiple arms is computationally expensive, but in certain
special cases very inexpensive solutions may be obtained. Developed
here are some thcorelical approaches to the multiarm collision avoid-
ance problem, based on some trajectory planning work done by Kamal
Kant at McGill University[ll]. The ideas were used to implementing a
simple two-arm path planner discussed below.

Kamal Kant has done some interesting theoretical work on the find-
path problem for a mobile robot in an environment with moving obsta-
cles. He considers the special case of this problem in which the mobile
robot’s path is fixed in advance, and the trajectories of moving obsta- clcs are known. The pararneter in this system is the speedof the robot.

mo”emlfi&;k ---______------
Figure 7(a). The trajectory of two planar manipulators. The rn*

nipulators start in configurations given by the solid lines and move to
configurations given by the dashed lines. The dotted line follows the
trajectory of the hand.

Figure 7(b). Th e s x t space constraint corresponding Lo figure 7(a).

It is easy Lo visualize the problem by considering a train moving nlone;

a fixed track which is being crossed by, say, pcoplc and au toy. If the

vcloritirs of the people and autos :Irc known then WC c;trl plim a velocity
profile for Lhc train so that it avoids collisions with Lhcm.

Applying this idea to the two-arm findpath prohlcm, we begin by
fiiirlg t.hr Lrajcctorics of each arm. For simplicity, wr Lake thcsr trn- -
jccLorics I,O he straight line scgrncrlL paths in joint space (for a 2 joint
m;tnipulator such ;ts the orlc illustratrd in figure 7 there is a 2 dirnen-
siorlai joiI!L space). Also, for one of the arms WC assume a constant
velocity. Thus the joint ~pacc pnLh of one arm can be parametcrized
with ampiL~aIILCtcI~ t -rcprescnting tirne, such Lhat 0 5 t < 1. Tile other
m;tnipulator is paramct.crizcd with a pararnetcr a, 0 5 s < 1 so that
we can cunLro1 the speed ds/dt of the sccoud manipulalor.

If WC now construct the space which is s x t WC can plan the velocity
profile for the secorld manipulator. In figure 8(a) we see two fixed
trajectories for each of two manipulators, ml and mg. We fix the
trajectory of ml and rn2 but allow ourselves to vary the speed of m2.
The two paths cross each other at some initial to corresponding to some
.90 and overlap until tl which has a corresponding .~l. This constraint
is represented as a rectangular obstacle in a x t space. The obstacle
conslrains path from (‘3, t) = (0,O) to (.9, t) = (I,]) so that m2 must
move slowly so that it avoids ml, or, a3 the program suggests, that ml
must cornpletc its motion first.

and ~1 is vtbrp difficult. The problem can be approxim:~Lcd by consid-
ering c;lnonical casts of obstacles in a X t space (i.e. box against 3 axis,
Lox agairlsf, t :ixib, box ag;Grlsit no axis etc.), Ijy classifying a particular
problrrrr iilto one of Lhcse canonical types WC car1 find not Lhe exact
volociLy of the second arm, but at least get an inclicatioll of which arm
to move first.

A program in Lisp was implumentcd which plans collision-free paths
for Lhc sirnplo two-arm system illustrated in figures 7 and 8. Figure 8
illustrates some of the results of this algorithm.

Of course, fixing the trajectory and varying the velocity of robot arms
will not result in collision-free paths in all cases (see figure 8). out it
is interesting to consider using an approach such as this as a front--end
to some more complete findpath solver. In the cases where the 3 x t

space approach works, it will find solutions very quickly.

4. Conclusions and Future Work

‘l’hrce findpath problems were discussed here. Each problem suggested
a hcurisiic for its solution. It may be possible to use these heuristics
in ~11~ search for efficient solutions to other findpath problems. For a
particular findpat. problem, we could ask:

no cf path by this algorithm

Figure 8. Some motion strategies for the two-arm path planning
problem suggostcd by Lhc program. See the description of figure 7.

1. Does the configuration space naturally generate any LLinteresting”
obstacles? If so, can these obstacles be used to bound obstacles that
occur in position space?

2. ban information about the uncertainty in the position of the robot
be used to constrain the space in which we search for a cf path?

3. Can the dimensionality of the findpa& problem be reduced by
searching in spaces other than the actual configuration space of the-
robot? Can parameters such as the velocity of the robot be ised to
rcd1lc.c thr size of the search space?

ln Lhis article we reported cases in which these heuristics lead to effi-
cicnt solutions to particular findpath problems. Using the Grst heuristic
it w;1s sho~vr~ that the LentncIe’s configuratjon space contained some ea+
ily construcLcd obstacles which could be used to bound real obstacles in
position space. In the rover “Not too Near, Not too Far” program we
used the second heuristic to find a manageable search spaccin which to
search for real-world paths. The third heuristic suggested the solution
to the constrainrd two-arm findpath problem, in which the trajectory
paths of each robot is already selected and the speed of the arms is con-
trolled to prcvcnt collisions. More work needs to be done, however, to
see if Lhrse heuristics are helpful in Gnding solutions to other findpath
problems.

Future work on the particular findpath problems exarnined here in-
cludes solving t,entacle findpath problems for more interesting tentacles,
experimentally evaluating the performance of the “Not too Near, Not
too Far” prograrn on a real robot, and extending the two-arm solution
to work for manipulators with polyhedral links.

Bibliography

[I] I,OZaIlo Perez, Thorn;~s Autondic Planning of~lunipdator Trana-
jer Movements MIT A1 Memo 606, December, 1980.

[‘21 Schwart)z, JWCJL 'I' . ;lIItl MiClliJ Sllarir OII the ‘l’i(l:bJ Ai%,Uers’ Prob-

km 1. The case of u l’wo dimensional Rigid t’olygvnal Ijody Moving
Amidst 1’V[ygo?lnf llnrriers Corripulcr Science Dcpartnicnt, CouranL In-
slitute of hlathcrn:~ticnl Scirrlccs, l<cbport No. 39. October, 1981.

[:I] M oravc(‘, I!:IIIs I’. Obstuclr AwxXance rlntf Naoigation in ihc Ileal
Wvrld by a seeing Ilobot Rover, S(,anford Artificial InLelIigence Labo-
ratory Memo AIM 340, Septcrnber, 1980.
[4] Rowat, Peter I;orbrs Representing Spatial Experience and Solving

Spatial Planning I’rvblems in a Simuluted i{obot Environment, Ph. D.
thesis, University of British Columbia, Department of Computer Sci-
ence, October, 1979.

[5] Nilsson, N. J. arid Raphael, B. “Preliminary Design of an Intelligent
Robot”, Computer and Information Scicncea vol. 7 no. 13 pp. 235--
259. 1967.

[6] Brooks, R. A. “Solving the Findpath Problem by Good Representa-
tion of Free Spare” in MAJ-82, Procrcdings of the National Conference
on Artilical Intclligcnce, pp. 381-386. August, 1982.

[7] Thornpson, A. M. “The Navigation System of the JPL Robot” in
Proceedings of I.JCAl-5, August, 1977.

[8] Udupa, Shriram M. “Collision Detection and Avoidance in Computer-
Controlled Manipulators” in Proceedings of IJCAI-5, August, 1977.

[9] Thorpe, Charles E. Path Relaxation: Path Planning for u Mobile
Robot, Department of Computer Science, Carnegie-Mellon University,
in preparation, 1984.

[IO] Hopcroft, J., Joseph, D., and Whitcsides, S. “On the Movcmcnt of
Robot Arms in 2-Dimensional Hounded Regions” in ~‘~3rd Annual Sym-
posium on Foundations of Computer Science, IEEE Computer Society,
pp. 281-289. November, 1982.

(I I] Kant, Kamal “Trajectory Planning Problems, I: Determining Ve-
locity along a Fixrd Path” iu CSGSI 84 (J’ roccrdings of the Fifth Na-
tional Conference of the Canadiau Society for Cornputationxl Studies
of Intelligence), May, 1984.

[12] Wallace, Richard S. “Three l’indpath Problenls”, extended version
of this paper. /orthcoming.

329

