From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.
Three Findpath Problems

Richard S. Wallace
Department of Computer Science
Carnegie-Mellon Univeristy
Pittsburgh, PA 15213

Abstract

Three findpath problems are considered. First, the problem of finding
a collision- frec trajectory for a tentacle manipulator is examined. Sec-
ond, a new lindpath algorithn for a mobile robot rover is presented.
This algorithm differs from earlier ones in its usc of quantilative in-
formation about the uncertainty in the position of the robot to kecp
the robot away from obstacles without going too near them and with-
out going too far out of its way to avoid them. Third, a method for
coordinating two moving arms so thal they avoid collisions with each
other is presented. The two-arm findpath algorithm here is restricted
to cases where coordinated collision-free trajectories can be found by
controlling the vclocities of the arms. Fach of these findpath problems
suggests a heuristic to find its solution and these are discussed at the
end of the paper.

0. Introduction

With the maturation of the theory of Configuration Space[l] and
the foundational work of Schwartz and Sharir on the ’Piano Movers’
problem{2] it is tempting to conclude that the final word on the findpath
problem has been said. Indced for the case of 2 two-dimensional robot
moving around fixed planar obstacles (or a threc-dimensional robot
who can be reduced to a two-dimensional one by projection) many al-
gorithms for the findpath problem have been proposed [3,4,5,6,7,8,9],
no one of which is obviously best for simple cases. But the theory of
coufiguration space tcils us that for an n-dof robot we must search an
n dimensional Euclidean space for a collision-free path when the ob-
stacles are fixed. Also, theoretical work on the findpath problem for
linkages indicates that its algorithm is N P-complete[10]. So the issue
for computer science becomes not solving the findpath problem in gen-
eral but examining special cases one by one, to see if we can find an
cHicient solution for any.

Three findpath problems are examined here: for a planar tentacle
manipulator; for a mobile robot, with the additional twist that we
don’t want the robot to come Loo near any obstacles nor to navigate
too far away from them when avoiding them and; for two coordinated
manipulator arms. Each solutions to a {indpath problem discussed
here suggests a heuristic that may be useful for solving other findpath
problems. The Leuristics are discussed at the end of the paper.

1. Tentacle Findpath Problem

Spiral functions (i.e. monotonically increasing polar functions of the
form r = [(0)) appear to be rcasonable candidates for modeling ten-
tacles. The important consideration from the robot theoretical point
of view is that the total length of such a manipulator is constant. The
diagram in figure 1 illustrates a tentacle manipulator modeled by a
logarithmic spiral (a funetion of the form r = €2). This tentacle robot
can “spiral out” or “wind up” and also rotate at its shoulder about the
origin. The parameters for this type of arm are its rotational orienta-
tion ¢ and a parameter a, which determines how much the manipulator
has “spiraled out.” For the findpath problem, the logarithmic spiral
tentacle has the advantage that a closed {orm of its inverse kinematic
solution is obtained easily {12].

The method used to solve the tentacle lindpath problem is an approx-
imation method, in which obstacles in the manipulator’s pusition spm‘..c

326

are bounded by instances of a class of obstacles, called fentacle obsta-
cles, which are simple to map into the robot’s configuration space. The
obstacles under consideration have four sides. The left side is the side
first interseeted by the tentacle if it is rotating clockwise around the
origin. The right side is the side lirst intersected by the tentacle as it
rotates counter-clockwise. The near side is the side first intersected
by the tentacle as it holds its ¢ value constant and increases a, that
is, the side nearest the origin The far side is the side of the obstacle
farthest from the origin. For reasons described below, the near and far
sides are always circular arcs and the right and left sides are particular
polylines.

The near side of a tentacle obstacle is a circular arc between two
angles ¢; and ¢, so that when ¢; < ¢ < ¢» the tentacle parameter
a must be sufficiently small to ensure that the point on the tentacle
furthest from the origin is closer to the origin than the circular are. In
figure 2 the near sides of the two obstacles correspond with the sides
of the configuration space obstacles nearest the ¢ axis and parallel to
it. The relationship between a and the point on the tentacle furthest
from the origin is non-linear but is bounded by a lincar function which
is asymptotically equal to the precise relation.

Figure 1. Tentacle manipulator modcled by a logarithmic spiral func-
tion shown in several configurations. Thesc drawings were produced by
a program which solves the inverse kinematics of this type of arm.

phi y

0Bs2 0BS2

OBS1

)

OBS1

amax
CONFIGURATION SPACE POSITION SPACE
Figure 2. A collision-free path for a tentacle robot manipulator.
Real obstacles in the tentacle’s position space are bounded by tentacle
obstcales that look like the ones marked OBS1 and OBS2 here. These
obstacle map into the tentacle’s configuration space as shown. In the
confliguration space the vertical boundary amaz represents the maxi-
mum reach of the tentacle in any direction,



Figure 3 illustrates the area swept out by the tentacle as its a value

varies while ita & value remains fixed. A nolveon is shown which elogely
VariCs Wiili€ 1U8 § VaaUue remains ixed. /A poiygon 1S saswn wilchn caesely

bounds this area. In the diagram shown call the boundary of the poly-'
gon above the z axis the top side and those below the bottom side. The
right side of a tentacle obstacle is a rotated poriion of the
the left side of a tentacle obstacle is a rotated portion of the right side.
This can be seen by comparing the contours of the obstacles in figure 2
with the sides of the bounding polygon in figure 3. These contours cor-

space obstacles parallel to the

top side and

the sides of the configuration
a axis. In other words, they represent limits on the value of ¢ outside
of which the manipulator is guaranteed to not interscct the obstacle,

for any value of a.

respond to

Given the foregoing understanding of the left, right and near sides of
a lentacle obstacle it is relatively simple to plan collision--free trajecto-
ries for the manipulator around these obstacles, because (ignoring for
the moment the far sides) these obstacles map into the configuration
space as rectangles (the obstacles in the configuration space of figure
2 without the V-shaped notches on top). There is, however, the addi-
tional problem of planning paths so that the manipulator may reach
points on or beyond the top side of an obstacle. Examining the ten-
tacle obstacles in figure 2 it can be seen that for a given value of ¢
there might be a range of values of a for which the hand is beyond
the top of the obstacle but for which the arm does not interscct the
obstacle. As a becomes sufficiently small or sulficiently large the arm
will intersect the obstacle, however. These considerations give rise to
the V-shaped notches in the configuration space obstacles. The exact
relationship between ¢ and a for which the hand reaches beyond the
obstacle and the arm doesn’t intersect the obstacle is non-linear, but
can be conservatively bounded by the linear function represented by
the V-shape in figure 2.

A program to map tentacle obstacles into configuration space has been
implemented in C. Using this program the collision-free trajectory il-
justrated in ligure 2 was found.

2. “Not Too Near, Not Too Far” Findpath Problem

Counsiderable work has been done on the problem of finding a collision-
free trajectory for a rigid two-dimensional robot moving around fixed
obstacles in a plane. A new algorithm called the “Not too Near, Not
too Far” algorithmn has been developed and implemented. Where this
algorithm differs from others previously devcloped is in its quantitative
assessment of the uncertainty in the position of the rover and how that
informnation is used to plan a path for the robot that takes it “not too
near” obstacles but “not too far” from them cither.

The robot rovers built in the Mobile Robotics Laboratory at C-MU
can be viewed as rigid two-dimensional robots moving around in a plane
if the robot and obstacles are projected onto the floor. Many algorithms
have been developed to solve the lindpath problem for this simple case.
It can be observed, however, that they all share one or another basic
flaw. A two-dimensional findpath algorithm may find a collision-free
path for a robot but the path may not be suitable for a real robot
either because it brings the robot so close to obstacles that the robot
might actually hit them if there is any uncertainty about its position or,
coversely, the robot may be sent far out of its way to avoid very small
obstacles. The problem then becomes to write a findpath program
which keeps the robot “not too near” to obstacles but “not too far” .

from them.

Figure 3. A polygon bounds the region swept out by the tentacle
as ¢ is held constant (here ¢ = 0) and a varies. The “top” sides of
this polygon are used Lo construct the “right” sides of tentacle obstacles
and the “bottom” sides are used to construct the “lefL” sides of tentacle
obstacles.

327

Figure 4. A Path found by a V-graph scarch algorithm.

One of the earliest findpath algorithms is the visibility graph or V-
graph algorithm developed at SRI[5] for the robot Shakey in the late
1960’s. The
all fixed convex polygons and the robot is a moving point (if the robot is’.
not a point, grow the obstacles by including within their walls all points”
less than or cqual to the radius of the robot and shrink the robot to
a point), construct the set of line segments linking all the vertices of
the polygons with each other and with the start and goal positions.
Delete from this sct all segments which intersect polygons (but not the
segments lying along the cdges of polygons). The remaining segments
form a V-graph, which may be scarched for a collision-{ree path from
start to goal. Figure 4 illustrates a path found by a V-graph algorithm.

V-graph ulgorithm works like this: Given the obstacles are

The V-graph algorithm clearly has the property that the robot comes
too near the obstacles, in fact it often must follow path right along the
walls of obstacles. (Imagine walking through the corridors of a building
while staying as closc as possible to the walls). The obvious solution
to this “Loo ncar” problem is to grow the obstacles. But what is a
reasonable amount of “growth?” An answer to this question appears
below.

A more recent findpath algorithm is the “freeway” algorithin devel-
oped by Rod Brooks[6]. In this algorithm generalized ribbons (roughly
symmetric polygons with a well-defined axis) are fit to the free space
between obstacles. Path-planning for a simple pointlike robot consists
of finding the nearest generalized ribbon axis and following a connected
set of the axes to a point on an axis nearest. the goal. Figure 5 illus-
trates a collision--free path found by this algorithm.

The freeway algorithm has the unfortunate drawback that for cases
where there are few obstacles and they are sparsely distributed the
coliision-Iree paths planned may take the robot far out of it’s way.
(lmagine walking through a gymnasium-sized room from one corner to
its diagonal opposite bul walking along a long L-shaped path to avoid
a small box placed in the center.)

Figure 5. A Path found by a Freeway Algorithm.



The “Not too Near, Not too I'ar” algorithm has two parts. First,
obstacles are grown into virtual obstacles such that the obstacles nearer
the robot arc grown less than those further away, taking into account
the fact that the certainty in the position of the rover degrades with
distance away from its starl position. Sccond, a search program is
applied to find a path around the virtual obstacles.

1 assume that the robot is a circle capable of omnidirectional motion
in the plane and that the obstacles are convex polygons. This type
of robot was sclected in part because the Pluto rover in the Mobile
Robotics Laboratory is cylinder shaped and omnidirectional. When
Pluto and obstacles are projected onto the floor, this algorithm models
the situation exactly. It is assumed also that the uncertainty in the
position of the robot increases according to a linear function of distance
away from the robot’s start position. Equivalently, we can say that the
size of the robot grows as R = kd + r where R is the radius of the
grown robot, d is distance from the start position and r is the radius
of the actual robot and & is some empirically selected constant. This
assumption is of course only an approximation of the uncertainty in the
position of the robot, which actually varies as a function of distance
traveled by the robot rather than distance from the start. But distance
traveled cannot be known before a path is selected so we assume that
the uncertainty in the robot’s position can at least be bounded by the
lincar function above. Over the short distances traveled by the robots
in the Mobile Robotics Laboratory this assumption is certainly valid.

Given the linear-growth assumption we proceed to expand the obsta-
cles and to shrink the robot. The robot transforms to a point. If an
obstacle has an edge e and p is a point along e then we look for a point
p" along a perpendicular to e from p so that the distance from p to
p*is B = kd 4 r where k and 7 arc as above and d is the distance
from the robot’s start position to p*. It is casy to sec that uuless the
wall is aligned with a ray from the robot start position the transformed
virtual obstacle wall will have a complicated shape. Fortunately, the
virtual obstacle walls can be approximated in the following way: At
each vertex of the original polygonal obstacle construct circles of ra-
dius 1! == kd + r where k and 7 are again as before and d is now the
distance from the start position to the vertex. The approximated walls
of the virtual obstacle are the outside tangents between these circles.
The transformation is illustrated in figure 6.

The sccond part of the algorithm involves searching for a collision—
free path around the transformed obstacles. It is easily seen that if
the shortest collision—free path lies along segments linking the start and
goal positions with the obstacles such that the scgments are tangent to

GOAL

f’f
START

Figure 6. Transformation of an obstacle into a virtual obstacle by
“Not too Near, Not too Far” algorithm. The original obstacle is the
polygon whose vertices are the centers of the circles. The virtual ob-
stacle is bounded by the circular arcs and tangential edges shown in
bold. The dashed line indicates the path selected by the program.

the circles at the vertices of the obstacles (this can be proved with a
string-tighlening argument), or along a straight-line path from start
to goal.

The algorithm proceeds by constructing the tangential line segments
and climinating those which intersect obstacles. A scarch graph is
constructed so that cach node represents either a circle or the start or
goal. Links in the graph represent tangential segments which may be
followed from one circle to another. These tangential segments may be
cither edges of virtual obstacles or tangents between virtual obstacles.
We assume that the robot won’t “back up” along a circle, that is,
when it reaches a circle by a tangent it will continue around the circle
until it reaches a second tangent along which it can smoothly exit.
Thus cach circle is represented as two circles, a clockwise one and a
counterclockwise one. From the clockwise circle the counterclockwise
one may not bhe reached directly, but any other circle may be reached.
The resultant scarch graph may be scarched using any of a variety of
conventional search procedures.

A version of the “not too near, not too far” algorithm has been imple-
mented in C. The diagram in figure 6 was produced by this program.

3. Two-Arm Findpath Problem

Systems of multiple robot manipulators must be coordinated so that
the arms are not always crashing into each other. The general findpath
problem for multiple armis is computationally expensive, but in certain
special cases very inexpensive solutions may be obtained. Developed
herc are some theoretical approaches to the multiarm collision avoid-
ance problem, based on some trajectory planning work done by Kamal
Kant at McGill University[11]. The ideas were used to implementing a
simple two-arm path planner discussed below.

Kamal Kant has done some interesting theoretical work on the find-
path problem for a mobile robot in an environment with moving obsta-
cles. He considers the special casc of this problem in which the mobile
robot’s path is fixed in advance, and the trajectories of moving obsta-
cles are known. The parameter in this system is the speed of the robot.

move ml first

Figure 7(a). The trajectory of two planar manipulators. The ma-
nipulators start in configurations given by the solid lines and move to
configurations given by the dashed lines. The dotted line follows the
trajectory of the hand.

Figure 7(b). The s x ¢ space constraint corresponding to figure 7(a).



I is casy to visualize the problem by considering a train moving along
a fixed track which is being crossed by, say, people and autos. If the
velocitics of the people and autos arc known then we can plan a velocity
profile for the train so that it avoids cellisions with them.

Applying this idca to the two-arm findpath problem, we begin by
fixing the trajectories of cach arnn. For simplicity, we take these tra-
jectories to be straight line segment paths in joint space (for a 2 joint
manipulator such as the one illustrated in figure 7 there is a 2 dimen-
sional joint space). Also, for onc of the arms we assume a constant
velocity. Thus the joint space path of one arm can be parametcrized
with a parameter ¢ representing time, such that 0 <t < 1. The other
manipulator is paramecterized with a parameter 3, 0 < s < 1 so that
we can control the speed ds/dt of the sccond manipulator.

If we now construct the space which is 8 X ¢ we can plan the velocity
profile for the sccond manipulator. In figure 8(a) we see two fixed
trajectories for each of two manipulators, m, and my. We fix the
trajectory of m, and my but allow oursclves to vary the speed of ms.
The two paths cross each other at some initial £ corresponding to some
3o and overlap until t; which has a corresponding s;. This constraint
is represented as a rectangular obstacle in s x t space. The obstacle
constrains path from (s,t) = (0,0) to (s,t) == (1,1) so that mz must
move slowly so that it avoids my, or, as the program suggests, that my
must complete its motion first.

Unfortunately the problein of computing the actual values of tg, 11, 3¢
and s is very dilficult. The problem can be approximated by consid-
cring canonical cases of obstacles in 8 x ¢ space (i.e. box against s axis,
box against ¢ axis, box against no axis ctc.). By classifying a particular
problem into one of these canonical types we can find unot the exact
velocity ef the sccond arm, but at lcast get an indication of which arm
to move first.

A program in Lisp was implemented which plans collision-free paths
for the simple two-arm system illustrated in figures 7 and 8. Figure 8
illustratcs some of the results of this algorithm.

Of course, fixing the trajectory and varying the velocity of robot arms
will not result in collision-free paths in all cases (scc figure 8). But it
is interesting to consider using an approach such as this as a front-end
to some more complete findpath solver. In the cases where the s x ¢
spacc approach works, it will find solutions very quickly.

4. Conclusions and Future Work

Three findpath problems were discussed here. Each problem suggested
a heuristic for its solution. It may be possible to usc these heuristics
in the scarch for efficient solutions to other findpath problems. For a
particular findpath problem, we could ask:

’ no cf path by this algorithm

Figure 8. Some motion strategics for the two-arm path planning
problem suggested by the program. Sce the description of figure 7.

329

L. Does the configuration space naturally generate any “interesting”
obstacles? If so, can these obstacles be used to bound obstacles that
occur in position space?

2. Can information about the uncertainty in the position of the robot
be used to constrain the space in which we search for a cf path?

3. Can the dimensionality of the ﬁndpat.l‘l problem be reduced by
searching in spaces other than the actual configuration space of the
robot? Can paramecters such as the velocity of the robot be used to
rcduce the size of the search space?

In this article we reported cases in which these heuristics lead to effi-
cient solutions to particular findpath problems. Using the first heuristic
it was showu that the tentacle’s configuration space contained some eas-
ily constructed obstacles which could be used to bound real obstacles in
position space. In the rover “Not too Near, Not too Far” program we
uscd the second heuristic to find a manageable search spacein which to
search for real-world paths. The third heuristic suggested the solution
to the constrained two-arm findpath problem, in which the trajectory
paths of each robot is already sclected and the speed of the arms is con-
trolled to prevent collisions. More work necds to be done, however, to
see il these heuristics are helpful in finding solutions to other findpath
problems.

Future work on the particular findpath problems examined here in-
cludes solving tentacle findpath problems for more interesting tentacles,
experimentally evaluating the performance of the “Not too Near, Not
too Far” program on a real robot, and extending the two-arm solution
to work for manipulators with polyhedral links.

Bibliography

[1] Lozano-Perez, Thomas Automatic Planning of Manipulator Trans-
fer Movements MIT Al Memo 606, December, 1980.

[2] Schwartz, Jacob T, and Micha Sharir On the Piano Movers’ Prob-
lem 1. The case of a Two dimensional Rigid Polygonal Body Moving
Amidst Polygonal Barriers Computer Scicnce Departnmient, Courant In-
stitule of Mathematical Sciences, Report No. 39, October, 1981.

[3] Moravee, Hans P. Obstacle Avoidance and Navigation in the Real
World by a Secing Iobot Rover, Stanford Artificial Intelligence Labo-
ratory Memo AIM--340, September, 1980.

[1) Rowat, Peter Forbes Representing Spatial Ezperience and Solving
Spatial Planning Problems in a Simulated Robot Environment, Ph. D.
thesis, University of British Columbia, Department of Computer Sci-
ence, October, 1979.

[5] Nilsson, N. J. and Raphael, B. “Preliminary Design of an Intelligent

Robot”, Computer and Information Scicnces vol. 7 no. 13 pp. 235-
259. 1967.

[6] Brooks, R. A. “Solving the Findpath Problem by Good Representa-
tion of Free Space” in AAAJ-82, Proceedings of the National Conference
on Artifical Intelligence, pp. 381-386. August, 1982.

[7] Thompson, A. M. “The Navigation System of the JPL Robot” in
Proceedings of IJCAI-5, August, 1977. v

[8] Udupa, Shriram M. “Collision Detection and Avoidance in Computer-
Controlled Manipulators” in Proceedings of 1JCAI-5, August, 1977.

[9] Thorpe, Charles E. Path Relazation: Path Planning for a Mobile
Ttobot, Department of Computer Science, Carnegie—Mellon University,
in preparation, 1984.

[10] Hopcroft, J., Joseph, D., and Whitesides, S. “On the Movement of
Robot Arms in 2-Dimensional Bounded Regions” in 29rd Annual Sym-
posium on ['oundations of Computer Science, IEEE Computer Society,
pp- 281-289. November, 1982.

{1] Kant, Kamal “Trajectory Planning Problems, I: Determining Ve-
locity along a Fixed Path” in CSCSI- 84 (Proceedings of the Fifth Na-
tional Confercnce of the Canadian Society for Computational Studies
of Intelligence), May, 1984.

[12] Wallace, Richard S. “Three Findpath Problems”, extended version
of this paper. forthcoming.



