
1

REASONING WITH SIMPLIFYING ASSUMPTIONS: A METHODOLOGY AND EXAMPLE

Yishai A. Feldman and Charles Rich

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

545 Technology Square
Cambridge, Mass. 02139

ARPANET: YishaiQMC, RichfRMC

Abstract

Simplifying assumptions are a powerful technique for
dealing with complexity, which is used in all branches of
science and engineering. This work develops a formal ac-
count of this technique in the context of heuristic search
and automated reasoning. We also present a methodol-
ogy for choosing appropriate simplifying assumptions in
specific domains, and demonstrate the use of this method-
ology with an example of reasoning about typed partial
functions in an automated programming assistant.

Simplifying Assumptions

Simplifying assumptions are a powerful technique for dealing
with complexity, which is used in all branches of science and
engineering. Stated informally, the basic idea of using simplify-
ing assumptions is: Don’t worry about the details until you have
the main story straight.

For example, in working towards the solution of a difficult
physics problem, it is often a good idea to begin by assuming

the absence of friction and gravity. Using this simplified world
model, it is much easier to explore and evaluate alternative so-
lution approaches. The full complexity of the problem can then
be re-introduced later, when you think you have found a viable
approach.

Similarly, if you are designing a complex software system,
it makes sense to postpone consideration of issues like exception
handling and round-off error until you have a design that is plau-
sible with respect to the normal operation of the system.

The role of simplifying assumptions in various types of human
problem solving has been studied in previous work [11,8,7]. The
contribution of this work is to develop a formal account of this
technique in the context of heuristic search and automated rea-

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for the laboratory’s
artificial intelligence research has been provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval
Research contract N00014-80-C-0505, in part by National Science Foundation
grant MCS-8117633, and in part by the IBM Corporation. Yishai Feldman
was supported by a grant from the Bantrell Charitable Trust.

The views and conclusions contained in this document are those of the
authors, and should not be interpreted as representing the policies, neither
expressed nor implied, of the Department of Defense, of the National Science
Foundation, nor of the IBM Corporation.

soning, and to present a methodology for choosing appropriate
simplifying assumptions in specific domains.

The techniques discussed here are also closely related to
techniques for reasoning with default assumptions, and non-
monotonic reasoning generally. However, whereas most of the
current work in this field (see [2,1]) focusses on the logical prop-
erties of these types of reasoning, this work emphasizes method-
ological and pragmatic issues. In particular, other current work
does not address the questions of how to choose default assump-
tions and what specific control mechanisms are necessary to rea-
son effectively with such assumptions.

1.1 Heuristic Search

Many types of problem solving can be viewed abstractly as search
procedures in which part of the evaluation function involves prov-
ing that some logical condition follows from a set of premises
defined by the current search state, using a set of axioms which
embody the problem solver’s “theory of the world.” In such situa-
tions, the theorem-proving component of the evaluation function
is often the dominant cost in the search.

For example, program synthesis can be viewed as searching
the space of possible programs (or partial programs) for one that
satisfies a given specification and scores well on other evalua-
tion criteria, such as time, space, etc. The premises in each
search state encode the structure of the current program candi-
date. The condition to be verified is the program’s specification.
The axioms used by the problem solver embody the theory of the
various symbols used in defining programs and specifications.

If problem solving is viewed this way, the use of simplifying
assumptions amounts to substituting a simplified world theory
(set of axioms) for the “correct” one during the search process.
When a promising candidate is found using the simplified theory,
it is then checked using the full theory. The two key properties
of a simplified theory are:

l Proving the relevant conditions from the given premises
should be less expensive than in the full theory.

l The answers given by the simplified theory should be good
predictors of answers in the full theory. (The formal logical
relationship between simplified and full theories is discussed
below .)

Simplifying assumptions are thus a kind of heuristic, i.e.,
task-dependent information which reduces search effort. As with
many heuristic search methods, the use of simplifying assump-

2 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

The top right diagram of Figure 1 illustrates a simplified the-
ory which is strictly stronger than the full theory (i.e., more
things are true). Intuition for this case can be gained by consid-
ering a theory embodied in a set of axioms, each of which is in
the form of an implication. Suppose also that the consequent of
each implication is a useful conclusion, i.e., a proposition which
is likely to advance the reasoning process toward verifying typ-
ical search conditions. A simplified theory is one in which we
replace each implication by its consequent. Clearly this theory
is cheaper than the full theory. However, this strategy can eas-
ily lead to contradictions, i.e., an inconsistent theory in which
everything is provable.

This brings us to the bottom diagram of Figure 1, in which
the two theories mostly overlap, but sometimes differ. We believe Figure 1: Logical relationship between simplified theory and full

theory. this is the most typical case. (The two theories of typed partial

tions reduces search cost, but not without sacrificing the guar- functions have this relationship.) Our methodology in this case

antee of finding an optimal solution. Furthermore, the savings is based on classifying the propositions appearing in the axioms

in effort is usually seen only in the average over some class of of the full theory into the following two categories:

problem instances.

For example, an important part of the theory underlying pro-
gram synthesis is the theory of typed partial functions (this ex-
ample is developed in detail in the second half of the paper). The
full theory of typed partial functions is somewhat complex, in-
volving the instantiation of two axiom schemas for each function
application. Most of this complexity, however, has to do with
worrying about what happens when one of the arguments to the
function is outside the domain. A simplified theory assumes that
the value of a function application is defined, and therefore is in
the range of the function.

The methodology described in the next section addresses the
key issue of how to derive such simplified theories in general.

1.2 A Methodology for Simplification

The essential basis of the simplification methodology is an anal-
ysis of the relationship between the full theory, the simplified
theory, and problem being solved.

Figure 1 shows three possible logical relationships between
a simplified theory and a full theory. The top left diagram il-
lustrates the case of a simplified theory which is strictly weaker
than the full theory (i.e., fewer things are true). This is the easi-
est case to deal with, corresponding to the common optimization
of a two-stage evaluation function. The first stage is the simpli-
fied theory, which filters out many candidates at a low cost. The

second stage is the more expensive full theory, which is applied
only to those candidates that pass the cheaper test. Further-
more, using the dependency-directed techniques described in the
following section, proofs developed in the simplified theory are
reused in the full theory, if possible.

l Propositions which, if true, are likely to advance the reason-
ing process further, e.g., by interaction with other theories.
We call these the main conclusions of the theory.

l Propositions which are normally true, but concern details
that can usually be ignored in the first-cut evaluation. We
call these the dejault assumptions of the theory.

If it is not possible to make these distinctions with some con-
fidence, then the methodology is not applicable to the particular
axioms. In order to apply the methodology, it must also be the
case that, in the full theory, the default assumptions imply the
main conclusions. (Note that it sometimes helps to restate the
axioms of a theory in logically equivalent forms in order to facil-
itate this analysis.)

The axioms of the simplified theory are taken to be the col-
lection of main conclusions. This causes the simplified theory to
be partly stronger than the full theory.

It is not necessary for all of the propositions to fall into either
of two categories above. For example, there may be propositions
which are implied by the default assumptions, but which are not
likely to advance the reasoning process or may cause contradic-
tions which do not exist in the original theory. The axioms con-
taining these propositions are omitted from the simplified theory.
This causes the simplified theory to be partly weaker than the
full theory.

The simplified theory resulting from applying this methodol-
ogy will be cheaper than the full theory because the deduction
required to prove the main conclusions is saved. The simplified
theory will be a good predictor of the full theory to the extent
the intuitions about the “normal case” are sound.

Unfortunately, in many situations, including the example of 1.3 Reasoning Facilities

typed partial functions, it is not possible to strictly weaken the
theory without losing the ability to prove anything useful at all.
Also, there is no intrinsic correlation between the “size” of a the-
ory and the cost of proving theorems in that theory (viz. the
empty theory and the theory in which everything is true, both
of which have trivial proof procedures). Thus in many situa-
tions a strictly weaker theory can be more expensive to compute
with-for example, because all of the conclusions have more qual-
ifications.

The efficient implemention of the methodology above requires a
reasoning system which provides several important control facil-
ities. This section describes these facilities in the abstract. An
example of such a reasoning system is described in more detail
in the second half of the paper.

The most important control facility which the reasoning sys-
tem must provide is retraction. Once a condition has been proved
using the simplified theory, the reasoning system must be able to

AUTOMATED REASONING / .s

undo the proof, and try it again using the full theory. It would
also be beneficial if the retraction process was incremental (i.e.,
the system could use the full theory for some objects under dis-
cussion, but not necessarily all) and if the system could exploit
parts of the proof which carry over from the simplified to the full
theory.

A second important control facility is the ability to handle
contradictions explicitly. Despite consideration in the method-
ology towards keeping a simplified theory internally consistent,
it is still possible for interactions between different theories to
cause a contradiction. In this situation, the problem solver needs
to explicitly detect that the heuristic approach has failed and fall
back to the full theories, as opposed to proving everything true.

A mechanism which supports both retraction and contradic-
tion handling is the use of explicit dependencies [lo]. Dependen-
cies are relations between assertions, which encode proof trees.
For each true assertion in the data base, the dependencies record
the set of antecedents and the inference rule (axiom) used to
deduce it. Premises have the empty set of dependencies.

Dependencies make it possible to retract the truth of an asser-
tion whenever, due to changing circumstances or decisions, one of
its antecedents is retracted. If the antecedents later become true
again, the dependencies are used to reestablish the consequent
assertion without having to rediscover the proof. Dependencies
also provide a framework within which to analyze and respond to
contradictions, such as by choosing a premise to retract. As an
additional benefit, dependencies can also be used to help explain
the reasons for the system’s conclusions.

In reasoning with simplifying assumptions, the main conclu-
sions of the simplified theory are initially installed as premises.
When the axioms of the full theory are installed, these premises
are retracted. If the main conclusions can be proved from the full
axioms, then the dependencies will cause the previous proof be-
tween the main conclusions and the search condition to be reused.
Furthermore, since most theories are in the form of universally
quantified facts which are instantiated for each object under dis-
cussion, there is a separate set of premises for each object, which
can be separately retracted.

2 An Example

The example we describe here takes place within the context of
building an interactive programming aid, called the Program-
mer’s Apprentice (PA) [5,12]. The overall philosophy of this
project and some of the specific technical decisions are important
to understanding and motivating the approach we have taken to
automated reasoning.

A fundamental tenet of the PA project is that program de-
velopment, like other engineering activities [6], is an evolutionary
process. This means that change is the predominant feature of
the process-specifications change, design decisions change, bugs
are discovered and corrected, and so on. Furthermore, this evolu-
tionary nature is an intrinsic property of large software systems.
It is not possible for the designers or potential users of a large sys-
tem to foresee all of the opportunities for the system’s use. Also,
the environment in which the system operates is itself subject
to change. New regulations, business practices, and technology
appear and force modifications to the system.

An implication of this view of the programming process are
that, independent of the use of simplifying assumptions, the rea-
soning component of the PA must support retraction and must
be tolerant of contradictions.

2.1 The Full Theory of Typed Partial Functions

Partial functions are an important mathematical construct used
to model and reason about the behavior of programs. For exam-
ple, one of the fundamental properties of computer programs is
that sometimes they do not terminate. If we v iew a program as
a function from the inputs to the outputs, such a function will be
undefined on those inputs for which it never terminates. Another
important use of partial functions is to represent errors, such as
division by zero, or an array reference out of bounds.

For simplicity of presentation we will discuss a function of two
arguments; extension to the general case will be obvious. As in
the usual formulation of partial functions, we introduce an unde-
fined value 1. Let U be the set {I}, and D be the complement
of U, namely the set of defined objects in the universe. Let f
be a function from A x B to the range C. One implication of
the functionality of f is that if its arguments are in the domains,
then its value is in the range. Our first axiom is therefore

Al. ~EDAZEAA~EB =+ f(z,y)~C.

Note that this axiom includes as one of its antecedents the condi-
tion that f is defined. This is because we allow terms in the logic
in which the operator is itself a function application and may
therefore be undefined. The domains and range of a function
term are a syntactic property of the term, interpreted to mean
that if the symbol is defined, then it has that functionality.

In this formulation, a total function is a function whose range
includes only defined objects, i.e., C c D; a partial function
includes undefined values in its range, i.e. U c C. For example,
the functionality of integer addition (+) is Integer x Integer -
Integer. The functionality of integer division (/) is Integer x
Integer - Integer u U, because the result of dividing by zero is
undefined.

An application may also be undefined because one of its argu-
ments is not an element of the corresponding domain , or because
the operator is undefined. In some systems, these are treated
as syntax errors. However, in our context, since decisions about
the properties of objects may change over time, we need to treat
these cases within the logic. Our second axiom is therefore

A2. f $D’-‘+Avy$B =+- f(w)EU.
This axiom may or may not be stronger then the converse of Al,
depending on whether or not f is total.

2.2 Cake

In order to evaluate the cost benefit of simplifying the theory
above, we first need to introduce some further specifics of the
reasoning engine we are using. The reasoning component of the
PA is called Cake [4]. It incorporates most of the algorithms of
McAllester’s Reasoning Utility Package [3], such as unit proposi-
tional resolution and congruence closure, plus additional decision
procedures for some basic algebraic structures, such as partial or-
ders, lattices, and boolean algebras.

4 / SCIENCE

The fundamental data structure in Cake is the term. Terms
are composed of subterms in the usual recursive way. Non-atomic

terms are called applications. Note that the operator of an ap-

plication may also be an application. Terms are indexed into a
data base which provides input canonicalization (as in a symbol
table) and simple associative retrieval.

The basic inference mechanisms of Cake are propositional.
Each boolean-valued term (proposition) in the data base is asso-
ciated with a truth value, which is either true, false, or unknown.
Propositions are connected into &uses, which are the axioms of
the system. A clause is a list of literals, each of which contains

a proposition and a sign specifying whether that proposition ap-
pears positively or negatively. A literal is said to be satisfied

either if the proposition appears positively and its truth value is
true, or if the proposition appears negatively and its truth value
is false. A literal is unsutisfiubte either if the proposition ap-
pears positively and its truth value is false, or if the proposition
appears negatively and its truth value is true.

Deduction occurs when all but one of the literals in a clause
are unsatisfiable and the proposition of the remaining literal has
the unknown truth value. In this case, the truth value of this

proposition is set to the value (true or false) which will satisfy the
literal, with dependencies on the other propositions in the clause.
If all the literals in a clause are unsatisfiable, a contradiction is

signalled, invoking a higher level control structure to decide what
to do.

For example, the axiom P A Q + R A S would be installed
in Cake by reducing it to conjunctive normal form, giving rise to -- --
the two clauses (P,Q, R) and (P,Q,S).

If P and Q are true, the system will deduce that R is true
and S is true. If R is false and Q is true, the system will deduce
that P is false, and so on. The system also supports retraction
(setting the truth value of a proposition to unknown) using the
dependencies. For example, if R is deduced from P and Q using
the first clause above, then if either P or Q is retracted, the
system will retract R.

Quantified knowledge is expressed in Cake using the tech-
nique of pattern-direction invocation of procedures (demons).
Each term in the data base can have associated with jt a pro-
cedure called a noticer. Whenever a new application is created,
the noticer associated with the operator term is invoked with
the application as its argument. A typical use of such a noticer
is to instantiate an axiom schema using the arguments of the
application.

The only additional mechanism of Cake that needs to be spec-
ified before building an implementation of partial functions js the
type algebra. Since the notion of data types is ubiquitous in rea-
soning about programs, we decided to base Cake on a typed logic.
Types in this logic are total functions from D u U (the universe
of all terms) to Boolean. Types form a boolean algebra with the
usual operators of meet, join, and complement. There are special-
purpose mechanisms in Cake for performing inferences based on
this structure. For example, if T is a subtype of (subsumed by)
T’, then T’(z) follows from T(s).

2.3 The Cost of the Full Theory

An implementation of the full theory of typed partial functions
can now be defined as follows. The basic idea is to instantiate

axioms Al and A2 for each application of f. The domains and
range of f are implemented as type predicates. The set D is
implemented as the type Defined. (All the usual data types such
as Integer, Boolean, etc., are subtypes of Defined.) We install
a noticer on the term f which, given a new application f (5, y),
creates the following clauses:

(Defined(f),A(2),B(Y),C(f(2,~))),

(Defined(f (2, Y>), Defined(f I),

(Defined(f (5, ~11, A(z)),

(DefinNf (2, Y>), B(Y)).

The cost of this implementation can be measured roughly as
the number of new data structures created per new application,
namely, five new terms and four new clauses, containing ten lit-
erals. These new data structures translate into a corrresponding
computational cost because, generally speaking, the amount of
computation in the reasoning component increases strongly with
the number of terms and clauses. In particular, we have found
from experience that, due to the activities of the congruence clo-
sure algorithm, it is particularly important to control the number
of terms created in the system.

A striking feature of this straightforward implementation is
that half the literals in the clauses above involve terms with the
operator Defined. Thus we argue that, especially within the con-
text of evolutionary design, the system is spending a dispropor-
tionate amount of its effort worrying about the details of whether
things are defined or not.
2.4 Applying Simplifying Assumptions

The application of the methodology to the theory of typed partial
functions breaks into two cases, corresponding to whether f is
total or partial.

Let us first consider the case when f is total. In this case, the
main conclusion of axioms Al and A2 is f (z, y) E C. This fact is
likely to advance the reasoning by eliminating cases or triggering
specialized information about the elements of C. For example, C
might be the set of positive integers, and the term f (2, y) might
appear in a conditional expression of the form

if f (5, y) > 0 then . . . else

The default assumption of the theory is f(z, y) E D. The
“normal” state of affairs in reasoning is that most expressions
are defined. The cases wherein certain terms are undefined can
safely be considered “detail to be treated later.” Note that this
default assumption does imply the main conclusion above, as
required (this is easy to see by considering the contrapositive of
A2).

The role of the remaining propositions in Al and A2, namely
f E D, z E A, and y E B, is interesting to consider for a moment.
Logically, these propositions are in fact implied by the default
assumption. However, we have chosen not to consider them as
main conclusions. The reason for this is that this information is
not intrinsic to the form of the terms f, z, or y, but rather to their
appearance in a certain context. For example, the same variable
z may appear in two applications with different operators having
disjoint domains. Although this may not be a contradiction once

AUTOMATED REASONING ! 5

the details of the reasoning are considered (the two applications
may be on opposite sides of a conditional expression which tests
the type of z), making these propositions part of the simplified
theory could force the system to immediately invoke the details
to resolve the contradiction, thereby defeating the whole purpose
of the strategy.

The case when f is partial has an additional wrinkle. As
mentioned above, for partial functions U L C. In this case, the
proposition f(z; y) E C is not likely to advance the reasoning
process. For example, knowing that f(~. y) E Integer b li is not
as useful as knowing that f(z, y) E Integer. We therefore restate
the theory in a logically equivalent form for this case, by replacing
axiom Al with the following simpler axiom, where C’ is the set
C P D (i.e., subtracting out undefined):

Al’. f(z, Y) E D * fk Y) E C’.

We now take the proposition f(z, y) E C’ as the main conclu-
sion in this case. Note that it is implied by the same default
assumption as above: namely f(z,y) E D

2.5 Implementation

After the theory has been analyzed according to the methodology,
an efficient implementation in Cake was achieved as follows.

We install a noticer on the term f which, given a new applica-
tion f(z, y), creates the term for the main conclusion and makes
it a premise. If f is total, this premise is simply C(f(x, y)). If f
is partial, the procedure computes the type C’, obtained by in-

tersecting C with Defined,’ and installs the premise C’(f(z, y)).
These premises are also marked by the system as being supported
by (implicit) simplifying assumptions.

Thus in the first stages of reasoning, we create only a sin-
gle term, as compared to the five terms and four clauses of the
straightforward implementation. Furthermore, if the main con-
clusion was well chosen, this premise may advance the reasoning
enough to decide to abandon this path regardless of the details.

We also define an operation on premises called discharging.
When a premise is discharged, its truth value is retracted and,
if it is marked as being supported by simplifying assumptions, a
procedure is run to instantiate the rest of the underlying axioms.2
In the case of total functions, discharging the premise causes the
same five terms and four clauses to be created as described in the
straightforward implementation. In the case of partial functions,
Al’ is instantiated instead of Al, giving rise to the following
clause:

(Defined(f(z, y)>,C’(f(z, Y))).

The total number of terms and clauses eventually created in this
case is the same as in the total function case. Notice that the

term Wb, Y)> is never created in this case, since it is not usually
a useful fact. If, however, this term is created by some other
procedure, its truth is provable by the mechanisms of the type
lattice from the axioms instantiated here.

‘This computation is possible since the type hierarchy has been made
non-retractable for efficiency reasons. We have implemented a special data
structure in the type lattice to support this computation.

2Discharging also removes the simplifying assumptions mark, to avoid
instantiating the same axioms twice.

Discharging of premises supported by simplifying assump-
tions can occur in a number of ways. First, the higher level
control structure may decide, for its own reasons, that now is
the time to pursue the details. For example, the current design
may look good enough to warrant spending additional resources
working it through. Alternatively, a contradiction may be de-
tected involving some of the marked premises. Rather than sim-
ply abandoning one of the current set of premises, the contradic-
tion handler may decide that the contradiction is only apparent
and can be resolved by descending to the next level of detail. Fl-
nally, we install a noticer on the term Defined which, given a nen
application of the form Defined(f(z, y)), discharges the premise

C(fb> Y>) or C’(fk, Y>), d e en in on whether f is total or par- P d g
tial. This noticer embodies the heuristic that when you actually
create the term for the default assumption, it means you want to
begin to consider the details.

We conclude this section with a brief example using the par-
tial function /, with functionality Integer x Integer + Integer ci c’.
In addition to knowing the functionality of /, let us assume the
system also has the following axiom about t,he behavior of the
function.

Dl. i E Integer A j E Integer A j # 0 * i/j E Integer.

Applying the methodology of simplifying assumptions to this
“theory” , we decide that the main conclusion is i/j E Integer,
and that the default assumptions are i E Integer, j E Integer,
and j # 0. This is implemented by installing a noticer on /
which, given a new application i/j, creates the premise for the
main conclusion and marks it with the axiom Dl to be instan-
tiated when this premise is discharged. Notice that the same
proposition can be the main conclusion of more than one the-
ory. Thus when a premise is discharged, more than one group of
underlying axioms may be triggered.

Now suppose that the term i/j is created. By the procedures
described above, this will cause the term Integer(i/j) to be cre-
ated and made a premise. Using this premise, the system may
proceed, without stopping to prove that i and j are integers and
that j # 0. For example, further reasoning may reveal that that
the computation involving i/j is wrong and that this term should
be i/(j + 1) instead.

If and when the premise Integer(i/j) is discharged, the follow-
ing clauses will be installed due to the theory of partial functions:

(Defined(i/j), Integer(i/j)),

(Defined(i/j), Defined(/)),

(Defined(i/j), Integer(i)),

(Defined(i/j), Integer(j)),

and the following clause due to the theory of /:

(Integer(i), Integer(j),j # 0, Integer(i/j)).

3 Conclusions

We have described a general methodology for using simplifying
assumptions in automated reasoning, and have illustrated its ap-
plication to the implemention of a theory of typed partial func-
tions in the context of evolutionary program development. We

6 / SCIENCE

believe this methodology
of reasoning.

can profitably be applied in areas

The next area in which we plan to apply the methodology
is reasoning about side effects. To simplify the first stages of
reasoning in this context, it is important to make the default
assumption that there is no aliasing (i.e., two variables do not
hold pointers to the same data structure or parts of the same
data structure). Shrobe 191 has taken a similar approach in this
area.

As the reasoning component of the PA develops with many
different kinds of simplifying assumptions for different purposes,
we imagine the reasoning process will begin to resemble “peeling
the layers of an onion.” Discharging one level of premises will
cause the next lower level of detail to be instantiated, which may
have its own simplifying assumptions, and so on. For example,
in the reasoning involving applications of / above, we might in
fact want to install control mechanisms to allow instantiation
of the details of the partial function theory, while keeping the
assumption j # 0.

Another direction of future work we would like to mention
here is to partition the undefined type into different sub-types to
represent different kinds of exceptional conditions. For example,
the term 5/O is undefined for a different reason than 5/“hello” is
undefined, which is different again from the reason that the out-
put of an non-terminating computation is undefined. We expect
that the PA will be able to take advantage of these distinctions.
Note that this extension would require some modifications to the
axioms presented in the paper and to the definitions of partial
versus total functions.

Acknowledgements

The authors would like to thank David Chapman and Dick
Waters for their help in working out some of the ideas in this
paper,

References

:l] AAAI Workshop on Non-Monotonic Reasoning, New Paltz,
NY, October 1984.

12‘ Artificial Intelligence, Vol. 13, No. 1,2, Special Issue on Non- /
Monotonic Logic, April 1980.

[3] McAllester, D. A., “Reasoning Utility Package User’s Man-

ual”, MIT Artificial intelligence Lab. Memo 667, April 1982.

[4: Rich, C., “The Layered Architecture of a System for Rea-
soning about Programs”, Proc. of the 9th Int. Joint Conj.

on Artificial Intelligence, Los Angeles, CA, August 1985.

15: Rich, C., and H. Shrobe, “Initial Report on a Lisp Program-

mer’s Apprentice”, IEEE Trans. on Software Eng., Vol. 4,

No. 6, November 1978.

16: Rich, C., H. E. Shrobe, R. C. Waters, G. J. Sussman, and C.
E. Hewitt, “Programming Viewed as an Engineering Activ-
ity’, , (NSF P p ro osal), MIT Artificial Intelligence Lab. Memo
459, January 1978.

[7] Rich, C., and R. C. Waters, “The Disciplined Use of Simpli-
fying Assumptions’, , Proc. oj ACM SIGSOFT Second Soft-

ware Engineering Symposium: Workshop on Rapid Proto-
typing, ACM SIGSOFT Software Engineering Notes, Vol. 7,
No. 5, December 1982.

[Bj Sacerdoti, E. D., “Planning in a Hierarchy of Abstraction
Spaces”, Artificial Intelligence, Vol. 5, No. 2, 1974.

[9] Shrobe, H. E., “Common-Sense Reasoning About Side Ef-
fects to Complex Data Structures”, Proc. of 6th Int. Joint
Conf. on Artificial Intelligence, Tokyo, Japan, August 1979.

[lo] Stallman, R. M., and G. J. Sussman, “Forward Reason-
ing and Dependency Directed Backtracking in a System for
Computer-Aided Circuit Analysis”, Artificial Intelligence,
Vol. 9, October 1977, 135-196.

[llj Sussman, G. J., “The Virtuous Nature of Bugs”, Proc. Conf.
on Artificial Intelligence and the Simulation of Behavior, U.
of Sussex, July 1974.

[12] Waters, R. C., “The Programmer’s Apprentice: A Session
with KBEmacs”, IEEE Trans. on Software Eng., Vol. 11,
No. 11, November 1985.

AUTOMATED REASONING / 7

