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ABSTRACT 

l’his paper describes FAULTY, a default prover for a decid- 
able subset of p+edicata calculus. FAULTY is based on 
McDemtt’s and Doyle’s Nonmonotonic Logic I und avoids 
the wet&known weakness of this logic by a restriction to 
spe@ic theories, which OTQ sujgcictint for defuult reasoning 
purposes, howevet. i%e dafautts ~TQ represented in a way 
that allows explicit control of their applicabi&ty. By btock- 
ing the applicability of a default the problem of interacting 
defaults can be avoided. 

Keywords: Nonmonotonic Reasoning, &fault R&?asoning, 
tiosem Proving, Knowledge Bpresentation 

1. Introduction 

During the last years the field of nonmonotonic reason- 
ing has attracted many AI researchers. Different kinds 
of nonmonotonic reasoning have been identified ([McC 
853 gives a list of 7 types, this list certainly not being 
complete), and different formalizations of such reason- 
ing have been proposed. The most influential among 
these are 

- McDermott’s and Doyle’s Nonmonotonic Logic I 
(NML I) [McD Do 801, 

- 

- 

Reiter’s &fault Logic [Rei 801, 

McCarthy’s different versions of Circumscription 
[McC 801, [McC 841. 

The main problem with these formalizations is, that 
they are not semi-decidable. In the case of NML I and 
Default Logic this stems from the fact, that the prova- 
bility of a formula may depend on the unprovability of 
other formulas, and the unprovable formulas of first 
order logic (FOL) are not semi-decidable. In the case of 
Circumscription we have to deal with a second order 
formula, and second order logic is not semi-decidable 
(but note that Lifschitz [Lit 841 has identified interest- 
ing cases, where the Circumscription of a formula is 
equivalent to a first order formula). 

A common answer to this problem is to give up the idea 
of theoremhood and to replace it by something like 
believabikfy or reasoned believability. This is especially 
the viewpoint taken in Reason/Truth Maintenance Sys- 
tems as Doyle’s TMS [Doy 791, Goodwin’s WATSON [Goo 
84][Goo 851 or de Kleer’s extended ATMS [deK 881. In 
these systems a network of dependencies between for- 
mulas is constructed, in which the derivability (believa- 
bility) of a formula never depends on unprovability of 
other formulas, but may depend on the fact that other 
formulas are currently unproven. What is modelled is 

not the ideal reasoning agent but instead the process 
of making inferences with limited resources. 

A central problem with this approach is clear: the 
status of a formula may change from believed (IN) to 
disbelieved (OUT) or vice versa without adding or delet- 
ing any information, simply because the system has 
made further inferences. Criteria for when to stop 
making inferences and rely on the systems beliefs are 
lacking. 

A more technical problem are the so called odd loops. A 
dependency network contains an odd loop whenever 
belief in a formula somehow depends on disbelief in the 
same formula. In the case of an odd loop TMS may run 
forever, WATSON diagnoses the loop and halts if it can- 
not label formulas correctly as IN or OUT. But note that 
WATSON may halt even if the corresponding logical 
theory is consistent. For instance the set of NML I for- 
mulas 

1) -P-> P 
2) Y-P-> -P 

is consistent, but if WATSON is given these axioms it 
creates an odd loop and halts (our system has no prob- 
lem with that case). De Kleer [deK 881 proposes to 
treat odd loops as contradictions. 

Nobody can be very happy with these properties, but 
we have to live with them if we want a nonmonotonic 
system with the full expressive power of FOL. 

But there is another approach to the problem of non- 
semidecidability: for many applications we do not need 
full FOL. The great success of PROLOG has shown this 
clearly. There are many interesting subsets of FOL 
which are decidable. If we restrict ourselves to such a 
subset, then also the nonmonotonic case becomes 
decidable and theoremhood need not be given up. 

This is actually the approach we followed. FAULTY is a 
default prover that can handle Horn clauses without 
functions. (Note that Horn clause logic is not the same 
as PROLOG, we have true negation and negative asser- 
tions.) With this restriction FOL is decidable, since the 
Herbrand universe is finite. 

There are two versions of FAULTY now, an older version 
described in [BreWi 841 [Bre 881 (in German) has 
recently been reimplemented on a SYMBOLICS Lisp 
machine. Examples in this paper are taken from the 
SYMBOLICS version of FAULTY. 

In this paper we will justify our decision to base FAULTY 
on NML I and show how we overcome the wellknown 
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weakness of McDermott’s and Doyles logic. We then 
describe how defaults are represented and how we deal 
with the problem of interacting defaults. An informal 
description of FAULTY’s proof procedure follows and 
the paper concludes with an example dialogue. 

out. The modal operator Y does not capture the full 
meaning of consistency, as intended. For instance the 
theory 

we -4 

2. why NML I? 

When we decided to implement a default prover, we first 
had to choose a basic nonmonotonic formalism for it. 

We found that Circumscription was not a good 
candidate for our purposes. What we wanted to build 
was a system that could be used also by people not well 
trained in formal logic or even higher order logic. And 
our - may be very subjective - opinion is that 
Circumscription is quite difficult to use. 

The main reason is that it is not enough to represent 
defaults using the abnormal-predicate AS as proposed 
by McCarthy [McC 841. The effects of circumscribing AH 
crucially depend on the variables chosen for the 
Circumscription. If we have for instance 

1) BIRD(x) & -AB(aspectl.x) -> FLIES(x) 
2) BIRD(Tweety) 

then we get FLES(Tweety) as intended circumscribing 
AB z using AI3 and F’LIES as variables. But if we add 

3) PENGUIN(x) -> -FLIES(x) 
4) OSTRICH(x) -> -F’LlES(x) 

we only get the desired result FUES(Tweety) if we use 
PENGUIN and OSIWCH as additional variables. 

For untrained people it is not easy to see what the 
effects of changes in the axiom set are and which 
variables to use when circumscribing AR. And we did 
not have a good idea how to follow McCarthy’s 
suggestion [McC 84, p. 3021 to use a “policy” database 
containing metamathematical statements for our 
intended general purpose default prover. We therefore 
preferred to choose among McDermott/Doyle’s NML I 
and Reiter’s default logic. 

The main difference between NML I and Default Logic is 
that defaults in NML I are represented within the 
logical language and not as a kind of meta-statement 
as in Reiter’s logic. This allows defaults and ordinary 
axioms to be handled in a uniform manner and it turns 
out to be very easy (as we will see) to adapt standard 
resolution proof techniques for NML I. This was the 

reason we chose to base FAULTY on NML I. 

There is a well-known problem with NML I however: it is 
too weak, as McDermott and Doyle themselves pointed 

is consistent in NML I. This weakness has led to a lot of 
activity and authors, among them McDermott himself, 
have tried to strengthen the logic [McD 821 [Luk 841 
[Moo 851. 

It is certainly right, that NML I is too weak, but too 
weak for what? For reasoning about consistency. But 
this does not mean that it cannot be used for default 
reasoning purposes, if some restrictions are complied 
with. We restrict NML I in the following way: 

1) 

2) 

The modal 
rules as 

operator His only admitted in default 

HA&B&MC->C 

where A is a special literal, as will be explained in 
the nezt section, B and C are formu1o.s (but the 
deja&t must be representable as a horn clause). 

We are only interested 
las not containing Y. 

in the provability of fownu- 

With these restrictions the undesired consequences of 
the weakness of NML I disappear. No statements about 
the consistency or inconsistency of a formula can be 
made; it only can be expressed that a formula is deriv- 
able if this formula (and another special formula, see 
next section) is consistent. And the only way to find out 
if a formula is consistent is to try to prove its negation. 
With our restrictions NML I can model default reasoning 
adequately. 

One more question has to be discussed here. In NML I 
(and similarly in Default Logic) the derivable formulas 
are defined in terms of fixed points. Since there may be 
any number of fixed points, the question arises, wether 
we want to define the derivable formulas as the inter- 
section of fixed points (as McDermott and Doyle do), or 
wether we want formulas contained in at least one fixed 
point (Reiter’s approach). Assume we have the follow- 
ing facts: 

1) Most computer scientist23 are not millionaires. 
2) Most Rolls Royce drivers are millionaires. 
3) John is computer scientist and drives a Rolls Royce. 

If we would build a prover following Reiter’s approach 
and ask that prover “is it true that John is a mil- 
lionaire?“, then the prover would answer “yes”, given 
the above axioms. But if we now ask “is it true that 
John is not a millionaire?” we get again the answer 
“yes”, a somewhat unusual behavior for a prover. 
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Another unusual property of our system would be that 
if it has derived a fact A and another fact B, it does not 
follow that also the conjunction Ah B is derivable. 

This one fixed point approach is also pursued in Doyle’s 
and Goodwin’s Reason/Truth Maintenance Systems. 
These systems can be thought of as approximating the 
construction of one (arbitrarily chosen) fixed point. 

We believe that it is better to remain agnostic in the 
case of conflicting evidence, following McDermott and 
Doyle in this point: for FAULTY only the formulas con- 
tained in the intersection of the fixed points are prov- 
able (but since many people seem to like the other 
approach too, now it is possible to run FAULTY in a 
mode where it derives a formula if it is contained in at 
least one Axed point). 

3. The representation of defaults. 

The problem of interacting defaults has been discussed 
broadly, see especially [Rei Cri 811. One problem 
among others arises if we have a default that is more 
specific than another, for instance 

1) ADULT(x) & Y HARRIED(X) -> m(x) 
2) sruDENT(x) & Y -HARRIED(x) -> -m(x) 

In this case we certainly want to be able to derive that 
a student named John is unmarried. But since default 
1) creates a fixed point containing IfARRED(John) we 
cannot derive what we want. The question now is: how 
can we block the second unwanted fixed point from 
being created ? What goes wrong is that default 1) is 
applied to students, but we do not want it to be applied 
in this case. So we have to find a way to explicitly con- 
trol the applicability of a default rule. For that purpose 
we need a standard predicate APPL for applicable (pre- 
cisely, we have a set of predicates APPLi, where i is the 
arity of the default, but this is not important here) and 
write our default in the following way: 

3) II APPL(Rl,x) k ADULT(x) & Y HARRIED(x)) 
-> HARRIED(x) 

Here the constant Rl is used as a unique name for 
default 3) itself. 

Now we can very easily 
default by simply stating 

block the applicability of a 

Recall that Circumscription is a kind of minimization 
technique. Minimizing abnormalty now is very similar to 
maximizing the applicability of defaults, since defaults 
express what normally holds. And exactly this maximi- 
zation is achieved with our approach, since defaults are 
applicable if not explicitly stated otherwise. And the 
close similarity between McCarthy’s cancellation of 
inheritance ax$om.s and our blocking of default appli- 
cability uzioms is obvious (note that one of the subti- 
tles of [Gro 851 is “Maximizing Defaults is Minimizing 
Predicates”). 

McCarthy himself was not too happy about his indexed 
aspects. He writes [McC 84, p. 2991: 

The aspects themselves are abstract entities, and their 
unintuitiveness is somewhat a blemish on the theory. 

Perhaps our use of names for the defaults is a bit more 
intuitive, in spite of the self-reference being introduced 
into the defaults. Note that this self-reference cannot 
lead to paradoxes, since APPL is used in a restricted 
way: it is only allowed in defaults under the scope of 
the modal operator and (negated) in the right side of 
the blocking of default applicability axioms. Moreover 
we can very easily hide the representation of defaults. 
The FAULTY user specifies defaults in a very natural 
way without having to be concerned about APPL’s or 
M’s. He simply writes 

(Rl (BlRD(-x) ==> FLlES(x))) 

where Rl is the name of the default, and FAULTY does 
the right thing ( “==>” is to be read as “typically 
implies”). 

4. FAULTY’S proof procedure 

FAULTY’s proof procedure is essentially a generaliza- 
tion of McDermott and Doyle’s procedure for nonmono- 
tonic propositional logic [McD Do 801. The easiest way 
to explain it is to give some examples. Let’s talk about 
Tweety again: 

1) BIRD(Tweety) 
2) Y APPL(R1. x) & BIRD(x) & Y FLIES(x) -> FLIES(x) 

Now, of course, we want to prove FLIES(Tweety). 
FAULTY first runs a standard unit resolution refutation 
proof, where YQ is, for all formulas Q, treated as a 
literal. We cannot derive the empty clause but we get 
the interesting clause 

4) STUDENT(x) -> APPL(R1.x) 
3) -ld APPL(Rl.Tneety) v -M FLES(Tweety) 

and we derive that John is unmarried, as it was our 
intuition. 

This approach turns out to be very similar to 
McCarthy’s use of the AB (“abnormal”) predicate [McC 
841 (but it has been developed independently from 
McCarthy and was first described in [BreWi 841). 
McCarthy writes defaults as 

5) BIRD(x) & -AB(aspectl (x)) -> FLIES(x) 

and circumscribes the formula AI3 z. To solve the prob- 
lem of interacting defaults he uses cancellntion of 
inheritance axiom like 

This formula is interesting, because it only contains 
literals beginning with -Y, we call such clauses M- 
clauses. Y is intended to mean “is consistent”, so if we 
knew that APPL(Rl.Tweety) and FLES(Tweety) were 
consistent, we could finish our proof. Now the only way 
to show that these formulas are consistent is to show 
that their negation is not provable. We therefore start 
two other proofs, one for -FLES(Tweety), the other 
one for -APPL(Rl,Tweety). In both cases the proofs fail 
without yielding M-clauses (they get the status OPEN). 
This allows us to add M APPL(Rl,Tweety) and M 
Flies(Tweety) in our first proof, and the empty clause is 
derivable in this proof now (the proof becomes CLOSED: 
FLIES(Tweety) is proven. 

6) OSlXICH(x) -> AB(aspecL1 (x)). 
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to prove FLIES( Tueety) -RPPL(Rl, Tueety) -FLIES(Tucety) 

yields -II APPL(Rl,Tucety) 
v -II FLIES(Tuecty) 

Table 1 

label lng CLOSED OPEN OPEN 

Table 2 

to prove HILL( Jin) -APPL(R2, Jin) -HILL(Jtn) -APPL(R3, Jin) 

yields -H APPL(R2. Jin) -H APPL(R3, Jin) 

v -H HILL(Jin) v -H -HILL(Jln) 

labcllng 1 

labcllng 2 

CLOSED 

OPEN 

OPEN 

OPEN 

OPEN 

CLOSED 

OPEN 

OPEN 

Table 1 shows the (sub)proofs created. Only the is only a finite number of possible instances of literals 
interesting derived clauses are contained in the table. beginning with -II. 

Things are not always that easy, however. Let’s look at 
our millionaires example again (RRD stands for Rolls 
Royce driver, CS for computer scientist, MILL for 
millionaire) : 

1) IrI APPL(R2.x) & RRD(x) & Y HILL(x) -> KILqx) 
2) Y APPL(R3.x) k CS(x) k Y -HILL(x) -> -HILL(x) 
3) RRD(Jim) & CS(Jim) 

Secondly, all admissible labelings for the still unlabeled 
proofs have to be found. To find out if a labeling is 
admissible, one proceeds as follows: for each proof for 
-Q with the label OPEN the literal Y Q is to be added to 
all proofs. Now in all OPEN proofs the empty clause 
must be underivable, in all CIX)SEiD proofs the empty 
clause must be derivable. 

Trying to prove YILL(Jim) we get the proofs shown in 
Table 2. 

The goal is proven, if its (sub)proof is CLOSED in all 
admissible labelings. 

The interesting thing here is that we can consistently 
label the proofs of our example in two different ways as 
failed (OPEN) or successfully finished (CLOSED). If we 
label the proof for -YILL(Jim) OPEN. Y YLL(Jim) can 
be added in all proofs and the proof for MILL(Jim) gets 
CLOSED. But we can do it also the other way around: 
labeling the proof for YlLL(JIH) OPEN makes the proof 
for -YILL(Jim) CLOSED. These different labelings 
correspond exactly to the different fixed points of our 
theory. Since there is one labeling in which the proof 
for MILL(Jim) is OPEN, YILL(Jim) is not contained in all 
fixed points and hence cannot be derived. 

This proof procedure is of course not the way FAULTY 
actually proceeds. There are some ways to cut the 
number of created proofs and the check of admissible 
labelings can easily be done by a propositional prover, 
but this is beyond the scope of this paper. 

5. Example 

The following example shows how a FAULTY knowledge 
base is defined. 

Generally a FAULTY proof for a goal consists of two 
steps. The first step, the construction of (sub)proofs, 
can semi-formally be described in the following way: 

(deffaulty-kb flying-objects 
(axioIna 

(bird twee ty) 
(penguin hansi) 
(bird fred) 

push the goal onto the agenda 
until the agenda is empty do 

remove the top element from the agenda 
and start a proof for it 
if the empty clause is derived, mark this proof CLOSED 

else if no M-clause is derived, mark this proof OPEN 
else for each literal -Y Q in each derived M-clause 

unless 
-Q is contained in the agenda or 
there is already a proof for -Q 

push -Q onto the agenda 

This proof construction phase terminates, since there 

(not flies fred) 
(airplane jumbo) 
(penguin ,x -> bird -x) 
1 

(defaults 
(rl (bird-x ==> flies-x)) 
W (peng~ -3 ==> not flies -x)) 
(r3 (airplane 2 ==> flies 2)) 
(x-5 (flies-x ==> haswings -x)) 

i” (has-ninga_r 
==> hasfeathers -x) 

(exceptions 
(penguin ,x -> not appl rl -x) 
(airplane -x -> not appl r6 2))) 
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The blocking of default applicability axioms are called 
ezceptions in the definition. The axioms are taken 
partly from [McC 841. The above definition creates the 
knowledge base as an instance of a Zetalisp Flavor. We 
can send messages to this knowledge base, the most 
interesting message is certainly :PROVE. Here are some 
examples 

(send flying-objects :prove ‘@es tweety)) 

yields: PROVABLE 

(send flying+bjects :prove ‘(flies hansi)) 

yields: UNPROVABLE 

(send dying-objects :prove ‘(not flies hansi)) 

yields: PROVABLE (if the first 
we would not get this result) 

exception were missing, 

(send flying-objects :prove ‘(h-wings jumbo)) 

yields: PROVABLE 

(send flying-objects :prove ‘(has-feathers jumbo)) 

yields: UNPROVABLE 

6. Problems and future work 

The main problem with FAULTY is efficiency, naturally. 
A set of standard resolution proofs, which themselves 
are expensive enough, must be run. But we are not too 
pessimistic about that. First we think, a slow implemen- 
tation is better than none at all, and second there is 
much room for parallelization in FAULTY’s proof pro- 
cedure, so we can hope for much better efficiency when 
parallel computers become available. 

Another concern is that FAULTY does not record 
results, since it is a pure prover. The purpose of the 
Reason/Truth Maintenance Systems mentioned in the 
introduction, however, was not only to make nonmono- 
tonic inferences, but also to keep track of inferences 
made so far. This allows axioms to be changed without 
having to recompute everything. Now it’s a natural 
idea to combine the two approaches and to build a rea- 
son maintenance system, where all IN formulas are 
actually theorems of the underlying axioms and all OUT 
formulas are actually unprovable, not only currently 
unproven. This system, to be called TINA (This Is No 
Acronym), is under development. 
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