
Tucety - still Flying

Some Reti on Abnormal Birds, Applicable Rules
and a Default Prover

Gerhard Bewka

Gesellschaft fiir Mathematik und Datenverarbeitung
Forschungsgruppe Expertensysteme

Postfach 12 40
D 5205 Sankt Augustin, Federal Republic of Germany

ABSTRACT

l’his paper describes FAULTY, a default prover for a decid-
able subset of p+edicata calculus. FAULTY is based on
McDemtt’s and Doyle’s Nonmonotonic Logic I und avoids
the wet&known weakness of this logic by a restriction to
spe@ic theories, which OTQ sujgcictint for defuult reasoning
purposes, howevet. i%e dafautts ~TQ represented in a way
that allows explicit control of their applicabi&ty. By btock-
ing the applicability of a default the problem of interacting
defaults can be avoided.

Keywords: Nonmonotonic Reasoning, &fault R&?asoning,
tiosem Proving, Knowledge Bpresentation

1. Introduction

During the last years the field of nonmonotonic reason-
ing has attracted many AI researchers. Different kinds
of nonmonotonic reasoning have been identified ([McC
853 gives a list of 7 types, this list certainly not being
complete), and different formalizations of such reason-
ing have been proposed. The most influential among
these are

- McDermott’s and Doyle’s Nonmonotonic Logic I
(NML I) [McD Do 801,

-

-

Reiter’s &fault Logic [Rei 801,

McCarthy’s different versions of Circumscription
[McC 801, [McC 841.

The main problem with these formalizations is, that
they are not semi-decidable. In the case of NML I and
Default Logic this stems from the fact, that the prova-
bility of a formula may depend on the unprovability of
other formulas, and the unprovable formulas of first
order logic (FOL) are not semi-decidable. In the case of
Circumscription we have to deal with a second order
formula, and second order logic is not semi-decidable
(but note that Lifschitz [Lit 841 has identified interest-
ing cases, where the Circumscription of a formula is
equivalent to a first order formula).

A common answer to this problem is to give up the idea
of theoremhood and to replace it by something like
believabikfy or reasoned believability. This is especially
the viewpoint taken in Reason/Truth Maintenance Sys-
tems as Doyle’s TMS [Doy 791, Goodwin’s WATSON [Goo
84][Goo 851 or de Kleer’s extended ATMS [deK 881. In
these systems a network of dependencies between for-
mulas is constructed, in which the derivability (believa-
bility) of a formula never depends on unprovability of
other formulas, but may depend on the fact that other
formulas are currently unproven. What is modelled is

not the ideal reasoning agent but instead the process
of making inferences with limited resources.

A central problem with this approach is clear: the
status of a formula may change from believed (IN) to
disbelieved (OUT) or vice versa without adding or delet-
ing any information, simply because the system has
made further inferences. Criteria for when to stop
making inferences and rely on the systems beliefs are
lacking.

A more technical problem are the so called odd loops. A
dependency network contains an odd loop whenever
belief in a formula somehow depends on disbelief in the
same formula. In the case of an odd loop TMS may run
forever, WATSON diagnoses the loop and halts if it can-
not label formulas correctly as IN or OUT. But note that
WATSON may halt even if the corresponding logical
theory is consistent. For instance the set of NML I for-
mulas

1) -P-> P
2) Y-P-> -P

is consistent, but if WATSON is given these axioms it
creates an odd loop and halts (our system has no prob-
lem with that case). De Kleer [deK 881 proposes to
treat odd loops as contradictions.

Nobody can be very happy with these properties, but
we have to live with them if we want a nonmonotonic
system with the full expressive power of FOL.

But there is another approach to the problem of non-
semidecidability: for many applications we do not need
full FOL. The great success of PROLOG has shown this
clearly. There are many interesting subsets of FOL
which are decidable. If we restrict ourselves to such a
subset, then also the nonmonotonic case becomes
decidable and theoremhood need not be given up.

This is actually the approach we followed. FAULTY is a
default prover that can handle Horn clauses without
functions. (Note that Horn clause logic is not the same
as PROLOG, we have true negation and negative asser-
tions.) With this restriction FOL is decidable, since the
Herbrand universe is finite.

There are two versions of FAULTY now, an older version
described in [BreWi 841 [Bre 881 (in German) has
recently been reimplemented on a SYMBOLICS Lisp
machine. Examples in this paper are taken from the
SYMBOLICS version of FAULTY.

In this paper we will justify our decision to base FAULTY
on NML I and show how we overcome the wellknown

8 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

weakness of McDermott’s and Doyles logic. We then
describe how defaults are represented and how we deal
with the problem of interacting defaults. An informal
description of FAULTY’s proof procedure follows and
the paper concludes with an example dialogue.

out. The modal operator Y does not capture the full
meaning of consistency, as intended. For instance the
theory

we -4

2. why NML I?

When we decided to implement a default prover, we first
had to choose a basic nonmonotonic formalism for it.

We found that Circumscription was not a good
candidate for our purposes. What we wanted to build
was a system that could be used also by people not well
trained in formal logic or even higher order logic. And
our - may be very subjective - opinion is that
Circumscription is quite difficult to use.

The main reason is that it is not enough to represent
defaults using the abnormal-predicate AS as proposed
by McCarthy [McC 841. The effects of circumscribing AH
crucially depend on the variables chosen for the
Circumscription. If we have for instance

1) BIRD(x) & -AB(aspectl.x) -> FLIES(x)
2) BIRD(Tweety)

then we get FLES(Tweety) as intended circumscribing
AB z using AI3 and F’LIES as variables. But if we add

3) PENGUIN(x) -> -FLIES(x)
4) OSTRICH(x) -> -F’LlES(x)

we only get the desired result FUES(Tweety) if we use
PENGUIN and OSIWCH as additional variables.

For untrained people it is not easy to see what the
effects of changes in the axiom set are and which
variables to use when circumscribing AR. And we did
not have a good idea how to follow McCarthy’s
suggestion [McC 84, p. 3021 to use a “policy” database
containing metamathematical statements for our
intended general purpose default prover. We therefore
preferred to choose among McDermott/Doyle’s NML I
and Reiter’s default logic.

The main difference between NML I and Default Logic is
that defaults in NML I are represented within the
logical language and not as a kind of meta-statement
as in Reiter’s logic. This allows defaults and ordinary
axioms to be handled in a uniform manner and it turns
out to be very easy (as we will see) to adapt standard
resolution proof techniques for NML I. This was the

reason we chose to base FAULTY on NML I.

There is a well-known problem with NML I however: it is
too weak, as McDermott and Doyle themselves pointed

is consistent in NML I. This weakness has led to a lot of
activity and authors, among them McDermott himself,
have tried to strengthen the logic [McD 821 [Luk 841
[Moo 851.

It is certainly right, that NML I is too weak, but too
weak for what? For reasoning about consistency. But
this does not mean that it cannot be used for default
reasoning purposes, if some restrictions are complied
with. We restrict NML I in the following way:

1)

2)

The modal
rules as

operator His only admitted in default

HA&B&MC->C

where A is a special literal, as will be explained in
the nezt section, B and C are formu1o.s (but the
deja&t must be representable as a horn clause).

We are only interested
las not containing Y.

in the provability of fownu-

With these restrictions the undesired consequences of
the weakness of NML I disappear. No statements about
the consistency or inconsistency of a formula can be
made; it only can be expressed that a formula is deriv-
able if this formula (and another special formula, see
next section) is consistent. And the only way to find out
if a formula is consistent is to try to prove its negation.
With our restrictions NML I can model default reasoning
adequately.

One more question has to be discussed here. In NML I
(and similarly in Default Logic) the derivable formulas
are defined in terms of fixed points. Since there may be
any number of fixed points, the question arises, wether
we want to define the derivable formulas as the inter-
section of fixed points (as McDermott and Doyle do), or
wether we want formulas contained in at least one fixed
point (Reiter’s approach). Assume we have the follow-
ing facts:

1) Most computer scientist23 are not millionaires.
2) Most Rolls Royce drivers are millionaires.
3) John is computer scientist and drives a Rolls Royce.

If we would build a prover following Reiter’s approach
and ask that prover “is it true that John is a mil-
lionaire?“, then the prover would answer “yes”, given
the above axioms. But if we now ask “is it true that
John is not a millionaire?” we get again the answer
“yes”, a somewhat unusual behavior for a prover.

AUTOMATED REASONING / 9

Another unusual property of our system would be that
if it has derived a fact A and another fact B, it does not
follow that also the conjunction Ah B is derivable.

This one fixed point approach is also pursued in Doyle’s
and Goodwin’s Reason/Truth Maintenance Systems.
These systems can be thought of as approximating the
construction of one (arbitrarily chosen) fixed point.

We believe that it is better to remain agnostic in the
case of conflicting evidence, following McDermott and
Doyle in this point: for FAULTY only the formulas con-
tained in the intersection of the fixed points are prov-
able (but since many people seem to like the other
approach too, now it is possible to run FAULTY in a
mode where it derives a formula if it is contained in at
least one Axed point).

3. The representation of defaults.

The problem of interacting defaults has been discussed
broadly, see especially [Rei Cri 811. One problem
among others arises if we have a default that is more
specific than another, for instance

1) ADULT(x) & Y HARRIED(X) -> m(x)
2) sruDENT(x) & Y -HARRIED(x) -> -m(x)

In this case we certainly want to be able to derive that
a student named John is unmarried. But since default
1) creates a fixed point containing IfARRED(John) we
cannot derive what we want. The question now is: how
can we block the second unwanted fixed point from
being created ? What goes wrong is that default 1) is
applied to students, but we do not want it to be applied
in this case. So we have to find a way to explicitly con-
trol the applicability of a default rule. For that purpose
we need a standard predicate APPL for applicable (pre-
cisely, we have a set of predicates APPLi, where i is the
arity of the default, but this is not important here) and
write our default in the following way:

3) II APPL(Rl,x) k ADULT(x) & Y HARRIED(x))
-> HARRIED(x)

Here the constant Rl is used as a unique name for
default 3) itself.

Now we can very easily
default by simply stating

block the applicability of a

Recall that Circumscription is a kind of minimization
technique. Minimizing abnormalty now is very similar to
maximizing the applicability of defaults, since defaults
express what normally holds. And exactly this maximi-
zation is achieved with our approach, since defaults are
applicable if not explicitly stated otherwise. And the
close similarity between McCarthy’s cancellation of
inheritance ax$om.s and our blocking of default appli-
cability uzioms is obvious (note that one of the subti-
tles of [Gro 851 is “Maximizing Defaults is Minimizing
Predicates”).

McCarthy himself was not too happy about his indexed
aspects. He writes [McC 84, p. 2991:

The aspects themselves are abstract entities, and their
unintuitiveness is somewhat a blemish on the theory.

Perhaps our use of names for the defaults is a bit more
intuitive, in spite of the self-reference being introduced
into the defaults. Note that this self-reference cannot
lead to paradoxes, since APPL is used in a restricted
way: it is only allowed in defaults under the scope of
the modal operator and (negated) in the right side of
the blocking of default applicability axioms. Moreover
we can very easily hide the representation of defaults.
The FAULTY user specifies defaults in a very natural
way without having to be concerned about APPL’s or
M’s. He simply writes

(Rl (BlRD(-x) ==> FLlES(x)))

where Rl is the name of the default, and FAULTY does
the right thing (“==>” is to be read as “typically
implies”).

4. FAULTY’S proof procedure

FAULTY’s proof procedure is essentially a generaliza-
tion of McDermott and Doyle’s procedure for nonmono-
tonic propositional logic [McD Do 801. The easiest way
to explain it is to give some examples. Let’s talk about
Tweety again:

1) BIRD(Tweety)
2) Y APPL(R1. x) & BIRD(x) & Y FLIES(x) -> FLIES(x)

Now, of course, we want to prove FLIES(Tweety).
FAULTY first runs a standard unit resolution refutation
proof, where YQ is, for all formulas Q, treated as a
literal. We cannot derive the empty clause but we get
the interesting clause

4) STUDENT(x) -> APPL(R1.x)
3) -ld APPL(Rl.Tneety) v -M FLES(Tweety)

and we derive that John is unmarried, as it was our
intuition.

This approach turns out to be very similar to
McCarthy’s use of the AB (“abnormal”) predicate [McC
841 (but it has been developed independently from
McCarthy and was first described in [BreWi 841).
McCarthy writes defaults as

5) BIRD(x) & -AB(aspectl (x)) -> FLIES(x)

and circumscribes the formula AI3 z. To solve the prob-
lem of interacting defaults he uses cancellntion of
inheritance axiom like

This formula is interesting, because it only contains
literals beginning with -Y, we call such clauses M-
clauses. Y is intended to mean “is consistent”, so if we
knew that APPL(Rl.Tweety) and FLES(Tweety) were
consistent, we could finish our proof. Now the only way
to show that these formulas are consistent is to show
that their negation is not provable. We therefore start
two other proofs, one for -FLES(Tweety), the other
one for -APPL(Rl,Tweety). In both cases the proofs fail
without yielding M-clauses (they get the status OPEN).
This allows us to add M APPL(Rl,Tweety) and M
Flies(Tweety) in our first proof, and the empty clause is
derivable in this proof now (the proof becomes CLOSED:
FLIES(Tweety) is proven.

6) OSlXICH(x) -> AB(aspecL1 (x)).

10 / SCIENCE

to prove FLIES(Tueety) -RPPL(Rl, Tueety) -FLIES(Tucety)

yields -II APPL(Rl,Tucety)
v -II FLIES(Tuecty)

Table 1

label lng CLOSED OPEN OPEN

Table 2

to prove HILL(Jin) -APPL(R2, Jin) -HILL(Jtn) -APPL(R3, Jin)

yields -H APPL(R2. Jin) -H APPL(R3, Jin)

v -H HILL(Jin) v -H -HILL(Jln)

labcllng 1

labcllng 2

CLOSED

OPEN

OPEN

OPEN

OPEN

CLOSED

OPEN

OPEN

Table 1 shows the (sub)proofs created. Only the is only a finite number of possible instances of literals
interesting derived clauses are contained in the table. beginning with -II.

Things are not always that easy, however. Let’s look at
our millionaires example again (RRD stands for Rolls
Royce driver, CS for computer scientist, MILL for
millionaire) :

1) IrI APPL(R2.x) & RRD(x) & Y HILL(x) -> KILqx)
2) Y APPL(R3.x) k CS(x) k Y -HILL(x) -> -HILL(x)
3) RRD(Jim) & CS(Jim)

Secondly, all admissible labelings for the still unlabeled
proofs have to be found. To find out if a labeling is
admissible, one proceeds as follows: for each proof for
-Q with the label OPEN the literal Y Q is to be added to
all proofs. Now in all OPEN proofs the empty clause
must be underivable, in all CIX)SEiD proofs the empty
clause must be derivable.

Trying to prove YILL(Jim) we get the proofs shown in
Table 2.

The goal is proven, if its (sub)proof is CLOSED in all
admissible labelings.

The interesting thing here is that we can consistently
label the proofs of our example in two different ways as
failed (OPEN) or successfully finished (CLOSED). If we
label the proof for -YILL(Jim) OPEN. Y YLL(Jim) can
be added in all proofs and the proof for MILL(Jim) gets
CLOSED. But we can do it also the other way around:
labeling the proof for YlLL(JIH) OPEN makes the proof
for -YILL(Jim) CLOSED. These different labelings
correspond exactly to the different fixed points of our
theory. Since there is one labeling in which the proof
for MILL(Jim) is OPEN, YILL(Jim) is not contained in all
fixed points and hence cannot be derived.

This proof procedure is of course not the way FAULTY
actually proceeds. There are some ways to cut the
number of created proofs and the check of admissible
labelings can easily be done by a propositional prover,
but this is beyond the scope of this paper.

5. Example

The following example shows how a FAULTY knowledge
base is defined.

Generally a FAULTY proof for a goal consists of two
steps. The first step, the construction of (sub)proofs,
can semi-formally be described in the following way:

(deffaulty-kb flying-objects
(axioIna

(bird twee ty)
(penguin hansi)
(bird fred)

push the goal onto the agenda
until the agenda is empty do

remove the top element from the agenda
and start a proof for it
if the empty clause is derived, mark this proof CLOSED

else if no M-clause is derived, mark this proof OPEN
else for each literal -Y Q in each derived M-clause

unless
-Q is contained in the agenda or
there is already a proof for -Q

push -Q onto the agenda

This proof construction phase terminates, since there

(not flies fred)
(airplane jumbo)
(penguin ,x -> bird -x)
1

(defaults
(rl (bird-x ==> flies-x))
W (peng~ -3 ==> not flies -x))
(r3 (airplane 2 ==> flies 2))
(x-5 (flies-x ==> haswings -x))

i” (has-ninga_r
==> hasfeathers -x)

(exceptions
(penguin ,x -> not appl rl -x)
(airplane -x -> not appl r6 2)))

AUTOMATED REASONING / 11

The blocking of default applicability axioms are called
ezceptions in the definition. The axioms are taken
partly from [McC 841. The above definition creates the
knowledge base as an instance of a Zetalisp Flavor. We
can send messages to this knowledge base, the most
interesting message is certainly :PROVE. Here are some
examples

(send flying-objects :prove ‘@es tweety))

yields: PROVABLE

(send flying+bjects :prove ‘(flies hansi))

yields: UNPROVABLE

(send dying-objects :prove ‘(not flies hansi))

yields: PROVABLE (if the first
we would not get this result)

exception were missing,

(send flying-objects :prove ‘(h-wings jumbo))

yields: PROVABLE

(send flying-objects :prove ‘(has-feathers jumbo))

yields: UNPROVABLE

6. Problems and future work

The main problem with FAULTY is efficiency, naturally.
A set of standard resolution proofs, which themselves
are expensive enough, must be run. But we are not too
pessimistic about that. First we think, a slow implemen-
tation is better than none at all, and second there is
much room for parallelization in FAULTY’s proof pro-
cedure, so we can hope for much better efficiency when
parallel computers become available.

Another concern is that FAULTY does not record
results, since it is a pure prover. The purpose of the
Reason/Truth Maintenance Systems mentioned in the
introduction, however, was not only to make nonmono-
tonic inferences, but also to keep track of inferences
made so far. This allows axioms to be changed without
having to recompute everything. Now it’s a natural
idea to combine the two approaches and to build a rea-
son maintenance system, where all IN formulas are
actually theorems of the underlying axioms and all OUT
formulas are actually unprovable, not only currently
unproven. This system, to be called TINA (This Is No
Acronym), is under development.

Acknowledgements

The first version of FAUL7’Y was built in close
cooperation with XH. fittur. Thanks also to F. di
primio, who is the ‘father’ of BABYLON, the expert
system building tool developed in our research group.

REFERENCES

[Bre Wi 841
Brewka, G. and Wittur, K.H.
Nichtmonotone Logiken,
Universitat Bonn, lnformatik Berichte Nr. 40., 1984.

[Bre 861
Brewka, G.
Uber unnormale Vogel, anwendbare Regeln und einen
Default Beweiser.
Proc. GWAI (German Workshop on Artificial
Intelligence) 85, 1986.

[deK 861
de Kleer, J.
Extending the ATMS.
Artificial Intelligence 28, 1986.

[DOY 791
Doyle, J.
A Truth Maintenance System.
Artificial Intelligence 12, 1979.

[Goo 841
Goodwin, J.
WATSON: A Dependency Directed Inference System.
Proc. Non-Monotonic Reasoning Workshop, 1984.

[Goo 851
Goodwin, J.
A Process Theory of Non-monotonic Inference.
Proc. IJCAI 85.

[Gro 841
Grosof, B.
Default Reasoning As Circumscription.
Proc. Non-Monotonic Reasoning Workshop, 1984.

[Lif 841
Lifschitz, V.
Some Results on Circumscription.
Proc. Non-Monotonic Reasoning Workshop, 1984.

[Luk 841
Lukaszewicz, W.
Nonmonotonic Logic for Default Theories.
Proc. ECAI 1984.

[McC 801
McCarthy, J.
Circumscription - A Form of Non-Monotonic
Reasoning.
Artificial Intelligence 13, 1980.

[McC 841
McCarthy, J.
Applications of Circumscription to Formalizing
Common Sense Reasoning.
Proc. Non-Monotonic Reasoning Workshop, 1984.

[McD 821
McDermott, D.
Nonmonotonic Logic II: Nonmonotonic Modal
Theories.
JACM Vol. 29 No. 1, 1982.

[McD Do 801
McDermott, D. and Doyle, J.
Non-Monotonic Logic I.
Artificial Intelligence 13, 1980.

[Moo 851
Moore, R.C.
Semantical Considerations on Nonmonotonic Logic.
Artificial Intelligence 25(l), 1985.

[Rei 801
Reiter, R.
A Logic for Default Reasoning.
Artificial Intelligence 13, 1980.

[Rei Cri 811
Reiter, R. and Criscuolo, G.
On Interacting Defaults.
Proc. IJCAI 1981.

12 / SCIENCE

