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ABSTRACT 

We propose a system for the derivation of algo- 
rithms which allows us to use "factual knowledge" 
for the development of concurrent programs. From pre- 

. liminary program versions the system can derive new 
versions which have higher performances and can be 
evaluated by communicating agents in a parallel ar- 
chitecture. The knowledge about the facts or proper- 
ties of the programs is also used for the improve- 
ment of the system itself. 

I THE STRUCTURE OF THE SYSTEE 

We present some preliminary ideas for designing 
an interactive system which can be used for algo- 
rithm derivation. The components of the system are 
best understood by relating them to the Aurstall- 
Darlington methodology [2]. In that approach the pro- 
grammer is first asked to produce a correct version 
of the program, and thenhehas tocare about efficien- 
cy issues. Ze then improves that preliminary version 
by perfcrming "eureka steps" and applying correct- 
ness preserving transformation rules [2] (maybe with 
the help of a machine for rule application). :je gen- 
eralizethose concepts and we suggest the structure 
of a system (depicted in figure 1) where: i) the 
mathematical descriptions of the problems generalize 
the first correct program versions, ii) the factual 
knowledge [l] g eneralizes the eureka steps, and iii) 
the Logical System generalizesthemachine for the ap- 
plication of the transformation rules. 

For point i) we assume that the descriptions of 
the problems are constructive, that is, they corre- 
spond to executa.ble functional programs. We also as- 
sume that we nay have some constraints on their ex- 
ecutions as, for instance, on the number of comput- 
ing agents and their topological connections, on 
the space and time resources, etc. 
For point ii) we consider that during the develop- 
ment process the programmer acquires (maybe in an in- 
cremental way) the knowledge of some facts about the 
functions to be computed or the behaviour of the com- 
puting agents. Those new facts may or may not be log- 
ical consequences of the knowledge already available 
from the descriptions of the problems themselves. 
The Logical System of point iii) is more powerful 
than the traditional matching procedure, which ap- 
plies the transformation rules and verifies the re- 
lated validating conditions [3]. It is basically 
made out of three modules: - a Knowledge Base in 
which new facts are incrementally added by the pro-- 
grammer or the system itself, - an Analyzer-Synthe- 
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Figure 1. The structure of the general system. 

sizer which checks the correctness of the acquired 
facts and draws the logical consequences from the 
currently available Knowledge Base, and - a Transla- 
tion Algorithm which uses the checked facts for the 
(semi)automatic derivation of new and more efficient 
versions of the programs. 
The Analyzer-Synthesizer module also provides an in- 
put to the Knowledge Base. It activates a "learning 
process" by updating the historical information a- 
bout the derivations of the algorithms already per- 
formed or the effectivity of the strategies which 
have been used.That information may be very valua- 
ble for the future developments of similar algo- 
rithms with constraints. Related ideas on the struc- 
ture of a program development system were suggested 
in [7]. 

The general system we have presented is also ca- 
pable of generating approximation algorithms for 
solving problems which may require exponential re- 
sources for an exact solution. In that case,in fact, 
the knowledge of the constraints may force the trans- 
lation procedure to derive only program versions 
which use polynomial time or space. We will not dis- 
cuss this point here. 

As a first step towards the realization of the 
general system we consider a specific instance of it, 
which is suited for dealing with a class of simple 
problems of the kind studied in [2]. We assume that 
the solutions of those problems can be expressed as 
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a set of recursive equations. In that case, in fact, 
some strategies for developing programs have been 
already analyzed in the literature (see, for in- 
stance, the divide-and-conquer strategy), and the 
programmer can easily provide factual knowledge from 
his past experience or through simple considera- 
tions. 
Figure 2 shows the structure of the particular in- 
stance of the system we consider inwhat follows. 
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Figure 2. ACalculusfTrans lat ion System. 

The T ,ogical System is essentially made out of 
three parts: 
- a Calculus based on a Theorem Prover which uses 

symbolic evaluation and induction for checking 
the validity of the facts about the programs, 

- a Translation Algorithm, which translates checked 
facts into suitable communications among comput- 
ing agents, so that thederived program versions 
may achieve the desired performance, 

- a Xnowledge Base, which has a dictionary oftrans- 
formation rules and maintains the historical in- 
formation about the program derivations already 
performed. 

Our system extends the Burstall-Darlington ap- 
proach in the following respects: 
- itallowsfor thedevelopment of distributed and 

communicating algorithms from program specifica- 
tions; 

- the specification language (or the one of the 
initial program versions) may be different from 
the language of the derived programs,and there- 
fore the development of the algorithms is made 
easier; 

- the application of the transformation rules 
makes the new versions of the programs provably 
more efficient than the old ones; 

- the requirements for the desired complexity 
bounds are explicitly considered, and the system 
tries to meet them by applying transformation 
techniques which turned out to be successful in 
previous derivations. 

We assume that the factual knowledge about the 
programstobe developedis expressed as equality of 
terms. This notion will be formally defined later. 
The example we will give in the following Section 
will clarify the ideas. We will not deal here with 

the question on how the Knowldge i3ase is updatedand 
how new transformation techniques can be derived 
from old ones. 

II PROGRAM DERIVATION USING FACTUAL KNOWLEDGE 

Let us present the basic ideas of the approach 
we suggest, through an example. We consider the N 
Chinese Rings Problem. It is a generalization of a 
puzzle described in [4, p.631, and it is often anal- 
yzed in Artificial Intelligence papers. 
N rings, numbered from 1 to N, are placed on a stick. 
We are asked to remove all of them from the stickby 
a sequence of moves. We have to comply to thefollow- 
ing rule, where k (or k) denotes the move whichtakes 
away from (or puts back to) the stick the ring k: 
for k=2,. ..,Ii moves k or k can be performed iffrings 
1 ,...,k-2 are not on the stick and ring k-l is on the 
stick. 
clear(k) computes the sequence of moves whichremoves 
rings l,..., k from the stick, if initially they are 
all on the stick. Conversely, put(k) computes the 
moves for putting back rings l,...,k on the stick, 
if initially they are not on the stick. 
clear(N), recursively defined by the following pro- 
gram P written in a language called LO (definedbe- 
low), solves the puzzle. 

clear(l)=l, clear(2)=2:1, 
p. clear(k+2)=clear(k):k+2:put(k):clear(k+l) 

i 

k>O 
. put(l)=l, put(2)=1:2 - -' 
put(k+2)=put(k+l):clear(k):k+2:put(k) k>O 

Suppose that we are also required to obtain a 
linear time algorithm, i.e., an algorithm which e- 
vokes a linear number of recursive calls. Nowfactu- 
al knowledge can be used for developing the above 
program with the given complexity constraints. 
Let us denote by s the sequence of moves mp...ml 
for any sequence &nl...mp. We can supplyto our 
system the following fact Fl: put(k)=clear(k). 
The calculus C (later defined) can check it using 
induction. The cases for k=l and 2 are obvious, and 
for the recursive case we have: put(k+2)=clear(k+l): 
put(k):k+2:clear(k)=clear(k+2) because z=s. ~- 

Once the fact Fl has been accepted, the trans- 
lation algorithm Tr produces from it the following 
program version: 
Pl. clear(l)=l, 

[ 

clear(2)=2:1, 
* clear(k+2)=s:k+2:s:clear(k+l) where s=clear(k) 

This program is more efficient than program P be- 
cause a smaller number of recursive calls is gener- 
ated. However, we have not derived yet the required 
linear algorithm. raotice, in fact, that each call of 
clear(k+2) requires the value of the left son call 
clear(k) and the right son call clear(k+l) (The or- 
der of the calls we used,is the left-to-right one, 
after substituting clear(k) for s in the expression 
of clear(k+2)). 

Now a new fact about the program Pl (or P) can 
be discovered by symbolic evaluation: 
F2: clear(k+2)]0=clear(k+2)]11 for kr0. 
Later on we will give a formal definition of the lap 
guage LF of facts. For the time being it is enough 
to remark that by clear(k+2)]0 we denote the left son 
call of clear(k+2) and by clear(k+2)]11 we denote the 
right son call of the right son call of clear(k+2). 
Fact F2 is obvious because both sides are equal to 
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clear(k) (as it will be checked by our calculus us- 
ing symbolic evaluation). From fact F2 the transla- 

Its incorporation into program P2 using two memory 
locations produces: 

I;=lear(l)=l, clear(2)=2:1, tion algori thm Tr will derive the fol 
rclear(l >=I, clear(2)=2:1, 

"owing program: 

where s=clear(k)(E comm Rl)(Olcomm R2) 
(10 comm R2))decl Rl,R2 

P2: 

The informal explanation of the communication Fact T3 speeds up the computation of P2 because dur- 
ing the evaluation of clear(k+5) the repeated eval- 
uation of clear(k) may be avoided. However, there is 
no point in incorporating Fact F3 into P3 because the 
agents with names x901 and x913 will not be generated. 

annotations added by Tr is as follows. 
We assume that recursively defined functions are e- 
valuated by a set of computing agents, i.e., triples 
of the form <agentname,message> :expression. 
Messages are the local memories of the agents 
expressions are their tasks, that is, what theyhave 
to evaluate. Agents dynamically create new agents III FACTS AND SEMANTICS OF CONCURRENT PROGRAYMS 
while the computation progresses. In particular in 
our program P2 the agent <x,m>::clear ('x+2) 
the two agents <xO,mO> ::clear(k) and 

generates In this Section we will give the definition of 
the language Ll in which programs with communication 
annotations are written, and its semantics Semi. 
We will also define the language LF of facts and the 
Calculus C, while the details of the Translation Al- 
gorithm Tr will be left to the reader. The definition 
of the language LO and its semantics SemO can be de- 
rived from thelanguage Ll (and Seml) if one does not 
take into consideration the communication annotations. 
Those definitions allow us to formally analyze some 
properties of our system and to state some basic re- 
sults. 

Let start off by introducing the following pre- 
liminary notions. 
An expression e& EXP in Ll is defined by: 
e::=nlx/g(e,...)]f(e,...)\e(s ann R)le[z] where z=e' 
where ne Constants, x&Variables, gc Basic-Functions, 
f E Recursive-Functions, s E (0 ,***, 'd", Re Locations, 
and annc {comm, read, write]. -- 
A program P in Ll is a set of recursive equations 
each of which is of the form: f(e,...)=n (base case) 
or f(e,. ..)=el (recursive case) where f occurs in 
el and el is of the form: e or e decl R. 
For simplicity we assume that no nested recursive 
calls of f occur in el and there is one recursive 
case only. It is possible, however, to extend our 
results releasing those hypotheses. 

In order to define the semantics Seml of Ll we 
need first to introduce the notion of agents. 
A (computing) agent is a triple of the form: 
<agn,msg> ::e where agnsAgn,msg E:Msg, ande ECEX~. 
Agn is a set of agentnames agn defined by: 

agn::=clagnOI... Iagnk. 
Msg is a set of messages such that: i) E (the 
empty message) e Msg, and ii) R+em+W E Msg where: 
em is the empty elementary message $ or it is a 
constant elementary message ne Constants, and R and 
W are the sets of the names of the agents which read 
and write (respectively) the message em. 
CExp is a set of closed expressions defined as in Ll 
with the additional case: .agn (.agn stands for the 
value of the expression of the agent agn). 

The semantics Seml is defined in an operational 
way by assigning to each program in Ll a set of con- 
ditional rewriting rules for agents. Those rules 
tell us how to produce new sets of agents from old 
ones. They are of the form: 

set of agents <= set of agents if condition 
and they can be applied inaparallelzyby rewriting 
non-conflicting subsets of agents [5]. 

<xl,ml>::clear(k+l). 

The naming conventionfor the agents is the fol- 
lowing: the father agent with name x generates the 
sons with names xO,...,xk,...,each of which is asso- 
ciated (in the left to right order) to a recursive 
call occurring inthecorresponding programequation. 

BY e comm R we mean that a memory location R 
is kept during the evaluation of e. Let f(...)c de- 
note the call f(...) itself, and let f(...)js recur- 
sively denote the s-son call of the j-son call of 
f(... ) for O~j~k,s~{O,...,k}*. By f(...)(s comm a) 
we mean that the s-son of the agent evaluatingf(...) 
may look at the value in the location R to know the 
result of its own computation. That s-son agent will 
write its result in the location R,if it did not 
find any value there. It can easily be seen that by 
writing and reading the location 
time may be shortened. To make su 

the computation 
that unneeded 

agents are not generated, in the language Ll we have 
also the annota tions of the form: s 
s write R. The first one forces the 

read R and 
s-son to wait 

for the value of its expression to be written in the 
location R by another agent. 
Conversely s write R forces the s-son to write 
its final result in the location R and it will never 
try to read R. 
The following figure 3 shows the use of the location 
R for program P2. 

clear(k+2) 

/\‘ 
clear(k-1) clea/r(k) 

Figure 3. Using the location R for the fact F2. 

The following program P3 generates a linear num- 
ber of agents only, and it meets the desired effi- 
ciency requirements for a linear algorithm. 

P3: 
clear(2)=2:1, 

write J?.) 
where s=clear(k)(e read R)) decl R 

One more fact can be discovered about the pro- 
gram PO: 
F3: clear(k+2)]001=clear(k+2)]OlO. 
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Let a configuration be a (finite) set of agents 
and CON be the set of all configurations. 
3y r(xl,..., xk) we denote a rule-schema r: 

lh <= rh if cond 
in which xl ,...,xk are the only (meta)variable oc- 
currences. Given the constants al ,..-, ak, 

r(a1 ,...,ak) or r or lh <= rh if cond -- 
denotes a concrete &tan= of rwhich can be de- 
rived by substituting al,...,ak for xl,...,xk. 

Let c,c'ECON, and r be the rule-schema of the 
form given above. Let us define the (one-step)trans- 
ition relation of r as follows: 

r - 
- 

c -> c' holds iff cond is true and lh c c and -- 
c'=(c-lh)U rh . 
The transition relation corresponding to a sequence 
s=rl... rk of instances of rule-schemas is defined -- - 
as the composition of the transition relations 

rl rk S 
-> ,---, -> and it is denoted by -> . 

Let Semi(P) denote t'ne rule-schemas associated to 
P for any program P in Ll (Theywillbe introducedbel- 
low).The (one-step) transition relation of a pro- 

gram P in Ll (written as p>) defines the seman- 
tics of P, and it is specified as follows: 

c 2. c' holds iff there exists a non-empty fi- 
nite sequence s of instances (derived by the same 
substitution) of rule-schemas in Semi(P), s.t. for 
an arbitrary permutation s' of 5 we have: 

S’ 
- 

I c => c . 
The condition on the permutations of s is the one 
which is usually considered for expressing that the 
atomic transitions rl,...,rk refer to non-conflict- 
ing subsets of agents, 

- 
and therefore they can be 

performed in parallel. More details are given in 
a companion paper [6] where we studied the behav- 
iour of sets of communicating agents which concur- 
rently evaluate functional programs. 

Therefore for computing,for instance, the value 
of f( . ..) where f is defined by a program Pin Ll, we 
consider an initial computing agent <c,E>::f(...), 
and by applying the rewriting rules we derive new 
agents from old ones. When we eventually obtain the 
agent <e,m>.. ..n where nc Constants,we say that the 
value of f(...) is n. 

Given a program in Ll, Seml produces the rewrit- 
ing rule-schemas for agents as follows. 

1. Generation of sons with communications 
f(eO,...ep)=g(...,i(e,...)(s comm a),...,f(e',..),.., 

1 
f(el,.. )(slwriteR),..., 
j 
f(e2,..)(s2 read a),...) decl R 
k 

produces the rule-schema: 
{<x,E>::f(eO,.., e-p)} -c= (<x,x~fcj+xW>::g(..,.xO,.., 

.xi ,..,.xj ,..,.xk,...), 
<xO,E>::f(e,...),...,<xi,E>::f(e',..),..., 
<xj,E>::f(el,..),...,<xk,E>L:f(e2,...),...} 

ifBz&R Vy x # yz 
where v=[js 1 s write R <r s commR occurs in the 

j-th call}, 
and x=(ks 1 s read R or s comm R occurs in the 

k-th call}. 
xA denotes the set {xa 1 a E A}. 
The condition of the rule makes it impossible for 

an agent which has to make a reading communication, 
to generate new agents (That agent has to wait for 
the value of its expression to be computed by another 
agent). As usual, we identify by the numbers O,...,k,... 
the son calls in the left-to-right order. 

2. Base Cases 
f(eO,..., ek)=n produces: 
{<x,E>::f(eO,...,ek)} <= {<x,E>::n} 

3. Values to Fathers 
{<x,m>::g(...,.xj,...), <xj,m'>::n} <= 

{<x,m>::g(...,n,...), <xj,m'>::n} 

4. Writing Communications -- 
{<x,R-+$tW>::e, <xs,m>::n} <= 

{<x,R-+$t(W-xs)>::e, <xs,m>::n} if XSEW - 

5. Reading Communications 
{<x,RtntW>::e, <xs,m>::el} <= 

{<x,(R-xs)+n+W>::e, Cxs,m>::n} if xs ER - 

6. Basic Functions Evaluation 
{<x,m>::g(nl,...)} <= {<x,m>::v} if v=g(nl,...) 
The g in the condition is the mathematical function. 

7. Initial Agent 
For evaluating the expression f(nl,...) the initial 
configuration is: {<c,E>i:f(nl,...)}. 

The where-expressions are not considered by Seml be- 
cause one may get rid of them by substituting the 
corresponding expressions. Zowever, when applying the 
generation-of-sons rule,we assume that Seml creates 
the same agent for all substituted occurrences of the 
same where-expression. 

Now,as an example of the definition of Seml let 
us present the evaluation of clear(5). We write 
{ . ..I---->(==. agl,..., agk} for denoting that the 
agents to the left are the ones to the right, except 
for agl,..., agk (see also figure 4). 
Seml(P3) contains (besides others) the following 
rule-schemas: 
(<x,E>::clear(k+2)} <= 

{<x,{xO}t~+{xll}~::.xO:k+2:.xO:.xl, 
<xO,E>::clear(k), (rl) 

<xl,E> ::clear(k+l)} if x#yll for any y; 
(<x,E> ::clear(l)} <= {<x,E>::l}; WI 
{<x,E>:: clear(2)) <= {<x,E>::2:1}; b-3 
t<x,{xO}+- 4t{xll}>::e, <xll,m>::n} <= 

{<x,{xO}+n+-{}>::e, <xll,m>::n}; (rf+) 

{<x,CxO}tn+-O>::e, <xO,m>::el} <= 
(<x,{}-+ntC}>::e, <xO,m>::n}. WI 

The rule-schema rl comes from the Generation-of- 
Sons schema, the rule-schemas r2 and r3 from the 
Base-Cases schema, and r4 and r5 from the Writing 
and Reading Communications schemas. 
The initial agent is <c,E>::clear(5). 

C<c,E>::clear(5)} 
-----> {<&,{O} f + f- (11}~::.0:5:.0:.1, 

<O,E>::clear(3), <l,E>::xear(4)} 
----> {==, <l,(lO} f $ f {111}>::.10:4:.10:.11, 

<lO,E> ::clear(2), <ll,E>::clear(3)} 
----> {==, <11,{110} f- 4 + (1111}>::.110:3:.110:.111, 

<llO,E>::clear(l), 
<lll,E> ::clear(2)} 

----> --- (z, <llO,E>::l, <lll,E>::2:1} 
-----> {==, <l,(lO} -+ 2:l + {}>::.10:4:~:.11} 
----> (==, cl,{} -+ 2:l + {}>::.10:4:.10:.11, 

<lO,E>::2:1} 
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----> . . . {==, <l,{) -+ 2:l + {}>::2:1:4*1:2:.11} 
-B-W> I==, -a,ci10~ f + f ~m~~Gi:7:i:.iii~ 
e--e---> {e, <ll,{llO} -+ $ + (1111]>::1:3:~:2:1} 
----> <l,{} i- 2:l -+ {}>::2:1:4:1:2:1:3:1:2:1) -- 
-----> IITy -, <E,(O) + 1:3:1:2:1 +- 0>::.0:5:.0~.1~ 
-----> {==, <E,{} + 1:3:1:2:1 + {}>::.0:5:.0:.1, 

<O,E>::1:3:1:2:1) 
-----> (c, <E,{) + 1:3?:2:1 + {)>::1:3:1:2:1: 5 : - 

1:2:i:3:i:.i~ -- -- 
----> I==, <&,...>:: 1:3:1:2:1:5:1:2:1:3:1: -- -- 

2:1:%1:2:1:3:1:2:1}. -- 

E::clear(5) g--l 
//-- ---- f 

O::clear(3) 
\ 

l::clear(4) ) %':-I 

06 -;-bj;r;;; ! 
10: :clear(2) 

' llllLr(2) llO::cl;ar(l) :: 
II 

1 2:l 

Figure 4. Flow of messages when computing 
clear(5) using P3. 

Notice that the sons agents after sending their 
values to the fathers, remain in the configurations 
because they may perform a writing communication. 
An improved operational semantics may garbage-col- 
lect the agents which are no longer needed for com- 
puting the final result. 

The syntax of the language LF of facts is de- 
fined as follows: 
e: :=. . . (as in Ll without communication annotations) 

1 els with s E {O,l,...,k]* 
fact::= f(e,...)]sl=f(e',...)]s2 

Igl(...,f(...>,...>=gZ(...,f(...),...) 

The Calculus C for checking facts about a given 
program P will be presented assuming that Phas onlyone 
recursive case for the defined function f and the 
facts are of the first form. 

A fact el]sl=e2]s2 is accepted by the Calculus 
C iff both expressions turn out to be identical (and 
different from error) after applying the rules of 
the 3asic-Functions algebra and the following rewrit- 
ing rules: 

i) e]E +--> e 
ii) n]s +---> error if S#E 
iii) x]s +---> error if S#& 
iv) g(eO,...,ek)]js +--z if O<j<k then ej]s - 

else error 
v) f(eO,...,ek)]s +---> if f(eO,...,ek)=e is an - 

instance of the recursive case 
of P then e]s else error 

For simplicity in the facts presented in the 
previous Section we used the s-selectors with ref- 
erence to the recursive calls only, so that for in- 
stance, g ( . . ..f(...)...,f(...)Y..)]js +---> f(...)]s. 

j k j 

The fact F2 is accepted by the Calculus C be- 
cause: clear(k+2)]0 +---> clear(k) and 
clear(k+2)]11 +---> clear(k+l)]l +---> clear(k). 

Fact Fl of Section II is an example of the sec- 
ond form of facts. 

IV SOME RESULTS AND CONCLUSIONS _~--~ 

The following results can be shown about our sys- 
tem for developing concurrent programs [S]. 

Correctness Theorem for Communications. 
If for every program P in LO and s ann R and s'ann R 
occurring in Tr(P) in the recursive call at positicn 
j and j'(respectively) f(...)]js=f(...)]j's' holds, 
and Tr(P) is deadlock-free then Tr is correct, 
that is, for every P in LO the programs P and Tr(P) 
compute the same function. 0 

The proof of the above Theorem would require 
the formalization of the Translation Algorithm Tr, 
which we didnot presenthere. We have seen Tr in ac- 
tion when developing program P in Section II. 

Proposition. Given a program P in LO, if a read- 
ing communication takes place during the evaluation 
of Tr(P) with a non-linear recursion then an expo- 
nential number of calls can be saved, and in some 
cases one may obtain a linear time algorithm (see 
for instance, program P3). 0 

That Proposition is important because it guar- 
antees the performance improvements of the derived 
programs, and often it allows to satisfy the given 
complexity requirements. 

We have seen that by adding suitable communica- 
tions to the functional programs we can derive more 
efficient executions. 
A general question arises: Is there an optimal set 
of facts from which one can obtain the most effi- 
cient communications to be added to a given program? 
The answer is positive in the case of programs with 
one recursive case only. It can be shown that given 
a fact of the form f(...)]sl=f(...)]s2, the corre- 
sponding optimal communication is produced by eras- 
ing the longest initial equal subsequence of sl and 
s2. For instance, from the fact F3 of Section II 
we can get fact F4: clear(k+2)]01=clear(k+2)]10. It 
can easily be seen that the communications derived 
from F4 save more computations steps than those de- 
rived from F3. 

We have presented some basic idea for the con- 
struction of a knowledge base system for developing 
concurrent functional programs. The system uses a 
calculus for checking the correctness of supplied 
"factual knowledge" (or facts) about the functions 
to be computed. It then translates those facts into 
suitable communications among concurrent agents so 
that the derived computations may satisfy given com- 
plexity constraints. 
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