
FACTUAL KNOWLEDGE FOR DEVELOPING CONCURRENT PROGRAMS

Albert0 Pettorossi
IASI-CNR

Viale Manzoni 30
00185 Roma (Italy)

ABSTRACT

We propose a system for the derivation of algo-
rithms which allows us to use "factual knowledge"
for the development of concurrent programs. From pre-

. liminary program versions the system can derive new
versions which have higher performances and can be
evaluated by communicating agents in a parallel ar-
chitecture. The knowledge about the facts or proper-
ties of the programs is also used for the improve-
ment of the system itself.

I THE STRUCTURE OF THE SYSTEE

We present some preliminary ideas for designing
an interactive system which can be used for algo-
rithm derivation. The components of the system are
best understood by relating them to the Aurstall-
Darlington methodology [2]. In that approach the pro-
grammer is first asked to produce a correct version
of the program, and thenhehas tocare about efficien-
cy issues. Ze then improves that preliminary version
by perfcrming "eureka steps" and applying correct-
ness preserving transformation rules [2] (maybe with
the help of a machine for rule application). :je gen-
eralizethose concepts and we suggest the structure
of a system (depicted in figure 1) where: i) the
mathematical descriptions of the problems generalize
the first correct program versions, ii) the factual
knowledge [l] g eneralizes the eureka steps, and iii)
the Logical System generalizesthemachine for the ap-
plication of the transformation rules.

For point i) we assume that the descriptions of
the problems are constructive, that is, they corre-
spond to executa.ble functional programs. We also as-
sume that we nay have some constraints on their ex-
ecutions as, for instance, on the number of comput-
ing agents and their topological connections, on
the space and time resources, etc.
For point ii) we consider that during the develop-
ment process the programmer acquires (maybe in an in-
cremental way) the knowledge of some facts about the
functions to be computed or the behaviour of the com-
puting agents. Those new facts may or may not be log-
ical consequences of the knowledge already available
from the descriptions of the problems themselves.
The Logical System of point iii) is more powerful
than the traditional matching procedure, which ap-
plies the transformation rules and verifies the re-
lated validating conditions [3]. It is basically
made out of three modules: - a Knowledge Base in
which new facts are incrementally added by the pro--
grammer or the system itself, - an Analyzer-Synthe-

Andrzej Skowron
institute of Mathematics University of North

Warsaw University Carolina at Charlotte
PKiN IX p.907 Computer Science Department

00-901 Warsaw (Poland) Charlotte, NC 28223 (USA)

Mathematical Descriptions
of the Problems =
Constructive Functions +
Computational Constraints

I . TFE LOGICAL SYSTmJ --I I

Factual Knowledge on
the Functions and the
Computing Agents

Efficient
- Concurrent

Programswith
Communicating

Agents

Figure 1. The structure of the general system.

sizer which checks the correctness of the acquired
facts and draws the logical consequences from the
currently available Knowledge Base, and - a Transla-
tion Algorithm which uses the checked facts for the
(semi)automatic derivation of new and more efficient
versions of the programs.
The Analyzer-Synthesizer module also provides an in-
put to the Knowledge Base. It activates a "learning
process" by updating the historical information a-
bout the derivations of the algorithms already per-
formed or the effectivity of the strategies which
have been used.That information may be very valua-
ble for the future developments of similar algo-
rithms with constraints. Related ideas on the struc-
ture of a program development system were suggested
in [7].

The general system we have presented is also ca-
pable of generating approximation algorithms for
solving problems which may require exponential re-
sources for an exact solution. In that case,in fact,
the knowledge of the constraints may force the trans-
lation procedure to derive only program versions
which use polynomial time or space. We will not dis-
cuss this point here.

As a first step towards the realization of the
general system we consider a specific instance of it,
which is suited for dealing with a class of simple
problems of the kind studied in [2]. We assume that
the solutions of those problems can be expressed as

10 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

a set of recursive equations. In that case, in fact,
some strategies for developing programs have been
already analyzed in the literature (see, for in-
stance, the divide-and-conquer strategy), and the
programmer can easily provide factual knowledge from
his past experience or through simple considera-
tions.
Figure 2 shows the structure of the particular in-
stance of the system we consider inwhat follows.

Functional Programs
(Language LO & Semantics SemO)

and Complexity Constraints

Calculus

. ii

C for Translation Efficient
checking Facts

T

Concurrent

--------e-e --__ Programs with ------
Knowledge Base: Communicating

Agents
Transformation Techniques

Historical Information
) (Language Ll &
1 Semantics Seml)

1
Factual Knowledge

as equality of terms
(Language of Facts LF)

Figure 2. ACalculusfTrans lat ion System.

The T ,ogical System is essentially made out of
three parts:
- a Calculus based on a Theorem Prover which uses

symbolic evaluation and induction for checking
the validity of the facts about the programs,

- a Translation Algorithm, which translates checked
facts into suitable communications among comput-
ing agents, so that thederived program versions
may achieve the desired performance,

- a Xnowledge Base, which has a dictionary oftrans-
formation rules and maintains the historical in-
formation about the program derivations already
performed.

Our system extends the Burstall-Darlington ap-
proach in the following respects:
- itallowsfor thedevelopment of distributed and

communicating algorithms from program specifica-
tions;

- the specification language (or the one of the
initial program versions) may be different from
the language of the derived programs,and there-
fore the development of the algorithms is made
easier;

- the application of the transformation rules
makes the new versions of the programs provably
more efficient than the old ones;

- the requirements for the desired complexity
bounds are explicitly considered, and the system
tries to meet them by applying transformation
techniques which turned out to be successful in
previous derivations.

We assume that the factual knowledge about the
programstobe developedis expressed as equality of
terms. This notion will be formally defined later.
The example we will give in the following Section
will clarify the ideas. We will not deal here with

the question on how the Knowldge i3ase is updatedand
how new transformation techniques can be derived
from old ones.

II PROGRAM DERIVATION USING FACTUAL KNOWLEDGE

Let us present the basic ideas of the approach
we suggest, through an example. We consider the N
Chinese Rings Problem. It is a generalization of a
puzzle described in [4, p.631, and it is often anal-
yzed in Artificial Intelligence papers.
N rings, numbered from 1 to N, are placed on a stick.
We are asked to remove all of them from the stickby
a sequence of moves. We have to comply to thefollow-
ing rule, where k (or k) denotes the move whichtakes
away from (or puts back to) the stick the ring k:
for k=2,. ..,Ii moves k or k can be performed iffrings
1 ,...,k-2 are not on the stick and ring k-l is on the
stick.
clear(k) computes the sequence of moves whichremoves
rings l,..., k from the stick, if initially they are
all on the stick. Conversely, put(k) computes the
moves for putting back rings l,...,k on the stick,
if initially they are not on the stick.
clear(N), recursively defined by the following pro-
gram P written in a language called LO (definedbe-
low), solves the puzzle.

clear(l)=l, clear(2)=2:1,
p. clear(k+2)=clear(k):k+2:put(k):clear(k+l)

i

k>O
. put(l)=l, put(2)=1:2 - -'
put(k+2)=put(k+l):clear(k):k+2:put(k) k>O

Suppose that we are also required to obtain a
linear time algorithm, i.e., an algorithm which e-
vokes a linear number of recursive calls. Nowfactu-
al knowledge can be used for developing the above
program with the given complexity constraints.
Let us denote by s the sequence of moves mp...ml
for any sequence &nl...mp. We can supplyto our
system the following fact Fl: put(k)=clear(k).
The calculus C (later defined) can check it using
induction. The cases for k=l and 2 are obvious, and
for the recursive case we have: put(k+2)=clear(k+l):
put(k):k+2:clear(k)=clear(k+2) because z=s. ~-

Once the fact Fl has been accepted, the trans-
lation algorithm Tr produces from it the following
program version:
Pl. clear(l)=l,

[

clear(2)=2:1,
* clear(k+2)=s:k+2:s:clear(k+l) where s=clear(k)

This program is more efficient than program P be-
cause a smaller number of recursive calls is gener-
ated. However, we have not derived yet the required
linear algorithm. raotice, in fact, that each call of
clear(k+2) requires the value of the left son call
clear(k) and the right son call clear(k+l) (The or-
der of the calls we used,is the left-to-right one,
after substituting clear(k) for s in the expression
of clear(k+2)).

Now a new fact about the program Pl (or P) can
be discovered by symbolic evaluation:
F2: clear(k+2)]0=clear(k+2)]11 for kr0.
Later on we will give a formal definition of the lap
guage LF of facts. For the time being it is enough
to remark that by clear(k+2)]0 we denote the left son
call of clear(k+2) and by clear(k+2)]11 we denote the
right son call of the right son call of clear(k+2).
Fact F2 is obvious because both sides are equal to

Automatic Programming: AUTOMATED REASONING / 2’

clear(k) (as it will be checked by our calculus us-
ing symbolic evaluation). From fact F2 the transla-

Its incorporation into program P2 using two memory
locations produces:

I;=lear(l)=l, clear(2)=2:1, tion algori thm Tr will derive the fol
rclear(l >=I, clear(2)=2:1,

"owing program:

where s=clear(k)(E comm Rl)(Olcomm R2)
(10 comm R2))decl Rl,R2

P2:

The informal explanation of the communication Fact T3 speeds up the computation of P2 because dur-
ing the evaluation of clear(k+5) the repeated eval-
uation of clear(k) may be avoided. However, there is
no point in incorporating Fact F3 into P3 because the
agents with names x901 and x913 will not be generated.

annotations added by Tr is as follows.
We assume that recursively defined functions are e-
valuated by a set of computing agents, i.e., triples
of the form <agentname,message> :expression.
Messages are the local memories of the agents
expressions are their tasks, that is, what theyhave
to evaluate. Agents dynamically create new agents III FACTS AND SEMANTICS OF CONCURRENT PROGRAYMS
while the computation progresses. In particular in
our program P2 the agent <x,m>::clear ('x+2)
the two agents <xO,mO> ::clear(k) and

generates In this Section we will give the definition of
the language Ll in which programs with communication
annotations are written, and its semantics Semi.
We will also define the language LF of facts and the
Calculus C, while the details of the Translation Al-
gorithm Tr will be left to the reader. The definition
of the language LO and its semantics SemO can be de-
rived from thelanguage Ll (and Seml) if one does not
take into consideration the communication annotations.
Those definitions allow us to formally analyze some
properties of our system and to state some basic re-
sults.

Let start off by introducing the following pre-
liminary notions.
An expression e& EXP in Ll is defined by:
e::=nlx/g(e,...)]f(e,...)\e(s ann R)le[z] where z=e'
where ne Constants, x&Variables, gc Basic-Functions,
f E Recursive-Functions, s E (0 ,***, 'd", Re Locations,
and annc {comm, read, write]. --
A program P in Ll is a set of recursive equations
each of which is of the form: f(e,...)=n (base case)
or f(e,. ..)=el (recursive case) where f occurs in
el and el is of the form: e or e decl R.
For simplicity we assume that no nested recursive
calls of f occur in el and there is one recursive
case only. It is possible, however, to extend our
results releasing those hypotheses.

In order to define the semantics Seml of Ll we
need first to introduce the notion of agents.
A (computing) agent is a triple of the form:
<agn,msg> ::e where agnsAgn,msg E:Msg, ande ECEX~.
Agn is a set of agentnames agn defined by:

agn::=clagnOI... Iagnk.
Msg is a set of messages such that: i) E (the
empty message) e Msg, and ii) R+em+W E Msg where:
em is the empty elementary message $ or it is a
constant elementary message ne Constants, and R and
W are the sets of the names of the agents which read
and write (respectively) the message em.
CExp is a set of closed expressions defined as in Ll
with the additional case: .agn (.agn stands for the
value of the expression of the agent agn).

The semantics Seml is defined in an operational
way by assigning to each program in Ll a set of con-
ditional rewriting rules for agents. Those rules
tell us how to produce new sets of agents from old
ones. They are of the form:

set of agents <= set of agents if condition
and they can be applied inaparallelzyby rewriting
non-conflicting subsets of agents [5].

<xl,ml>::clear(k+l).

The naming conventionfor the agents is the fol-
lowing: the father agent with name x generates the
sons with names xO,...,xk,...,each of which is asso-
ciated (in the left to right order) to a recursive
call occurring inthecorresponding programequation.

BY e comm R we mean that a memory location R
is kept during the evaluation of e. Let f(...)c de-
note the call f(...) itself, and let f(...)js recur-
sively denote the s-son call of the j-son call of
f(...) for O~j~k,s~{O,...,k}*. By f(...)(s comm a)
we mean that the s-son of the agent evaluatingf(...)
may look at the value in the location R to know the
result of its own computation. That s-son agent will
write its result in the location R,if it did not
find any value there. It can easily be seen that by
writing and reading the location
time may be shortened. To make su

the computation
that unneeded

agents are not generated, in the language Ll we have
also the annota tions of the form: s
s write R. The first one forces the

read R and
s-son to wait

for the value of its expression to be written in the
location R by another agent.
Conversely s write R forces the s-son to write
its final result in the location R and it will never
try to read R.
The following figure 3 shows the use of the location
R for program P2.

clear(k+2)

/\‘
clear(k-1) clea/r(k)

Figure 3. Using the location R for the fact F2.

The following program P3 generates a linear num-
ber of agents only, and it meets the desired effi-
ciency requirements for a linear algorithm.

P3:
clear(2)=2:1,

write J?.)
where s=clear(k)(e read R)) decl R

One more fact can be discovered about the pro-
gram PO:
F3: clear(k+2)]001=clear(k+2)]OlO.

28 / SCIENCE

Let a configuration be a (finite) set of agents
and CON be the set of all configurations.
3y r(xl,..., xk) we denote a rule-schema r:

lh <= rh if cond
in which xl ,...,xk are the only (meta)variable oc-
currences. Given the constants al ,..-, ak,

r(a1 ,...,ak) or r or lh <= rh if cond --
denotes a concrete &tan= of rwhich can be de-
rived by substituting al,...,ak for xl,...,xk.

Let c,c'ECON, and r be the rule-schema of the
form given above. Let us define the (one-step)trans-
ition relation of r as follows:

r -
-

c -> c' holds iff cond is true and lh c c and --
c'=(c-lh)U rh .
The transition relation corresponding to a sequence
s=rl... rk of instances of rule-schemas is defined -- -
as the composition of the transition relations

rl rk S
-> ,---, -> and it is denoted by -> .

Let Semi(P) denote t'ne rule-schemas associated to
P for any program P in Ll (Theywillbe introducedbel-
low).The (one-step) transition relation of a pro-

gram P in Ll (written as p>) defines the seman-
tics of P, and it is specified as follows:

c 2. c' holds iff there exists a non-empty fi-
nite sequence s of instances (derived by the same
substitution) of rule-schemas in Semi(P), s.t. for
an arbitrary permutation s' of 5 we have:

S’
-

I c => c .
The condition on the permutations of s is the one
which is usually considered for expressing that the
atomic transitions rl,...,rk refer to non-conflict-
ing subsets of agents,

-
and therefore they can be

performed in parallel. More details are given in
a companion paper [6] where we studied the behav-
iour of sets of communicating agents which concur-
rently evaluate functional programs.

Therefore for computing,for instance, the value
of f(. ..) where f is defined by a program Pin Ll, we
consider an initial computing agent <c,E>::f(...),
and by applying the rewriting rules we derive new
agents from old ones. When we eventually obtain the
agent <e,m>.. ..n where nc Constants,we say that the
value of f(...) is n.

Given a program in Ll, Seml produces the rewrit-
ing rule-schemas for agents as follows.

1. Generation of sons with communications
f(eO,...ep)=g(...,i(e,...)(s comm a),...,f(e',..),..,

1
f(el,..)(slwriteR),...,
j
f(e2,..)(s2 read a),...) decl R
k

produces the rule-schema:
{<x,E>::f(eO,.., e-p)} -c= (<x,x~fcj+xW>::g(..,.xO,..,

.xi ,..,.xj ,..,.xk,...),
<xO,E>::f(e,...),...,<xi,E>::f(e',..),...,
<xj,E>::f(el,..),...,<xk,E>L:f(e2,...),...}

ifBz&R Vy x # yz
where v=[js 1 s write R <r s commR occurs in the

j-th call},
and x=(ks 1 s read R or s comm R occurs in the

k-th call}.
xA denotes the set {xa 1 a E A}.
The condition of the rule makes it impossible for

an agent which has to make a reading communication,
to generate new agents (That agent has to wait for
the value of its expression to be computed by another
agent). As usual, we identify by the numbers O,...,k,...
the son calls in the left-to-right order.

2. Base Cases
f(eO,..., ek)=n produces:
{<x,E>::f(eO,...,ek)} <= {<x,E>::n}

3. Values to Fathers
{<x,m>::g(...,.xj,...), <xj,m'>::n} <=

{<x,m>::g(...,n,...), <xj,m'>::n}

4. Writing Communications --
{<x,R-+$tW>::e, <xs,m>::n} <=

{<x,R-+$t(W-xs)>::e, <xs,m>::n} if XSEW -

5. Reading Communications
{<x,RtntW>::e, <xs,m>::el} <=

{<x,(R-xs)+n+W>::e, Cxs,m>::n} if xs ER -

6. Basic Functions Evaluation
{<x,m>::g(nl,...)} <= {<x,m>::v} if v=g(nl,...)
The g in the condition is the mathematical function.

7. Initial Agent
For evaluating the expression f(nl,...) the initial
configuration is: {<c,E>i:f(nl,...)}.

The where-expressions are not considered by Seml be-
cause one may get rid of them by substituting the
corresponding expressions. Zowever, when applying the
generation-of-sons rule,we assume that Seml creates
the same agent for all substituted occurrences of the
same where-expression.

Now,as an example of the definition of Seml let
us present the evaluation of clear(5). We write
{ . ..I---->(==. agl,..., agk} for denoting that the
agents to the left are the ones to the right, except
for agl,..., agk (see also figure 4).
Seml(P3) contains (besides others) the following
rule-schemas:
(<x,E>::clear(k+2)} <=

{<x,{xO}t~+{xll}~::.xO:k+2:.xO:.xl,
<xO,E>::clear(k), (rl)

<xl,E> ::clear(k+l)} if x#yll for any y;
(<x,E> ::clear(l)} <= {<x,E>::l}; WI
{<x,E>:: clear(2)) <= {<x,E>::2:1}; b-3
t<x,{xO}+- 4t{xll}>::e, <xll,m>::n} <=

{<x,{xO}+n+-{}>::e, <xll,m>::n}; (rf+)

{<x,CxO}tn+-O>::e, <xO,m>::el} <=
(<x,{}-+ntC}>::e, <xO,m>::n}. WI

The rule-schema rl comes from the Generation-of-
Sons schema, the rule-schemas r2 and r3 from the
Base-Cases schema, and r4 and r5 from the Writing
and Reading Communications schemas.
The initial agent is <c,E>::clear(5).

C<c,E>::clear(5)}
-----> {<&,{O} f + f- (11}~::.0:5:.0:.1,

<O,E>::clear(3), <l,E>::xear(4)}
----> {==, <l,(lO} f $ f {111}>::.10:4:.10:.11,

<lO,E> ::clear(2), <ll,E>::clear(3)}
----> {==, <11,{110} f- 4 + (1111}>::.110:3:.110:.111,

<llO,E>::clear(l),
<lll,E> ::clear(2)}

----> --- (z, <llO,E>::l, <lll,E>::2:1}
-----> {==, <l,(lO} -+ 2:l + {}>::.10:4:~:.11}
----> (==, cl,{} -+ 2:l + {}>::.10:4:.10:.11,

<lO,E>::2:1}

Automatic Programming: AUTOMATED REASONING / 29

----> . . . {==, <l,{) -+ 2:l + {}>::2:1:4*1:2:.11}
-B-W> I==, -a,ci10~ f + f ~m~~Gi:7:i:.iii~
e--e---> {e, <ll,{llO} -+ $ + (1111]>::1:3:~:2:1}
----> <l,{} i- 2:l -+ {}>::2:1:4:1:2:1:3:1:2:1) --
-----> IITy -, <E,(O) + 1:3:1:2:1 +- 0>::.0:5:.0~.1~
-----> {==, <E,{} + 1:3:1:2:1 + {}>::.0:5:.0:.1,

<O,E>::1:3:1:2:1)
-----> (c, <E,{) + 1:3?:2:1 + {)>::1:3:1:2:1: 5 : -

1:2:i:3:i:.i~ -- --
----> I==, <&,...>:: 1:3:1:2:1:5:1:2:1:3:1: -- --

2:1:%1:2:1:3:1:2:1}. --

E::clear(5) g--l
//-- ---- f

O::clear(3)
\

l::clear(4)) %':-I

06 -;-bj;r;;; !
10: :clear(2)

' llllLr(2) llO::cl;ar(l) ::
II

1 2:l

Figure 4. Flow of messages when computing
clear(5) using P3.

Notice that the sons agents after sending their
values to the fathers, remain in the configurations
because they may perform a writing communication.
An improved operational semantics may garbage-col-
lect the agents which are no longer needed for com-
puting the final result.

The syntax of the language LF of facts is de-
fined as follows:
e: :=. . . (as in Ll without communication annotations)

1 els with s E {O,l,...,k]*
fact::= f(e,...)]sl=f(e',...)]s2

Igl(...,f(...>,...>=gZ(...,f(...),...)

The Calculus C for checking facts about a given
program P will be presented assuming that Phas onlyone
recursive case for the defined function f and the
facts are of the first form.

A fact el]sl=e2]s2 is accepted by the Calculus
C iff both expressions turn out to be identical (and
different from error) after applying the rules of
the 3asic-Functions algebra and the following rewrit-
ing rules:

i) e]E +--> e
ii) n]s +---> error if S#E
iii) x]s +---> error if S#&
iv) g(eO,...,ek)]js +--z if O<j<k then ej]s -

else error
v) f(eO,...,ek)]s +---> if f(eO,...,ek)=e is an -

instance of the recursive case
of P then e]s else error

For simplicity in the facts presented in the
previous Section we used the s-selectors with ref-
erence to the recursive calls only, so that for in-
stance, g (. . ..f(...)...,f(...)Y..)]js +---> f(...)]s.

j k j

The fact F2 is accepted by the Calculus C be-
cause: clear(k+2)]0 +---> clear(k) and
clear(k+2)]11 +---> clear(k+l)]l +---> clear(k).

Fact Fl of Section II is an example of the sec-
ond form of facts.

IV SOME RESULTS AND CONCLUSIONS _~--~

The following results can be shown about our sys-
tem for developing concurrent programs [S].

Correctness Theorem for Communications.
If for every program P in LO and s ann R and s'ann R
occurring in Tr(P) in the recursive call at positicn
j and j'(respectively) f(...)]js=f(...)]j's' holds,
and Tr(P) is deadlock-free then Tr is correct,
that is, for every P in LO the programs P and Tr(P)
compute the same function. 0

The proof of the above Theorem would require
the formalization of the Translation Algorithm Tr,
which we didnot presenthere. We have seen Tr in ac-
tion when developing program P in Section II.

Proposition. Given a program P in LO, if a read-
ing communication takes place during the evaluation
of Tr(P) with a non-linear recursion then an expo-
nential number of calls can be saved, and in some
cases one may obtain a linear time algorithm (see
for instance, program P3). 0

That Proposition is important because it guar-
antees the performance improvements of the derived
programs, and often it allows to satisfy the given
complexity requirements.

We have seen that by adding suitable communica-
tions to the functional programs we can derive more
efficient executions.
A general question arises: Is there an optimal set
of facts from which one can obtain the most effi-
cient communications to be added to a given program?
The answer is positive in the case of programs with
one recursive case only. It can be shown that given
a fact of the form f(...)]sl=f(...)]s2, the corre-
sponding optimal communication is produced by eras-
ing the longest initial equal subsequence of sl and
s2. For instance, from the fact F3 of Section II
we can get fact F4: clear(k+2)]01=clear(k+2)]10. It
can easily be seen that the communications derived
from F4 save more computations steps than those de-
rived from F3.

We have presented some basic idea for the con-
struction of a knowledge base system for developing
concurrent functional programs. The system uses a
calculus for checking the correctness of supplied
"factual knowledge" (or facts) about the functions
to be computed. It then translates those facts into
suitable communications among concurrent agents so
that the derived computations may satisfy given com-
plexity constraints.

REFERENCES
[l] BarstOW,D. "An Experiment in Knowledge-Based Auto-

matic Programming" Artif. Intel. 12:2-(1979)73-119.
r2]Burstall,R.M.,J.Darlington " A Transformation Svs- _ _ ,

temfor DevelopingRecursive Programs"JACI", 24:1(77)
[3]Bauer,F.L.& al. "Notes on the Project CIP" TUM-

INFO-77291nfomatik. TechnischeUniv. Miinchen (1977)
[4]Iverson,K.E."AProgrammingLanguage"Wiley,N.Y. (62)
[5]Pettorossi,A.,A.Skowron "A Hethodology for Improv-

ing Parallel Programs by Adding Communications"
LNCS n.208, Springer Verlag, 1985, pp.228-250.

[6]Pettorossi,A.,A.Skowron "Using Facts for Improv-
ing the Parallel Execution of Functional Programs"
In Proc.1986 Int.Conf.Parall.Processing, Illin.(86)

[7]Scherlis,W.L., D.Scott "First Steps Towards Infer-
ential Programming" In Proc. IFIP 83 North Holland
(1983).

30 / SCIENCE

