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ABSTRACT 

Deliberation typically involves the formation of a plan or 
intention from a set of values and beliefs. I suggest that 
deliberation, or “practical reasoning,” is a form of 
normative reasoning and that the understanding and 
construction of reasoning systems that can deliberate and 
act intentionally presupposes a theory of normative 
reasoning. The language and semantics of a deontic logic 
is used to develop a theory of defeasible reasoning in 
normative systems and belief systems. This theory may be 
applied in action theory and to artificial intelligence by 
identifying expressions of values, beliefs, and intentions 
with various types of modal sentences from the language. 

While there have been some investigations of the structure of 
normative reasoning in deontic logic, Bayesian decision theory, 
and philosophical action theory and ethics, there does not yet 
exist a general theory of normative reasoning. Such a theory is 
necessary for the understanding and construction of 
decision-making systems that use normative principles and 
policies to form plans, strategies, and intentions. A general 
logic of the all-purpose “normative reasoner,” or “deliberator,” 
is needed. 

Practical reasoning, or deliberation, in which 
intentions to act are formed from a set of desires and beliefs, 
may be a form of normative reasoning. Expressions of desires 
and intentions may be treated as rules (norms) or evaluative 
judgments (Davidson 1977). There also may be a normative 
component in belief-systems. It has been suggested, for 
example, that the rules of thumb that enable a system to form 
tentative conclusions from incomplete information are 
expressions of “ratiocinative desires” (Doyle 1983a); and that 
“epistemic policies” guide an epistemic agent in revising beliefs 
in the light of new information (Stalnaker 1984). The 
expressions of desires and policies may be interpreted as 
norms, and therefore an understanding of normative reasoning 
would be useful in a theory of reasoning with incomplete or 
new information. 

$1. The structure of normative reasoning. 

Several features of normative systems must be 
respected by any adequate formal representation of normative 
reasoning. First, some rules are defeasible, that is, they are 
generally valid but may have exceptions. Secondly, there is a 
fundamental distinction between prima facie rules and 
all-things-considered normative commitments. The prima facie 
rules of a system, together with a set of facts or opinions 
determine the system’s all-things-considered commitments. 

Thirdly, for some set of sentences the all-things-considered 
(a.t.c.) closure should be non-monotonic, that is, set s is 
included in set s* but the a.t.c. closure of s is not included in 
the a.t.c. closure of s*. 

These features of rules may be illustrated simply as 
follows. Suppose that Nixon told you a secret after you 
promised to comply with these requirements: 

(a) You should not tell the secret to Reagan. 

(b) You should not tell the secret to 
Gorbachev. 

(c) You should tell Reagan if you tell 
Gorbachev. 

(d) You should tell Gorbachev if you tell 
Reagan. 

Suppose you break promise (b) by a certain time, 

(e) You told the secret to Gorbachev, 

and you are trying to decide whether you should tell Reagan. If 
no other rules or facts are relevant then, to comply with the 
requests as given, clearly you should tell the secret to Reagan, 
because of rule (c)--and in spite of (a). The prima facie rule (a) 
is defeasible because of (c). After you have told Gorbachev 
you have an all-things-considered commitment expressed by 
the rule 

(f) You should tell the secret to Reagan. 

Rules (a) and (f) conflict, yet correct resolution is possible if 
we recognize that stipulation (a) is a valid prima facie rule 
whereas (f) expresses a valid all-things-considered 
commitment after it is settled that you have violated rule (b) by 
telling Gorbachev. 

A prima facie rule may be “defeated,” in which case it 
cannot reliably be used to draw normative conclusions. In the 
example, after you told the secret to Gorbachev the rule (a) was 
defeated. To use a prima facie rule in particular circumstances 
to detach an all-things-considered normative conclusion one 
needs to know that the prima facie rule is not defeated in those 
circumstances. If it is not defeated, then it can be used--as in 
the detachment of(f) from (c) and (e). 

It does not appear possible to deal separately with the 
issues of defeasibility and normative reasoning, for even our 
simple story cannot be represented satisfactorily without 
defeasible rules - we cannot for instance replace (a) and (b) bv 
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(a’) You should not tell Reagan if you do not 
tell Gorbachev 

and 

(b’) You should not tell Gorbachev if you do 
not tell Reagan. 

without omitting from the analysis the significant fact that 
telling neither is preferable to telling both. 

$2. The Deontic Logic 3-D. 

Deontic logic is a branch of modal logic whose main 
goals are to provide a formal representation of rules - typically 
it does so with modal operators for “ought” and “permissible” 
- and to provide a semantics for such expressions. A 
satisfactory deontic logic must be able to represent the 
distinction between defeasible prima facie (p.f.) rules and 
all-things-considered (a.t.c.) rules. Moreover it should not 
permit the detachment of all-things-considered conclusions 
from defeated rules; and it must have principles that state when 
such detachment is acceptable. 

The deontic logic 3-D (Loewer and Belzer 1983) 
meets these requirements. The language of 3-D is a 
propositional language containing the unary connectives T and 
F to which are added two dyadic deontic operators 0(-/-) and 
!(-/-), a necessity operator L, and a dyadic operator U(-,-). The 
wffs of 3-D are characterized as follows: (a) propositional 
variables are wffs, and (b) if P,Q are wffs then the following 
(in addition to the usual truth functional wffs) are wffs: 
O(Q/P), !(Q/P), LP, and U(Q,P). These statements may be 
read informally as follows: 

O(Q/P): it ought prima facie to be that Q, 
given P. 

!(Q/P): it ought all-things-considered to be 
that Q, given P. 

LP: it is settled that P. 

U(Q,P): P determines the normative status of 
Q. 

For tautology T, let OQ = O(Q/T) and !Q = !(Q/T). 

A 3-D model structure is a 6-tuple (W,T,H,I,s,F) 
where W is a set of momentary world stages, T is the set of 
natural numbers (the set of times), H is a subset of the set of 
functions from T into W (these functions are possible 
histories), I is a set (of “perspectives”), I is a function from T 
x H x I into the set of weak orderings on H, and F is a 
function from T x H x I into H. 

Call v=<t,h,i>, for time t, history h, and perspective i 
a temporal perspective. The weak ordering s;v is a ranking of 
possible histories according to the extent to which the histories 
comply with the values of perspective i at time t in history h 
(cf. Lewis 1973, 1974). The most highly ranked histories are 
those at which no value or rule is violated. As one descends the 
ranking more and/or more serious violations occur. This allows 
for the interpretation of prima facie rules. O(Q/P) is to hold 
relative to the temporal perspective v just in case Q is true at 
each of the most highly ranked P-histories in the p.f. ranking 
IV. 

The set Fv is the set of histories accessible at v. For an 
objective interpretation we stipulate that 

F(<t,h,i>) = F(<t,h,i*>) 

for all i* (that is, in the objective interpretation the perspective i 
is not relevant to accessibility).* Let P be settIed at v just in 
case P is true at each of the histories in the set Fv (cf. 
Thomason, 1970). LP says that P is settled. 

Now we want to use the p.f. ranking IV and the set 
Fv to define a new ranking +‘v with which to interpret 
expressions of all-things-considered (a.t.c.) commitments 
!(Q/P). The main idea to be used is that the a.t.c. ranking for v 
can be defined as the ranking that results when all histories that 
are inaccessible at v are removed from the p.f. ranking for v. 
Given an ordering x on H and subset y of H, let the restriction 
of x to y be the ordering z that results by removing from x each 
element of H not in y. ** Let c’v be the restriction of IV to 
Fv. !(Q/P) is to hold at v just% case Q is true at each most 
highly ranked history in s;‘v at which P is true. 

An interpretation [ ] on a 3-D model structure is 
defined as follows: [ ] assigns to each propositional variable a 
subset of T x H x I where we stipulate that for non-modal P: 

<h,t,i> E [P] iff for all t* ET and i* E I, 
<h,t*,i*> E [PI. 

In other words, only histories--and not perspectives or 
times--are relevant to the evaluation of non-modal propositional 
variables. Recursion clauses for the truth functional 
connectives are as expected. Now let [Q/P] be the class of 
weak orderings 5 on H that are such that: 

Ej(j E [P&Q] and (k)(k E [P&-Q] + not&j)). 

In other words, [Q/P] is the class of weak orderings on H in 
which some P&Q-history is ranked more highly than any 
P&-Q-history. *** For v=<h,t,i>, and j,k E H: 

v E [O(Q/P)] iff Iv E [Q/P]. 

v E [!(Q/P)] iff s’v E [Q/P]. 

v E [LPI iff Fv s [PI. 

For U(Q,P) let us say first that for xa, f (v,x) is the set of 
most highly ranked histories in x according to IV. Also for 
x,y GH, let 

* Cf. $5 below for a subjective interpretation of L that does 
depend on i. 

** For example, suppose that H = {1,2,3,4,5} and x is the 
ordering 

(4s) < (1,2,3) 
and y = { 1,2,4}. The restriction z of x to y would be the 
ordering 

4 < (1,2). 

*** The proposition expressed by P sometimes is identified 
with the set of histories [PI. Analogously, the class of 
rankings [Q/P] may be identified with the w-m expressed by 
the sentence “it ought to be that Q, given P,” which contains no 
p.f. or a.t.c. qualifiers. 
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x =P y 

say 

xc[P]iffy<[P]andx n[P]#Aiffy n[P];t/\. 

The recursion clause for U(Q,P) is as follows: 

v E v(Q,P)] iff (x)(x SH & FVGX. + 
f (VD’l n x> =Q f MPI)). 

This clause guarantees that if 

v E KXQWI 
and 

v E KJ(Q,P>l 

then there is no R such that v E [LR] and 

v E [-O(Q/P&R)]. 
In reasoning on the basis of defeasible principles of the form 
O(Q/P), U(Q,P) plays the role of asserting roughly that “other 
things are equal” - more precisely, that relative to what is 
settled, P determines the normative status of Q. 

The logic of both 0(-/-) and !(-/-) is CD (van Fraasen 
1972, Lewis 1974). The logic of the objective L is S3. The 
question of a complete proof theory for 3-D remains 
Here are some important formulas that are valid in 3-D: 

open. 

(1) O(Q/P) & LP & U(Q,P) + !Q. 

(2) O(Q/P&R) & U(Q,P&R) & LP + !(Q/R). 

(3) -O(Q/P&R) & U(-Q,P&R) & LP + 
-!(Q/R). 

(4) -O(Q/P) & U(-Q,P) & -!P + -!Q. 

(5) O(Q/P) & U(Q,P) + -L-Q. 

(6) O(Qi’P) & U(Q,P) +-L-P. 

(7) LQ + !Q, 

(8) !Q + -L-Q. 

(9) U(Q,P) & LR + (O(Q/P) = O(Q/P&R)). 

(10) U(Q,P) & U(R,P) + U(Q&R,P). 

(11) U(Q,P) & LR -+ U(Q,P&R). 

(12) !(Q/P&R) & LP + !(Q/R). 

(13) -!(Q/P&R) & LP j -!(QW. 

(14) !P & L(P + Q) + !Q. 

An application of 3-D can be illustrated with the 
“promising” example introduced above (for other applications, 
cf. Loewer and Belzer 1983, 1986; Belzer 1986a). The 
relevant rules may be represented as 

(a#) O-r 

where r stands for ‘You tell the secret to Reagan’ and g for 
‘You tell the secret to Gorbachev’. Suppose that from your 
perspective each of these rules is true and that g is settled. If 
there is no settled c such that -O(r/g & c), then you are 
committed to !r. On the other hand, if -Lg holds then so also 
does !-r , 

A.t.c. closure is non-monotonic in 3-D in the sense 
that a.t.c. commitments relative to a set s of p.f. rules and 
settled propositions may not hold relative to a superset of s. 
For instance, let s be the set that contains (a#)-(d#) and let s* 
include s and also contain Lg. !-r is contained in the a.t.c. 
closure of s but not in the a.t.c of s* even though s* includes 
s. The non-monotonicity of a.t.c. closure is owing to the 
defeasibility of the p.f. rules, where 

O(Q/P) is d&easibZe at v iff there is 
some R such that -O(Q/P & R) holds at v. 

(cf. Belzer 1985a). A rule O(Q/P) is defeated at v iff there is 
some R such that both -O(Q/P & R) and LR hold at v. For 
instance if p is settled at v, then O-g is defeated at v. 

To see the role of the U-statements in 3-D, suppose 
that O(Q/P) and LP hold at v. We cannot conclude that !Q for 
for -O(Q/P&R) and LR may hold at v; if so, O(Q/P) is 
defeated at v. However we can infer !Q at v if we know both 
that O(Q/P) and LP hold at v and that U(Q,P) also holds at v, 
for U(Q,P) guarantees that no proposition that holds at v 
defeats O(Q/P). 

To complicate the example a bit more, suppose also 
that 0(-r/t) is true, for t ‘You tell the secret to Thatcher’, and 
that t as well as g is settled. Is !r true now? It depends. O(r/g) 
and 0(-r/t) may be equally important in the relevant system, or 
one may have more weight than the other. Such relationships 
can be expressed in 3-D, as is shown in the following section. 

$3. Conflicts and Relative Weight. 

The distinction between prima facie and 
all-things-considered reasons for an action is familiar to legal, 
ethical, and action theorists. Philosophers have stressed the 
importance of this distinction for formal deontic systems. Much 
of the work in deontic logic is of marginal interest to those 
concerned with practical reasoning because it ignores problems 
due to conflicts of prima facie reasons (Raz 1978). 3-D 
however is an exception to this claim, for it can be used to 
represent conflicting prima facie reasons. In a prima facie 
conflict, both O(Q/P) and O(S/R) are true and 

(P & R & -(S = Q)) 

is settled. The metaphorical notion of relative weight that is 
important in the resolution of conflicts can be defined, as 
follows: 

O(Q/P) has greater relative weight 
than O(S/R) iff O(Q/P & R & -(S = Q)) 

(cf. Belzer 1985a,b). In the example discussed above, 
suppose that O(r/g & t) is true; if so, then O(r/g) has greater 
relative weight than 0(-r/t), so !r would hold if O(r/g & t) itself @W 0-g 
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is not defeated. On the other hand, if neither O(r/g & t) nor 
0(-r/g & t) is true then neither O(r/g) nor 0(-r/t) has greater 
weight than the other, and it is reasonable to suggest that 
neither !r nor !-r should hold. 

The importance of being able to formulate precise 
expressions of relative weight between rules is that it may make 
possible a theory of practical reasoning and rational 
decision-making that does not depend on quantitative utility 
functions. While implementation of practical reasoning 
eventually may involve a combination of qualitative rules and 
numerical evaluation functions, Bayesian statistical decision 
making has played only a limited role in artificial intelligence. It 
often is pointed out that it is not easy to apply Bayesian 
techniques directly because of both the amount of information 
that must be supplied in the form of conditional probabilities, 
prior probabilities, and utilities and the awkwardness of 
modifying the formulation (Doyle 1983b). However, as 
Ginsberg (1985) suggests, these problems cannot be regarded 
as conclusive without having compared Bayesian 
implementations with others based on qualitative rules having 
differing relative weights. 

$4. Applying 3-D in Belief Systems. 

Belief systems also may be structured by a distinction 
that parallels the distinction between p.f. and a.t.c. norms in 
normative systems, for we can distinguish between p.f. and 
a.t.c. expectations. Expectations may be treated as rules or 
norms (for example, as expressions of “ratiocinative desires” 
or “epistemic policies” for belief revision). However, even if 
one does not accept the idea that there is a normative 
component in belief systems a 3-D type semantics 3-Db can 
be used as follows to interpret defeasible reasoning in belief 
systems. 

Let the language of 3-Db be a propositional language 
containing ‘I and F, and two dyadic belief operators B(-l-j and 
L(-/-j, a monadic belief operator S, and a dyadic operator 
V(-/-j. 

B(Q/P): Q is p.f. expected, given P. 

L(Q/P): Q is a.t.c expected, given P. 

SP: it is certain that P. 

V(Q,P): P determines the doxastic status of Q. 

For tautology T, let BQ = B(Q/T) and LQ = L(Q/T). 

A 3-Db model structure is a 6-tuple (W,T,H,I,$,G) 
where W, T,H, and I are as above, $ is a function from T x H 
x I into the set of weak orderings on H, and G is a function 
from T x H x I into H. For a temporal perspective v=<t,h,i>, 
let $‘v be defined as the restriction of $v to Gv. In an 
interpretation [ ] on a 3-Db model structure we have 

v E [B(Q/P)] iff $v E [Q/P]. 

v E [L(Q/P)] iff $‘v E [Q/P]. 

v E [SP] iff Gvg[P]. 

The weak ordering $v is a ranking according to the p.f. 
expectations at v. All birds fly and every Quaker is a pacifist at 
each of the most highly ranked histories in $v, but non-pacifist 
Quakers and non-flying birds may be found at lower reaches. 
The prima facie rules of the form B(Q/P) express defeasible 
rules of thumb that are used in “the common practice of 
jumping to conclusions when actions demand decisions but 
solid knowledge fails” (Doyle 1983a, p.1) - they are used to 
form tentative expectations about the world in the absence of 
complete information. On the other hand sentences of the form 
SQ express one’s “solid information.” The “tentative 
expectations” to which one is committed by one’s p.f. 
expectations and solid information may be expressed with 
sentences of the form L(Q/P) . The distinction between the 
operators S and L corresponds to the distinction between what 
one feels certain about and what one “expects” (but may not 
feel certain about) given one’s certainties and p.f. expectations. 
For instance, one may see that a certain flower beneath a certain 
is yellow--one is certain about that--while merely “expecting 
a.t.c.” that it grew from the seed one planted in the spring and 
that it would disappear were one to untie the goat. 

To consider an example suppose that you p.f. expect 
Quakers to be pacifists, so you p.f. expect that Nixon is a 
pacifist if he is a Quaker, 

W B (p/q), 

and you are certain that Nixon is a Quaker, 

VW sq. 

If B(p/q) is not defeated, then you are committed to the a.t.c. 
expectation Nixon is a pacifist, Lp. Of course B(p/q) might be 
defeated, as happens if also you are certain that Nixon is a 
republican, 

W Se, 

while expecting p.f. that Nixon is not a pacifist if he is a 
Republican, 

W) W-p/e), 

and if B(-p/e) has greater relative weight than B(p/q), that is, 

(i#) B(-p/e & q). 

The logic of both B(-/-) and L(-/-j is CD while the 
logic of S is “weak $5.“” Two important theorems about B 
(also L) may be used to test the conjecture that 3-Db is useful 
as a logic of defeasible expectations in belief systems: 

(15) B(Q/l’) & -B(Q/P&R) + B(-R/Q). 

(16) B(Q/P) & -BQ -+ B(-P/-Q). 

(15’) L(Q/P) & -L(Q/P&Rj -+ L(-R/Q). 

(16’) L(Q/P) & -LQ + L(-P/-Q). 

For V(Q,P) let g(v,x) be the set of most highly ranked histories 
in x according to $v. 

* S5 minus the reflexivity axiom, cf. Moore 1983. Even 
though S is used to express what one feels certain about, 

v E [V(Q,P)] iff (x)(x LH & Gv C_ x. + 
gW’1 fi x1 =Q gWP1)). 

sQ&-Q 
nonetheless is consistent (i.e., S is a doxastic, not an 
epistemic, operator). 

Planning: AUTOMATED REASONING i -t 1 



Other valid formulas of 3-Db include: 

(17) B(Q/P) & SP & V(Q,P) + LQ. 

(18) B(Q/P&R) & V(Q,P&R) & SP + 
UQN. 

(19) -B(Q/P&R) & V(-Q,P&R) & SP + 
-L(QW 

(20) mB(Q/P) & V(-Q,P) & -LP + -LQ. 

(21) B(Q/P) & V(Q,P) + -S-Q. 

(22) B(Q/P) & V(Q,P) + -S-P. 

(23) SP + LP. 

(24) LP + -S-P. 

(25) V(Q,P) & SR + (B(Q/P) = B(Q/P&R)). 

(26) WQP) & WV') + V(Q&W'). 

(27) V(Q,P) & SR + V(Q,P&R). 

(28) L(Q/P&R) & SP + L(Q/R). 

(29) -L(Q/P&R) & SP + -L(Q/R). 

(30) LP & S(P + Q) + LQ. 

Each of the operators B(-/-j, L(-/-j, and S are “implicit” belief 
operators (cf. Levesque 1984) - both BQ and LQ for instance 
may hold at v even though Q is not “actively” or “explicitly” 
expected by the perspective v. The focus of this section is on 
the distinction between the differing types of expectations, and 
yet these or similar distinctions also may be necessary in a 
theory of “explicit” belief (cf. Nute 1986, Belzer 1986b). 

$5. Practical Reasoning. 

The 3-D and 3-Db systems provide the foundation 
for a general theory of practical reasoning. Let the language of 
3-Dpr be the combined languages of 3-D and 3-Db. The 
values of an agent are expressed by sentences of the form 
O(Q/P) while B(Q/P), SQ, and L(Q/P) express various types of 
beliefs. Plans are expressed by sentences of the form !(Q/P), 
whereas an intention is a special type of plan (one whose 
expression !(Q/P) is such that the subject in Q is the reflexive 
“I-myself’). An intention in which the predicate of Q is 
qualified by “here and now” is a volition, or immediate 
intention (Brand, 1984). 

In 3-Dpr a 3-Db belief sub-system may be embedded 
into a 3-D normative reasoning system by imposing a 
subjective interpretation on the operator L of 3-D. Recall that 
the interpretation of L in 3-D is objective if L is interpreted 
independent of perspectives. If so 3-D sentences of the form 
!(Q/P) specify the “objective” a.t.c. commitments of a 
perspective i (that is, at least, the commitments relative to the 
settled facts at t and the values of i at t). In practical reasoning, 
however, we want to represent commitments based not on the 
settled facts at t but rather on the beliefs--in particular, the a.t.c. 
expectations--of i at t. L is the only operator shared by the 
languages of 3-D and 3-Db, and it is the key to embedding a 
belief system in a normative reasoning system. We give L a 

subjective interpretation by requiring that LQ (“it is settled that 
Q”) holds at v=<t,h,i> in the 3-Dpr embedding system iff LQ 
(“it is a.t.c. expected that Q”) holds at v in the 3-Db belief 
sub-system. The set of settled propositions in the practical 
reasoning system is to be identified at each time with the set of 
a.t.c. expectations 
committed. 

to which the belief sub-system is 

A 3-Dpr model structure is an 
(W,T,H,I,s,F,$,G) where W, T,H,I,s, and F 
3-D while $ and G are as in 3-Db. Let 

8-tuple 
are as in 

fY$‘V 

denote the set of most highly ranked histories in the 
a.t.c.-belief ranking $‘v. The following condition on 3-Dpr 
model structures guarantees that L is interpreted coherently 
(and it guarantees that a proposition is settled at v just if it is 
a.t.c.-expected at v): 

WV) Fv = n $‘v. . 

Interpretations on 3-Dpr model structures are as in 3-D and 
3-Db. The logic of 0(-/-j, !(-/-), B(-/-j, and L(-/-) is CD. 
Weak S5 is the logic of S (as it is also for the monadic O,!,B, 
and L). Each of (l)-(30) is included among the valid formulas 
of 3-Dpr. 

In a “well-balanced” agent there are interesting 
relationships between expressions of various mental states. 
3-Dpr offers a conception of consistency between an agent’s 
“implicit” values, beliefs (of three types), plans, intentions, and 
volitions; this is a conception of “internal rationality,” that is, 
rationality independent of what one’s values and beliefs happen 
to be. It may be argued for instance that !(Q/P) expresses an 
acceptable plan for an agent iff !(-Q/P) is not entailed by the 
agent’s values and beliefs. 

Given condition (F$‘) and the subjective interpretation 
of L, some validities of 3-D are counter-intuitive in 3-Dpr, 
in particular, (7) and (8). (7) says thatthe a.t.c.-expectations 
of the well-balanced agent also are plans. But surely this is not 
necessarily so, since one may expect things about which one 
is indifferent. Similarly 

(31) SQ + !Q 

which also holds in 3-Dpr is unacceptable for the same 
reason. It is plausible even to hold that if one is certain that Q 
then one does not rationally plan for Q, that is, 

(7’) SQ + -!Q 

(cf. Feldman 1983, Loewer and Belzer 1986). On the other 
hand, according to (8) one reasonably plans that Q only if one 
does not a.t.c. expect -Q; but this also should fail because 
sometimes one reasonably acts intentionally to bring about the 
best even while expecting the worst. It is at least more 
plausible, however, to hold that if one is certain that -Q then 
one should not be planning that Q, i.e., 

(32) !Q + -S-Q, 

which also is valid. The truth condition for !(Q/P) can be 
revised so that (7) and (8) are rejected, and (7’) is validated 
while (32) is maintained: 

v E [!(Q/P)] ff i 2% E [Q/P] and not GvglJ’ + Q]. 
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Given this revision each of (1), (2), (13), and (14) also fail, 
but are replaced by 

(1’) O(Q/Pj & LP & U(Q,P) & -SQ + !Q. 

(2’) O(Q/P&R) & LP & U(Q,P&R) & 
* -S(R -+ Q) + !(Q/R). 

(13’) -!(Q/P&R) & SP + -!(Q/R). 

, (14’) !P & L(P + Qj & -SQ + !Q. 

The “promising” and “pacifist” examples given earlier can be 
combined to illustrate an application of 3-Dpr. Suppose 
holding for your temporal perspective v the values (a#) - (d#), 
the certainties (f#j and (g#j, and the p.f. expectations (e#j, 
(h#j, and (i#j; and suppose also that for some odd reason you 
are certain that if Nixon is not a pacifist then you will tell the 
secret to Reagan, 

(j#j S(mp + rj. 

Are you committed by these beliefs and values to telling 
Gorbachev? Assuming no other beliefs or values are relevant 
to that question you fiit can conclude L-p because 

B(-p/q&e) & S(q&e) & V(-p,q&e) + L-p 

is an instance of theorem (17), S(q&e) is entailed by Sq and 
Se, and V(-p,q&ej holds if (as supposed) no other beliefs and 
values are relevant. Yet L-p and (‘j#j together entail Lr, by 
(30). So indeed !g does hold because 

O(g/rj & Lr & U(g,r) & -Sg + !g 

is in instance of (l’), and both U(g,rj and WSg hold given the 
“no other things are relevant” assumption in the example. Your 
values and expectations commit you to telling Gorbachev the 
secret. This is an example of practical reasoning in which 
tentative a.t.c. expectations first are detached from p.f. 
expectations and certainties, and secondly a.t.c. commitments 
are detached from values and the a.t.c. expectations. 

56. Summary 

A theory of normative reasoning needs to be able to 
handle the defeasibility of prima facie rules that, together with 
facts or beliefs, determine all-things-considered commitments. 
The semantics of 3-D characterizes these concepts in a formal 
system, and a similar system 3-Db characterizes related 
concepts in the context of belief. Deliberation, or practical 
reasoning, may be understood as a form of normative 
reasoning. The combined languages of 3-D and 3-Db thus are 
useful in expressing the mental states that figure in practical 
reasoning. The system 3-Dpr combines the semantics of 3-D 
and 3-Db with the condition (F$‘) which embeds a belief 
system within a more general normative system. 3-Dpr offers 
a conception of consistency among implicit values, beliefs of 
three types, plans, intentions, and volitions. 
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