
PHYSICS FOR ROBOTS

James G. Schmolze

BBN Laboratories Inc.
10 Moulton Street

Cambridge, MA 02238

ABSTRACT

Robots that plan to perform everyday tasks need
knowledge of everyday physics. Physics For Robots
(PFR) is a representation of part of everyday physics
directed towards this need. It includes general
concepts and theories, and it has been applied to tasks
in cooking. PFR goes beyond most AI planning
representation schemes by including natural processes
that the robot can control. It also includes a theory
of mater-la1 composition so robots can identify and
reason about physical objects that break apart, come
together, mix, or go out of existence. Following on
Naive Physics (NP), issues about reasoning mechanisms
are temporarily postponed, allowing a focus on the
characterization of knowledge. However, PFR departs
from NP in two ways. (1) PFR characterizes the robot’s
capabilities to act and perceive, and (2) PFR replaces
the NP goal of developing models of actual common
sense knowledge. Instead, PFR includes all and only
the knowledge that robots need for planning, which is
determined by analyzing proofs showing the
effectiveness of robot I/O programs.
1. Introduction

Physics For Robots (PFR) represents knowledge of
everyday physics according to the physical capabllltles
and planning needs of robots. This knowledge is
intended to be an important part of the overall
knowledge given to a robot. Physical capabihties are
represented within PFR by specifying the perceptual
and action functionality of a (hypothetical) robot. This
specification is comprrsed by an I/O programming
language, whose primitive instructions correspond to
primitive perceptions and actions, and an operational
semantics, which describes the real world effects of
executing I/O programs. (Given the complexity of the
real world, this semantics is necessarily rncomplete.)
The hypothetical robot used for this research has
capabilities that are beyond current, but are within
near future technology. Some of the robot’s
capabilities and an I/O program are presented later in
this paper.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by ONR under Contract Nos. N00014-77-C-0378 and

N00014-85-C-0079. The views and conclusions contained in
this document are those of the author and shouid not be
interpreted as necessar i ly represent i ng the official

pal icies, either expressed or imp1 ied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

PFR’s
similar

representation of everyday physics is very
in style to Hayes’ Naive Physics (NP)

formalizations [Hayes 85a, Hayes 85b]. Like NP, PFR
focuses on characterizrng knowledge while postponing
implementation considerations. However, NP is
ultimately after realistic models of common sense (see

[Hayes 85a], page 5) whereas PFR 1s after the
knowledge that robots need to plan for everyday tasks.
As a result, PFR includes a specification of the robot’s
I/O capabilities whereas NP postpones such
considerations. More importantly, PFR includes a
criteria for judging the value of its representations
whereas NP must rely on the existing, and small, body
of what is known about common sense along with one’s
own intuitions.

One begins to evaluate a PFR representation by
selecting a set of everyday tasks for the robot to
perform, and for each task, designing an I/O program
that, when executed, will cause the robot to
successfully perform the task. An I/O program is one
whose primitive instructions are only perceptions and
actions for the robot to perform (see Section 4). The
test for PFR is whether or not its theory of everyday
physics is adequate to prove that the execution of
each program will accomplish its corresponding task.
The more programs/tasks that can be proven correct
using a PFR representation, the greater the PFR’s
expressive power and the better the PFR. Further,
given two expressively similar PFR representations, one
should choose the simpler of the two, and one should
choose the representation that is most in keeping with
what is known about common sense.

I point out that there are two notions of correctness
here. One is whether or not executnrg a program w-ill
actually accomplish the given task in the real world.
PFR cannot be used to show this directly. For
hypothetical robots, only informal arguments can used
here. For actual robots, the programs can be executed
and the robots observed. The second notion of
correctness corresponds to whether or not executing
the program accomplishes the task according to the
theories of a PFR representation. The extent to which
these two notions of correctness are in agreement is
the extent that the representation is successful.
2. Composition of Materials

Physical obJects in the everyday world can come into
or go out of existence, break apart, come together or
mix Examples from cooking include water that boils
and turns to steam, or the pouring of hot water over
coffee grounds to create a cup of coffee. PFR must
provide the robot with knowledge to deal with such
phenomena by giving it a theory of material

t 6 i SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

composition
skills to:

Such a theory provides a robot with the

0 identify physical ObJects as they come into or go
out of existence, or go through transformations,
and

o detsrmine the properties of whole ObJects from the
properties of their parts, and vice versa, including
when the parts are not readily identifiable (such as
the portion of the hot water that went into a cup
of coffee)

M >- theory of material composition includes three
components. (1) a theory of what constitutes the
physical ObJeCtS, (2) the part--whole relation along with
a theory that identifies parts from wholes and vice
versa, and (3) a theory that determines the properties
of parts from the properties of wholes and vice versa.
In this paper, I wrll only touch on (1) and (2), and will
ignore (3) completely given that I will focus on
processes. (See [Schmolze 861 for a fuller treatment of
material composition.)

Before discussing physical objects, I now introduce
some basic elements of PFR. Instants of time are
represented as individuals where they form a
continuum. Let “seconds” map real numbers to
instants where “seconds(n)” denotes n seconds. Points
in space form a 3-dimensional continuum. Changing
relations are represented as functrons on instants of
time. Formulas and terms for these relations are
written with the time argument separated. For
example, “occ.space(x)(t)” denotes the set of points in
space that x occupies at time t. “occ.space(x)(t)” is
defined iff x is a physical ObJect, t is an instant of
time. and x exists at t. Further, x must occupy a
non-empty set. Also, “vol(x)(t)” denotes the volume
occupied by a physical ObJect at time t, which is
defined as the volume of “occ.space(x)(t)“, and which 1s
greater than zero for existing physical objects.

obJects -- possibly objects at the level of atoms and
molecules. For example, the process of evap oration can
be described by having small pieces of liquid turn to
gas and leave the container holding the liquid. Also,
by adding some sugar to water and stirring, the entire
glass of water becomes sweet. By using small pieces
again, one can describe mixtures and show the spread
of the sweetness as a dispersion of small pieces of
sugar. When hot water IS poured over coffee grounds.
a new ObJect is created. coffee. It too is a mixture,
which can be useful for determlnlng that, say% the
coffee is hot
of water that

1t because
were ho

1s primarily composed of pieces
ust a few seconds earlier

Hayes ([Hayes 85b], page 74) eschews an atomistic
theory because he considers it to be beyond the realm
of common sense. In traditional physics, there is a
complicated gap to bridge between the microscopic and
macroscopic versions of certain properties such as
temperature, volume and state. Does the robot need to
know about actual atoms and molecules, and if not,
what simpler theory will meet the robot’s needs?

Fortunately, there IS a way to meet the robot’s needs
without introducing microscopic versions of
temperature, volume and state. To this end, I invent a
class of physical objects that I call granules. Their
essential properties are that:

o they are small enough to be a part of all solid,
liquid and gaseous physical objects -- they are too
small to be seen individually,

o they are large enough to have the usual
macroscopic properties of temperature, state and
volume (each has a volume greater than zero),

o they are pure, be they purely water, wood, or
whatever, and

o they have no proper parts, and consequently, no
two granules share parts nor occupied space.

A quantity, borrowed from Hayes [Hayes 85a], is a
set of measurements of a given type. For example, the
temperatures and the volumes each form a quantity.
Each quantity forms a continuum. I will introduce
functions from the reals to various quantities, in the
style of Hayes, as needed. For example, “cups(4)”
denotes a volume of 4 cups.

Types that are not trme-varying are called basic
types. An example is being a physical object or a
temperature. (See [Schmolze 861 for the reasons for
the above design choices.)

Regarding notation, boolean function names, i.e.,
predicate names, will be capitalrzed. Other function
names are written in all lower case. Names of constants
are written in all capital letters. Names of variables
are written in lower case. Variable names beginning
with “t” are implicitly of type “Instant”, which denotes
the basic type for instants of time. I will write “(t,..Q)”
to denote the open interval from t, to t,. Also, I will
use the following shorthand when a time varying
predicate, say P, is true over an open interval.

h UP(t, . . tp) - [Vt& tt, 1 ~t*m(t)ll (1)

Further, granules of the same type are similar. For
example, two water granules with the same heat
content will have the same temperature and state.
Granules form the smallest physical objects in my
ontology. I let “Granule” denote a basic type for
granules.

By coupling the part-whole relation with granules, I
have a powerful too1 for describing material
composition. Let “Part(x,y)(t)” be true iff x and y are
physical objects that exist at t and x 1s a part of y at
t. “Part” forms a partial order over existing physical
objects at each instant. From these relations, I can
define a function, called “gset”, from physical objects
to the sets of granules that comprise them at an
instant.

[v.tl[gsetb)ttj = 1 x tG ranule(x) A Part(x,y)(t)l] (2)
I will use the ability to determine an object’s “gset” as
the criteria for identifying the object. For example, let
there be a glass called G that contains some liquid at
time T. If G and T are identified to the robot, I can
identify the liquid in G as W with the following.

gset(W)(T) = {x[Granule(x) /: Liquid(x)(T) /; (3)
Contains(G,x)(T){

Being a physical object is a basic type, and I write
“Phys.obj(x)” when x 1s an individual physical ObJect.
In order to represent physical obJects coming into and
going out of existence, I introduce existence as a
property of physical obJects. Let “Exists(x)(t)” be true
when x is a physical ObJect that exists at time t
Physical ObJeCtS include those ObJects normally
considered as such, e g., books, cars, computers, the
atmosphere, oceans and glasses of water. However, for
certain types of transformations that physical ObJects
undergo, it will be useful to include very small physical

“Liquid(x)(t)” is true iff x exists and is entirely liquid
at t. (“Solid” and “Gas” are defined similarly for the
solid and gaseous states.) “Contains(x,y)(t)” iff x and y
exist and x contains y at t. Borrowrng from Hayes

[Hayes 85b], I have used containment to ldentlfy this
liquid ObJect.

1 can go a step further and write a general rule that
allows the robot to identify a contained quantity of
liquid as a physical object. The first line in Formula 4
requires that there is some liquid rn a container and

Planning: AUTOMATED REASONING i t5

the remainder asserts the existence of the object
formed by all the liquid in the container.

hl K [ZIx][Contains(c,x)(t) A Liquid(x)(t)]) + (4)
[ZIl][Phys.obj(l) A Exists(l)(t) A

gset(l)(t)=(ylGranule(y) A Liquid(y)(t) A

Contains(c,y)(t) I]]
Here, x can be a single liquid granule.

Space does not permit a thorough examination of the
utlhty of granules: The interested reader should refer
to [Schmo<ze 861 where there are rules that allow the
robot to identify liquid ObJects
elsewhere, are mixed with other

that are poured
liquids, partially

evaporate, etc. In addition, there are rules that allow
the- robot to infer various properties of these
transformed objects, such as their temperature, volume
or composition,- all without special knowledge about the
properties of microscopic objects. Further, the robot
needs to reason about granules only when necessary; it
can reason about normal physical objects without
considering granules. The general PFR representation
thus far allows a wide variety of such rules to be
formulated.
objects to
application

However, the actual rules for identifying
be given

dependent.
to a particular robot will be

3. Simple Processes
Any-robot that deals with the everyday world must

be able to predict changes due to nature. An
important source of natural changes is natural
processes, and so, PFR includes them. I have limited my
study to a class of process types that I call simple. All
simple process types have an enabling condition and an
effect, -both of which depend only on the physical
condition of the world (and not on, say, the intention
of any agent). Basically, an instance of a simple
process type occurs when and only when the enabling
condition is true for some set of physical objects, and
the process has the given effect on the world while it
is occurring. For example, whenever a faucet’s knob is
open, water flows from the faucet. Or, whenever two
physical objects are of different temperatures and are
in thermal contact, heat flows from the hotter to the
cooler object. I note that many real processes are not
simple.

Given instances of simple process types (i.e., simple
processes), a robot must be able to determine when
they occur, how to identify them (e.g., deciding when
two processes are the same or different), and what
their effects are. Further, these factors must be
determinable from limited information. For example, it
must be possible to determine a process’ effects
without knowing when the process will end. Also, the
manner of describing effects must allow for either
discrete or continuous changes. For example, heat is
measured on a continuum, so heat transfer causes
continuous changes. However, water flowing from a
faucet is (eventually) measured by the transfer of
whole water granules, so faucet flow causes discrete
changes. Finally, the representation must allow for
situations where several processes affect the same
property of the very same objects, such as a heating
and cooling process occurring simultaneously on the
same pot of water.

I note that Hayes [Hayes 85a, Hayes 85b] does not
address these points direct&. Others, such as [Forbus
851 and [Hendrix ‘731 have addressed some but not all
of them.

I represent simple processes as individuals. Let
“Occurs(x)(t)” be true iff x is an event that is
occurring at time t. “Occurs” for events is analogous
to “Exists” for physical objects.

I will illustrate the essential properties of simple
process types by describing the process type for water
flowing from a kitchen faucet. Along with that, I will
describe faucets, objects associated with faucets (such
as their controlling knobs), and their operation. Let
“Faucet.flow” be a basic type for faucet flow processes.
Each simple process has a set of players, i.e., the
physical objects that are involved. For “Faucet.flow”,
the only player IS the faucet, with which I assocrate
other objects. In my model, a faucet has a knob, a
head, a sink, a supply container that holds the faucet’s
SUPPlY and, of course, the water In the supply
container. Let “Kltchen.faucet” and “Faucet.knob” be
basic types for kitchen faucets and their controlling
knobs, respectively. The knob has fully closed and
fully open positions, and there are positions in
between. Let “closed.position(k)(t)” denote the space
that a faucet knob, k, must occupy in order to be fully
closed at time t. Let “open.position(k)(t)” be similar,
but for the fully open position. From these functions, I
can define “Closed.knob(k)(t)” as true iff k is a faucet
knob that is fully closed at t and “Open.knob(k)(t)” as
true iff k is a fully open faucet knob at t.

[Vk,t][Closed.knob(k)(t)+Faucet.knob(k) A (5)
occ.space(k)(t)=closed.position(k)(t)] A

[Vk,t][Open.knob(k)(t)eFaucet.knob(k) A

occ.space(k)(t)=open.position(k)(t)]
If neither is true, the knob is in between. In addition,
let “knob.of.faucet(f)(t)“, “supply.cont.of.faucet(f)(t)”
and “supply.of.faucet(f)(t)” denote the existing knob,
supply container and water supply, respectively, of f
when f is an existing faucet.

The enabling condition for the “Faucet.flow” process
type is written over an interval of time (I will soon
explain why) and is true iff a faucet, f, is not fully
closed over some open interval, “(t,..t,)“. The following
is written with f, t, and tp free. k is used to simplify
the formula.

[VtG(t,..t2)][-CIosed.knob(k)(t)] (6)
where “k” is “knob.of.faucet(f)(t)”

I will write “Faucet.not.closed(f){t,,t.$ as a shorthand
for Formula 6.

The effect of a “Faucet.flow” process is that water
flows from the faucet’s supply container to a receiving
container, which is either the faucet’s sink, or an open
container under the faucet’s head. To describe the
effect, I rely on two defined predicates, “Liq.xfer” and
“rate.liq.xfer” (only “rate.liq.xfer” will be formally
presented here). “Liq.xfer(c,,c2,tb,te)” is true iff the
following holds.

1.
2.

There is some liquid in a container, c,, at t,.
Throughout the open time interval from t, to t,,
where “Q,<t,“, granules from the liquid in c, are
transferred to a different container, c2. The
transfer could have begun before t, and could
have ended after t,. “Liq.xfer” only states that a
transfer occurred throughout the particular
interval “(tb..te)“. Further, the liquid need not
remain in c2 (e.g., it could be transferred
elsewhere).

“rate.liq.xfer(c, ,c2,t,.t,)” denotes the average rate of
a liquid transfer satisfying “Liq.xfer(c, ,c2,t,,,t,)“. It is
just the volume of the liquid actually transferred
divided by the time of transfer. I calculate this volume
by summing over the volumes of granules transferred

46 / SCIENCE

since (1) all the liquid that is transferred may not form
a single individual (e.g., if part of it was transferred
elsewhere from c2 during “($,..ta)“), and (2) granules
share no parts, so I will get an accurate measurement
of volume. Since the number of granules transferred 1s
discrete, I place a minimum length on the time interval
over which. this rate can be calculated -- this
minimum being large enough so that a reasonably large
number of granules are certain to have transferred. If
these intervals are allowed to be arbitrarily small,
inaccurate measurements can result. Let “atLx” denote
this minimum interval length, which I set to one-tenth
second.

[Vr,c, ,c2~tb~t,l (7)
[r=liq.xfer.rate(c,,C~,t~,t,)~Liq.Xfer(C,,CP,tb,te)A

te--tGAtLx A

1
r=- * vol.gset(+(c, ,c2,tb,t,)(t,))l

%+b
where

+b, +‘tb’t,,)tt,)= (8)
(xlGranule(x) A

[3t,~(tb..te)ltp~(tb..t,)]
[t,$ * fiwid(x)(t, _ +) A

COntainS(C,,x)(t,) A Gontains(cZ,x)(tp)]~
and where “vol.gset(x)(t)” is just the volume of a set of
existing granules, x, at time t.

[Vx,y,t] [y=vol.gset(x) * (9)
Set(x) A [VzGx][Granule(z) A Exists(z)(t)] A

Y=~~xpl(z)l’)]

“Set(x)” is true iff x is a set.
I define the effect of a “Faucet.flow” process to be

that, if the faucet is fully open, water transfers from
the faucet’s supply container to a receiving container
at the rate of one-quarter cup per second. If it is
partially open, the rate is between one-sixtieth and
one-quarter cup per second (this is idealized to
simplify its presentation). The following describes the
effect of a “Faucet.flow” process, p, that is occurring
during “(t,..t2)” (remember, for p to occur, the faucet
must not be closed). Let “faucet.of.flow(p)” denote the
faucet involved with p. c, r and k are introduced to
simply the formula.

Liq.xfer(c,r,t, ,t& A

[Open.knob(k) (t, ..q +

cups(1) rate.liq.xfer(c,r,t,,t2)=seconds(4~ A 1

CuPsW trate.liq.xfer(c,r,t, ,t,)< cups(l)
seconds(60) seconds(4) 1

where
“c” is “supply.cont.of.faucet(faucet.of.flow(p))(t)”
“r” is “receptacle.of.flow(p)(t)”
“k” is “knob.of.faucet(faucet.of.flow(p))(t)”

“receptacle.of.flow” is a function that is defined using
geometrical primitives; I will not discuss it in this
paper except to state that, for a “Faucet.flow” process,
it refers either to the faucet’s sink or to an open
container directly below the faucet’s head. For the
formulas that follow, I will use “Effect(p)(t,,tZ)” to refer
to Formula 10.

The effect of a water flow process is written over an
interval of time because there is a discrete quantity
being measured, as I explained above. For this reason,
I will place a minimum length on the intervals over
which the effect of a faucet flow process is calculated
(as will be seen in Formula 15). Let “Atef f” denote
this minimum, which, like “AtLx”, is one-tenth second.
For simple process types whose effects can be
measured on a continuum, “Aterr” is zero, making it
possible to describe such process types using
instantaneous rates, if desired. I note that enabling
conditions are expressed over intervals for similar
reasons, although for the enabling condition of
“Faucet.flow”, there is no need for a minimum length
interval.

There are 5 essential properties of simple process
types. For each, I include a formula written for
“Faucet.flow” that describes the property. Each simple
process type will have 5 similar formulas.

1. An instance begins when (or just after) the
enabling condition goes from false to true for some

set of players. t, represents the beginning time
for a process.

[Vf:Kitchen.faucet,tb 1 (11)
[-[3t][t<tb A Faucet.not.closed(f)(t,tb)] A

[3t][t>tb A Faucet.not.closed(f)(tb,t)] -+

[IL 3P Faucet.flow(p) A f=faucet.of.flow(p) A

[Vt][t<t, + ~Occurs(p)(t)] A
[Vt][t>t,A Faucet.not.closed(f)(tb,t) +

Occurstd~tb.. t) 111
i.e., for appropriate tb’s, a faucet flow process
begins at t, whose player -- its faucet -- is f
and which continues while the faucet is not closed.

2. An instance continues as long as the enabling
condition remains true for those players.

[Vf:Kitchen.faucet,t, ,tS 1 (12)
[t,<tp A Faucet.not.closed(f)(t,,tJ +

[I[3P Faucet.flow(p) A f=faucet.of.flow(p) A
--

Occurs(p)(t, . . tP) 11
3. An instance ends when (or just before) the

condition first becomes false after the process
starts for those players. t, represents the ending
time for the process.

[Vf:Kitchen.faucet,t. 1 (13)

[[3t][t<t,, A Faucet.not.closed(f)(t,tJ] A

-[3t][t>t, A Faucet.not.closed(f)(t,,t)] +

[IL 3P Faucet.flow(p) A f=faucet.of.flow(p) A

[vt][t>t* + -Occurs(p)(t)] A
[Vt][t<t, A Faucet.not.closed(f)(t,t,) +

Occurdp+t.. tell 11
i.e., for appropriate t,‘s, a faucet flow process
ends at t, whose player -- its faucet -- is f and
which has continued for as long as the faucet has
not been closed.

4. If two individual simple processes of the same type
and with the same players overlap in the times of

Planning: AUTOMATED REASONING / 47

their occurrences, they are the very same process.

[Vp, .Faucet.flow,p2:Faucet.flow 1 (14)

[faucet.of.flow(p,)=faucet.of.flow(p2) A

E~tl[Occursb,)(t) A occurs(p,)Wl --+ P, =PJ
5. The effect applies to the players while the process

occurs over intervals larger than the given
minimum length.

[Vp Faucet flow,t, ,t2 1 (15)

[-It ef fZt*-tl ’ occurs(p)(t, t2) -+Effect(p)(t, ,t2)]

This knowledge allows the robot to determine when
faucet flow processes begin, continue and end. It
provides identity criteria for these processes and it
describes their effect in the real world. Thus, the
robot is well equipped to plan to control such
processes. In Section 5, this knowledge is used to
show the effectiveness of an I/O program.

4. Robot Perception and Action
Any robot that plans must know the consequences of

executing its perceptual and action routines, i.e., its
own I/O programs. In this section, I specify the IjO
functionality of a hypothetical robot as part of PFR.

In order to describe the effects of executing
programs, a model of the robot’s internal state and
capabilities is needed. The robot can move about,
grasp certain kinds of objects with its (single) arm and
hand, and can determine certain kinds of situations by
“looking” through its (single) camera eye. Let
“Near(x)(t)” be true iff the robot is near ObJect x at t.
To be near an object means that the robot is able to
see it and reach it. “Grasped(x)(t)” iff the robot is
grasping object x at t. In order to be grasped, the
ObJect must be of a certain shape, which I denote with
“Graspable(x)(t)“. Only one obJect can be grasped at a
time. In order to represent the robot’s ability to
identify and find objects at given times, I introduce
“Identifiable(x)(t)“, which partially models the robot’s
internal memory state.

The I/O language includes calls to primitive input
and output procedures, sequencing, compound
statements, if-then-else statements and while loops.
Output procedure calls are program statements. Input
procedure calls are program functions. There is no
assignment statement. Constants denote individuals
such as physical objects or instants of time. For
simplicity, I assume that the execution of the control
portion of statements takes zero time. This includes
calls to input procedures, so they also take zero time
to execute Also for simplicity, output procedures take
fixed, greater-than-zero time to execute. In the
descriptions that follow, each output procedure takes 2
seconds. (For a full specificat.ion, see [Schmolze 861.)
Let “E(S)(t,,t&” d enote the execution of statement S by
the robot where execution begins at t, and ends at t2,
such that a new statement can begin executing at tp

grasp x. If x is identifiable, graspable, near the robot
and nothing is already grasped, the robot will grasp x.

[vx,t, $2 I[Ekrasp x)(t, J,)--+ t-1 6)
tp-t, =seconds(2) A

(Identifiable(x)(t,) A Near(x)(t, j A
Graspable A -[3y][Grasped(y)(t,>]

-+ Grasped(x
open.knob k. If k is a faucet knob that is currently

being grasped, this causes the robot to move k (if
necessary) to its open position. It takes 2 seconds.

For simplicity, I assume that the robot knows the
current open position for k. If k is already open, the
robot takes no action. If k is not open, it begins to
move k immediately. At some point during execution of
this procedure, k is in the open position, after which
the robot stops moving it. Before describing
“open.knob”, I define “Stationary(x)(t, ,t2)” to be true
iff x does not change location from t, through t2.

[Yx,t, ,tJ[Stationary(x)(t, ,t2> # (17)

bwt,..t,)l[occ.space(x)(t)=
occ space(x)(t, i]]

[Vk.Faucet.knob,t, ,tp 1 (18)

[E(open.knob k)(t,,$) + t2-t,=seconds(Z) A

(Grasped A Open.knob(k)(tl) +

Open.knob(k)(t , . . tZl A Stationary(k)(t, ,t2)) A

(Grasped A wOpen.knob(k)(t,) -+

Wwt,..t,M occ.space(k)(t)#
occ.space(k)(t,)] A

[3tG (t,. .t,)][Open.knob(k)(t) A

Open.knob(k)(t.. tZ) A

Stationary(k)(t,t&] A

Cvt~(t,..tpmP en.knob(k)(t) -+

Own.knob(k)(t.. ,$]

close.knob k: If k is a faucet knob that is currently
being grasped, this causes the robot to move k (if
necessary) to its closed position. It is very similar to
the “open.knob” procedure.

[Vk:Faucet.knob,t, ,tp 1 1191
[E(close.knob k)(t,,t& -+ tp-t,=seconds(2) A

(Grasped A Closed.knob(k)(t,) --+

Closed.knob(k)(t,. . t2) A Stationary(k) ,t*)) A

(Grasped A wClosed.knob(k)(t,) +

mw,..t~m occ.space(k)(t)#
occ.space(k)(t,)] h

[3tG(t,..tp)][Cl osed.knob(k)(t) ,\
Closed.knob(k)(tf. t2) 1~

Stationary(k)(t,t2)] A
[vtG(t,..t,>][cl osed.knob(k)(t) -+

Closed.knob(k)(t. I ,,)I)]

release. The robot releases whatever is being
grasped. It takes 2 seconds.

[Vt, ,tp][E(release)(t, ,t,j --+ c201
t2--t, =seconds(2) A -[3y][Grasped(y)(t2)]]

Less.full(C,P). An input procedure that 1s true iff
container C is less than a certain fraction full of solid
and/or liquid material, P IS the fraction if ? 1s 1.
then this is true whenever C is not full C must be
identified beforehand and the robot must be near it
The robot estimates the value of this function using its
visual capabilities along with knowledge of the
container’s shape. However, for this paper, this ability
of the robot is idealized. Let “o(P)(t)’ be true iff the
evaluation of input procedure P at time t would be
true.

-tx , SCIENCE

c IL vt Identifiable(C)(t) A Near(C)(t) --+

(o(Less.full(C,P))(t) *
vol.gset(Z)(t)

contained.vol(C)(t)
<P >I

where
“Z” is “(xlGranule(x) A Contains(C,x)(tj A -Gas(x

Here, “contalned.vol(x)(t)” denotes the maximum volume
of liquid material that x can contain at time t
5. Filling a Pot with Water

In this section, I present an I/O program that, when
executed under given conditions, will cause the robot
to partially fill a pot with water. The given conditions
are that a pot (P) is upright, in a sink (S), and under
the head of a faucet (F) that is controlled by a knob
(K) with a water supply (W) that is stored in a supply
container (C). K is in the closed position. The robot
is near the faucet.

FP. S,. grasp K;
S2. open knob K;

(22)

S3. while Less.full(P,0.5) do idle.for seconds(0.1);
S,: close.knob K,
S5: release,

When FP is executed, the robot grasps K and moves K
to the open position. At this point, water begins
flowing into P. In S3, the robot waits until the
accumulated water occupies more than half of P. The
robot then closes K and releases it, leaving P about
half full of water.

PFR can be used to show the effectiveness of the FP
program The ontology and theories presented so far
will be used to show that each statement of FP, when
executed, produces a set of conditions needed for the
next statement execution, and that at the end, the FP
program has caused the robot to partially fill P with
water. Furthermore, I will demonstrate how the robot
has the knowledge to infer the identity of a faucet flow
process, even though no such process is mentioned in
the FP program. I will only sketch a proof in this
paper. (A full proof, excluding program termination, of
a similar I/O program can be found in [Schmolze 861.)

I introduce T, through T,, where S, is executed from
T, through T,, S2 is executed from T, through T,, etc.
The relevant given conditions are.

Faucet(F) A Pot(Pj A (23)
K=knob.of.faucet(F)(Tg) A W=supply of.faucet(F)(TJ A
C=supply.cont.of.faucet(F)(TO) A
Contalns(C,W)(Tg) A v~l(W)(T~)>cups(1000) A
Exists(F)(T@) A Exists(K)(TJ A Exists(P)(T& f\
Exists(C)(Ta) A Exists(W)(TJ A
contained.vol(P)(T&=cups(1) A All.water(W)(TO) A
Identrfiable(P)(T& A Identifiable(K)(T@) A
Near(P)(T@) A Near(K)(T& A Graspable A
Closed.knob(K)(Tg) A -[XIy][Grasped(y)(T,)]

Here I have used “Pot”, which denotes a basic type for
kitchen pots, and “All.water(x)(t)“, which is true iff x is
composed entirely of water granules at time t
(definition not shown here).

The goal is that P contains at least half a cup of
water at time TG.

[Sl][Exists(l)(T,) A All.water(l)(TG) ?\ (24)
Contains(P,l)(TG) A vol(l)(TG)>cups(O 5j]

Throughout this proof sketch, I will need to make

default assumptions. However, I have not investigated
theories for making appropriate default assumptions in
this research. Instead, I will simply make those
assumptions that are needed and reasonable. As a
result, I have a set of examples that a theory for
making default assumptions must be able to produce.
My first assumptions correspond to conditions that will
not change throughout the execution of FP.

Default assumptzon
[VWTa..T5)]

(25)

[K=knob of faucet(F)(t) A W=supply of faucet(F)(t) “\
C=supply cant of.faucet(Fj(t) A
Contains(C,W)(t) A vol(W)(t)>cups(1000) A
Exists(F)(t) A Exists(K)(t) A Exists(P)(t) A
Exists(C)(t) A Exists(W)(t) A
contained.vol(P)(t)=cups(1) A All.water(W)(t) A
Identifiable(P)(t) A Identifiable(K)(t) A
Near(P)(t) A Near(K)(t) A Graspable(K)(t)]

Additional assumptions are needed in a complete proof,
such as that certain ObJects do not move throughout,
that the open and closed positions for K do not
change, etc.

After executing S,, the knob K is grasped, i.e.,
“Grasped(K This follows trivially since the given
condition in Formula 23 satisfies the condition of
Formula 16.

While executing Sp, the robot moves K (the currently
grasped object) to its open position. Let T’, denote
the instant that K first becomes fully open, after which
it remains open. T’, is in the interval “(T,..T2)“. Also,
according to Formula 18, the robot begins to move K
immediately at T,.

Open.knob(K)(T,, . .T2) A (26)

[Vt~(T,..T’,)][~Open.knob(K)(t)n~Closed.knob(K)(t)]

For similar reasons, during the execution of S,, there
1s some instant when K becomes fully closed and
remains closed (using Formula 19). Let this instant be
T’,, which is in the interval “(T3,.T4)“.

Closed.knob(K)(T, 5..T41A (27)

[VtG (T3..T’3)][-0pen.knob(Kj(t) A -Closed.knob(K)(t)]
I will now sh/ow that a “Faucet.flow” process begins

at T, and ends at T’3. However, first I make the
default assumption that K remains fully closed during
“(T@..T,)“, fully open during “(T2..T3)“, and fully closed
during “(T4. .Ts)“.

Default assumption. (28)
Closed.knob(K)(T @. J1> * OPenknob CT*. , T3) A

Closed.knob(K)(T 4- .Ts>
As a result, K is fully closed before T, and it is not
fully closed just after T, (note that nothing needs to
be said about K’s status precisely at T,). This satisfies
the left side of Formula 11 with “tb=T,“, leading me to
conclude that there is a “Faucet.flow” process, which
I’ll call FF, with F as its “faucet.of.flow”, that begins at
5

and continues while K is not closed. However.

Formula 11 will not let me conclude that FF ends at
T’,; Formula 13 is needed to determine process endings.
Letting “t,=T’3” in Formula 13, I conclude that a
“Faucet.flow” process, which I’ll call FF2, has F as its
“faucet.of.flow”, ends at T’,, and has continued for as
long as K has not been closed. Of course, there is

Planning: ALJTOMATED REASONING 1 -t9

only one process here, which is concluded from Formula
14. Since FF and FF2 use the same faucet, F, and their
occurrences overlap (e.g., at T3), then “FF2=FF”.

Faucet.flow(FF) A F=faucet.of.flow(FF) A (29)
Occurs(FF)(T,. +Tv3) A [Vt][t<T, +-Occurs(FF)(t)] A

[Vt][t>T’3-+-Occurs(FF)(t)]
Thus, the robot can identify a faucet flow process

and can determine its times of occurrence.
Given the times of occurrence of FF, I can now

determine its effect. First, I assume that P receives
the water flowing from F (space does not allow a
discussion of the necessary geometry).

[VtG (T, ..T’3)][P= receptacle.of.flow(FF)(t)] (30)
By applying the formula describing the effects of
“Faucet.flow”, Formula 15, to the above times for FF’s
occurrence, 29, I conclude that a liquid transfer took
place from C to P during “(T,..T’,)“.

Liq.xfer(C,P,T, ,T’,) (31)
So, granules are accumulating in P that come from C
(i.e., are part of what was W). From this, I can
conclude that water is accumulating in P (and if I
added more theories, that this water has properties
similar to those of W, such as being either hot or cold).
Also, given that FF is occurring, I can conclude the
approximate rates of transfer. During “(T’, . .T$“, it
transfers at the maximum rate of 1 cup every four
seconds. During the other times it transfers at a rate
somewhere between 1 cup per minute and 1 cup per 4
seconds.

I now make the default assumptions that the liquid
transferred by FF remains in P throughout execution of
FP and that it remains liquid. Also, any non-gaseous
object in P during execution of FP came from F’s water
supply, w.

Default assumption:

[Vx,W&]
(32)

K Liquid(x)(t) A Contains(P,x)(t)+

[Vt’G(t..Tg)][Liquid(x)(t’) A Contains(P,x)(t’)]) A

(-Gas(x)(t) A Contains(P,x)(t)+

wt(x)W smeWMTg))]
Given the above, I conclude that P will continue to

fill with water and that, eventually, “Less.full(P,0.5)”
will be false. In fact, this will happen between 0 and 2
seconds after Tp, taking into account the varying rate
of water flow and the fact that the time of T’, is not
precisely known. Therefore, S, takes between 0 and 2
seconds to execute, and the entire program takes
between 8 and 10 seconds. So, the robot should begin
execution at “Te=TC-seconds(lO)” to be sure P will be
filled in time. It turns out that during the execution
of s,, another half cup of water could flow, so P will be
between half and completely full.

I am nearly at the given goal, Formula 24, but it is
stated in terms of a liquid object and not in terms of a
set of liquid granules that are contained in P. However,
Formula 4 lets the robot identify the liquid in P as a
physical object, and so the goal is achieved.

6. Conclusions
Physics For Robots (PFR) represents the everyday

physics that a robot needs to use in planning to
perform everyday tasks. Using a PFR representation
scheme, a robot can reason about natural processes as
well as actions. It can take into account the time

events take, the gradual changes they cause and the
fact that many processes, once initiated, continue
without further attention. Therefore, it can plan to
control many processes simultaneously. PFR also
specifies identity criteria for physical objects that
break apart, come together, mix, or come into or go
out of existence. Therefore, the robot can plan to
recognize and manipulate objects undergoing
transformations, and to determine the properties of
these objects based on their material composition.

The contributions of this research are:
0 a strategy to develop and evaluate representations

of everyday physics for robot planning,
0 a general representation for part of everyday

physics: including an ontology of time, space,
physical objects and events, theories governing
processes, material composition, etc.

o an application specific representation: describing
everyday phenomena from cooking, such as water
flow from a faucet, etc.

The crucial research to be done next is not only to
extend these types of representations to more areas,
but to use these results to design reasoning
mechanisms that will allow robots to plan for everyday
tasks.
7. Acknowledgements

Many, many thanks go to David Israel, David
McDonald, Candy Sidner, Brad Goodman, N. S. Sridharan,
Andy Haas, Marc Vilain and Krithi Ramamritham for
their ideas and comments.

[Forbus 851

[Hayes 85a]

[Hayes 85b]

[Hendrix ?3]

[Schmolze 861

REFERENCES

Forbus, K. D.
The Role of Qualitative Dynamics in

Naive Physics.
In Formal Theories of the Commonsense

World, pages 185-228. Ablex, 1985.

Hayes, P.
The Second Naive Physics Manifesto.
In Formal Theories of the Commonsense

World, pages l-38. Ablex, 1985.

Hayes, P.
Naive Physics 1: Ontology for Liquids.
In Formal Theories of the Commonsense

World, pages ?l- 108. Ablex, 1985.

G.G. Hendrix.
Modeling Simultaneous Actions and

Continuous Processes.
Artificial Intelligence 4: 145- 180, 1973.

Schmolze, J. G.
Physics FOT Robots.
PhD thesis, University of

Massachusetts, February, 1986.
(Also BBN Laboratories Report

No. 6222, July 1986).

50 / SCIENCE

