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ABSTRACT 

Robots that plan to perform everyday tasks need 
knowledge of everyday physics. Physics For Robots 
(PFR) is a representation of part of everyday physics 
directed towards this need. It includes general 
concepts and theories, and it has been applied to tasks 
in cooking. PFR goes beyond most AI planning 
representation schemes by including natural processes 
that the robot can control. It also includes a theory 
of mater-la1 composition so robots can identify and 
reason about physical objects that break apart, come 
together, mix, or go out of existence. Following on 
Naive Physics (NP), issues about reasoning mechanisms 
are temporarily postponed, allowing a focus on the 
characterization of knowledge. However, PFR departs 
from NP in two ways. (1) PFR characterizes the robot’s 
capabilities to act and perceive, and (2) PFR replaces 
the NP goal of developing models of actual common 
sense knowledge. Instead, PFR includes all and only 
the knowledge that robots need for planning, which is 
determined by analyzing proofs showing the 
effectiveness of robot I/O programs. 
1. Introduction 

Physics For Robots (PFR) represents knowledge of 
everyday physics according to the physical capabllltles 
and planning needs of robots. This knowledge is 
intended to be an important part of the overall 
knowledge given to a robot. Physical capabihties are 
represented within PFR by specifying the perceptual 
and action functionality of a (hypothetical) robot. This 
specification is comprrsed by an I/O programming 
language, whose primitive instructions correspond to 
primitive perceptions and actions, and an operational 
semantics, which describes the real world effects of 
executing I/O programs. (Given the complexity of the 
real world, this semantics is necessarily rncomplete.) 
The hypothetical robot used for this research has 
capabilities that are beyond current, but are within 
near future technology. Some of the robot’s 
capabilities and an I/O program are presented later in 
this paper. 

This research was supported by the Advanced Research 
Projects Agency of the Department of Defense and was 
monitored by ONR under Contract Nos. N00014-77-C-0378 and 

N00014-85-C-0079. The views and conclusions contained in 
this document are those of the author and shouid not be 
interpreted as necessar i ly represent i ng the official 

pal icies, either expressed or imp1 ied, of the Defense 
Advanced Research Projects Agency or the U.S. Government. 

PFR’s 
similar 

representation of everyday physics is very 
in style to Hayes’ Naive Physics (NP) 

formalizations [Hayes 85a, Hayes 85b]. Like NP, PFR 
focuses on characterizrng knowledge while postponing 
implementation considerations. However, NP is 
ultimately after realistic models of common sense (see 

[Hayes 85a], page 5) whereas PFR 1s after the 
knowledge that robots need to plan for everyday tasks. 
As a result, PFR includes a specification of the robot’s 
I/O capabilities whereas NP postpones such 
considerations. More importantly, PFR includes a 
criteria for judging the value of its representations 
whereas NP must rely on the existing, and small, body 
of what is known about common sense along with one’s 
own intuitions. 

One begins to evaluate a PFR representation by 
selecting a set of everyday tasks for the robot to 
perform, and for each task, designing an I/O program 
that, when executed, will cause the robot to 
successfully perform the task. An I/O program is one 
whose primitive instructions are only perceptions and 
actions for the robot to perform (see Section 4). The 
test for PFR is whether or not its theory of everyday 
physics is adequate to prove that the execution of 
each program will accomplish its corresponding task. 
The more programs/tasks that can be proven correct 
using a PFR representation, the greater the PFR’s 
expressive power and the better the PFR. Further, 
given two expressively similar PFR representations, one 
should choose the simpler of the two, and one should 
choose the representation that is most in keeping with 
what is known about common sense. 

I point out that there are two notions of correctness 
here. One is whether or not executnrg a program w-ill 
actually accomplish the given task in the real world. 
PFR cannot be used to show this directly. For 
hypothetical robots, only informal arguments can used 
here. For actual robots, the programs can be executed 
and the robots observed. The second notion of 
correctness corresponds to whether or not executing 
the program accomplishes the task according to the 
theories of a PFR representation. The extent to which 
these two notions of correctness are in agreement is 
the extent that the representation is successful. 
2. Composition of Materials 

Physical obJects in the everyday world can come into 
or go out of existence, break apart, come together or 
mix Examples from cooking include water that boils 
and turns to steam, or the pouring of hot water over 
coffee grounds to create a cup of coffee. PFR must 
provide the robot with knowledge to deal with such 
phenomena by giving it a theory of material 
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composition 
skills to: 

Such a theory provides a robot with the 

0 identify physical ObJects as they come into or go 
out of existence, or go through transformations, 
and 

o detsrmine the properties of whole ObJects from the 
properties of their parts, and vice versa, including 
when the parts are not readily identifiable (such as 
the portion of the hot water that went into a cup 
of coffee) 

M >- theory of material composition includes three 
components. (1) a theory of what constitutes the 
physical ObJeCtS, (2) the part--whole relation along with 
a theory that identifies parts from wholes and vice 
versa, and (3) a theory that determines the properties 
of parts from the properties of wholes and vice versa. 
In this paper, I wrll only touch on (1) and (2), and will 
ignore (3) completely given that I will focus on 
processes. (See [Schmolze 861 for a fuller treatment of 
material composition.) 

Before discussing physical objects, I now introduce 
some basic elements of PFR. Instants of time are 
represented as individuals where they form a 
continuum. Let “seconds” map real numbers to 
instants where “seconds(n)” denotes n seconds. Points 
in space form a 3-dimensional continuum. Changing 
relations are represented as functrons on instants of 
time. Formulas and terms for these relations are 
written with the time argument separated. For 
example, “occ.space(x)(t)” denotes the set of points in 
space that x occupies at time t. “occ.space(x)(t)” is 
defined iff x is a physical ObJect, t is an instant of 
time. and x exists at t. Further, x must occupy a 
non-empty set. Also, “vol(x)(t)” denotes the volume 
occupied by a physical ObJect at time t, which is 
defined as the volume of “occ.space(x)(t)“, and which 1s 
greater than zero for existing physical objects. 

obJects -- possibly objects at the level of atoms and 
molecules. For example, the process of evap oration can 
be described by having small pieces of liquid turn to 
gas and leave the container holding the liquid. Also, 
by adding some sugar to water and stirring, the entire 
glass of water becomes sweet. By using small pieces 
again, one can describe mixtures and show the spread 
of the sweetness as a dispersion of small pieces of 
sugar. When hot water IS poured over coffee grounds. 
a new ObJect is created. coffee. It too is a mixture, 
which can be useful for determlnlng that, say% the 
coffee is hot 
of water that 

1t because 
were ho 

1s primarily composed of pieces 
ust a few seconds earlier 

Hayes ( [Hayes 85b], page 74) eschews an atomistic 
theory because he considers it to be beyond the realm 
of common sense. In traditional physics, there is a 
complicated gap to bridge between the microscopic and 
macroscopic versions of certain properties such as 
temperature, volume and state. Does the robot need to 
know about actual atoms and molecules, and if not, 
what simpler theory will meet the robot’s needs? 

Fortunately, there IS a way to meet the robot’s needs 
without introducing microscopic versions of 
temperature, volume and state. To this end, I invent a 
class of physical objects that I call granules. Their 
essential properties are that: 

o they are small enough to be a part of all solid, 
liquid and gaseous physical objects -- they are too 
small to be seen individually, 

o they are large enough to have the usual 
macroscopic properties of temperature, state and 
volume (each has a volume greater than zero), 

o they are pure, be they purely water, wood, or 
whatever, and 

o they have no proper parts, and consequently, no 
two granules share parts nor occupied space. 

A quantity, borrowed from Hayes [Hayes 85a], is a 
set of measurements of a given type. For example, the 
temperatures and the volumes each form a quantity. 
Each quantity forms a continuum. I will introduce 
functions from the reals to various quantities, in the 
style of Hayes, as needed. For example, “cups(4)” 
denotes a volume of 4 cups. 

Types that are not trme-varying are called basic 
types. An example is being a physical object or a 
temperature. (See [Schmolze 861 for the reasons for 
the above design choices.) 

Regarding notation, boolean function names, i.e., 
predicate names, will be capitalrzed. Other function 
names are written in all lower case. Names of constants 
are written in all capital letters. Names of variables 
are written in lower case. Variable names beginning 
with “t” are implicitly of type “Instant”, which denotes 
the basic type for instants of time. I will write “(t,..Q)” 
to denote the open interval from t, to t,. Also, I will 
use the following shorthand when a time varying 
predicate, say P, is true over an open interval. 

h UP( t, . . tp) - [Vt& tt, 1 ~t*m(t)ll (1) 

Further, granules of the same type are similar. For 
example, two water granules with the same heat 
content will have the same temperature and state. 
Granules form the smallest physical objects in my 
ontology. I let “Granule” denote a basic type for 
granules. 

By coupling the part-whole relation with granules, I 
have a powerful too1 for describing material 
composition. Let “Part(x,y)(t)” be true iff x and y are 
physical objects that exist at t and x 1s a part of y at 
t. “Part” forms a partial order over existing physical 
objects at each instant. From these relations, I can 
define a function, called “gset”, from physical objects 
to the sets of granules that comprise them at an 
instant. 

[v.tl[gsetb)ttj = 1 x tG ranule(x) A Part(x,y)(t)l] (2) 
I will use the ability to determine an object’s “gset” as 
the criteria for identifying the object. For example, let 
there be a glass called G that contains some liquid at 
time T. If G and T are identified to the robot, I can 
identify the liquid in G as W with the following. 

gset(W)(T) = {x[Granule(x) /: Liquid(x)(T) /; (3) 
Contains(G,x)(T){ 

Being a physical object is a basic type, and I write 
“Phys.obj(x)” when x 1s an individual physical ObJect. 
In order to represent physical obJects coming into and 
going out of existence, I introduce existence as a 
property of physical obJects. Let “Exists(x)(t)” be true 
when x is a physical ObJect that exists at time t 
Physical ObJeCtS include those ObJects normally 
considered as such, e g., books, cars, computers, the 
atmosphere, oceans and glasses of water. However, for 
certain types of transformations that physical ObJects 
undergo, it will be useful to include very small physical 

“Liquid(x)(t)” is true iff x exists and is entirely liquid 
at t. (“Solid” and “Gas” are defined similarly for the 
solid and gaseous states.) “Contains(x,y)(t)” iff x and y 
exist and x contains y at t. Borrowrng from Hayes 

[Hayes 85b], I have used containment to ldentlfy this 
liquid ObJect. 

1 can go a step further and write a general rule that 
allows the robot to identify a contained quantity of 
liquid as a physical object. The first line in Formula 4 
requires that there is some liquid rn a container and 
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the remainder asserts the existence of the object 
formed by all the liquid in the container. 

hl K [ZIx][Contains(c,x)(t) A Liquid(x)(t)]) + (4) 
[ZIl][Phys.obj(l) A Exists(l)(t) A 

gset(l)(t)=(ylGranule(y) A Liquid(y)(t) A 

Contains(c,y)(t) I]] 
Here, x can be a single liquid granule. 

Space does not permit a thorough examination of the 
utlhty of granules: The interested reader should refer 
to [Schmo<ze 861 where there are rules that allow the 
robot to identify liquid ObJects 
elsewhere, are mixed with other 

that are poured 
liquids, partially 

evaporate, etc. In addition, there are rules that allow 
the- robot to infer various properties of these 
transformed objects, such as their temperature, volume 
or composition,- all without special knowledge about the 
properties of microscopic objects. Further, the robot 
needs to reason about granules only when necessary; it 
can reason about normal physical objects without 
considering granules. The general PFR representation 
thus far allows a wide variety of such rules to be 
formulated. 
objects to 
application 

However, the actual rules for identifying 
be given 

dependent. 
to a particular robot will be 

3. Simple Processes 
Any-robot that deals with the everyday world must 

be able to predict changes due to nature. An 
important source of natural changes is natural 
processes, and so, PFR includes them. I have limited my 
study to a class of process types that I call simple. All 
simple process types have an enabling condition and an 
effect, -both of which depend only on the physical 
condition of the world (and not on, say, the intention 
of any agent). Basically, an instance of a simple 
process type occurs when and only when the enabling 
condition is true for some set of physical objects, and 
the process has the given effect on the world while it 
is occurring. For example, whenever a faucet’s knob is 
open, water flows from the faucet. Or, whenever two 
physical objects are of different temperatures and are 
in thermal contact, heat flows from the hotter to the 
cooler object. I note that many real processes are not 
simple. 

Given instances of simple process types (i.e., simple 
processes), a robot must be able to determine when 
they occur, how to identify them (e.g., deciding when 
two processes are the same or different), and what 
their effects are. Further, these factors must be 
determinable from limited information. For example, it 
must be possible to determine a process’ effects 
without knowing when the process will end. Also, the 
manner of describing effects must allow for either 
discrete or continuous changes. For example, heat is 
measured on a continuum, so heat transfer causes 
continuous changes. However, water flowing from a 
faucet is (eventually) measured by the transfer of 
whole water granules, so faucet flow causes discrete 
changes. Finally, the representation must allow for 
situations where several processes affect the same 
property of the very same objects, such as a heating 
and cooling process occurring simultaneously on the 
same pot of water. 

I note that Hayes [Hayes 85a, Hayes 85b] does not 
address these points direct&. Others, such as [Forbus 
851 and [Hendrix ‘731 have addressed some but not all 
of them. 

I represent simple processes as individuals. Let 
“Occurs(x)(t)” be true iff x is an event that is 
occurring at time t. “Occurs” for events is analogous 
to “Exists” for physical objects. 

I will illustrate the essential properties of simple 
process types by describing the process type for water 
flowing from a kitchen faucet. Along with that, I will 
describe faucets, objects associated with faucets (such 
as their controlling knobs), and their operation. Let 
“Faucet.flow” be a basic type for faucet flow processes. 
Each simple process has a set of players, i.e., the 
physical objects that are involved. For “Faucet.flow”, 
the only player IS the faucet, with which I assocrate 
other objects. In my model, a faucet has a knob, a 
head, a sink, a supply container that holds the faucet’s 
SUPPlY and, of course, the water In the supply 
container. Let “Kltchen.faucet” and “Faucet.knob” be 
basic types for kitchen faucets and their controlling 
knobs, respectively. The knob has fully closed and 
fully open positions, and there are positions in 
between. Let “closed.position(k)(t)” denote the space 
that a faucet knob, k, must occupy in order to be fully 
closed at time t. Let “open.position(k)(t)” be similar, 
but for the fully open position. From these functions, I 
can define “Closed.knob(k)(t)” as true iff k is a faucet 
knob that is fully closed at t and “Open.knob(k)(t)” as 
true iff k is a fully open faucet knob at t. 

[Vk,t][Closed.knob(k)(t)+Faucet.knob(k) A (5) 
occ.space(k)(t)=closed.position(k)(t)] A 

[Vk,t][Open.knob(k)(t)eFaucet.knob(k) A 

occ.space(k)(t)=open.position(k)(t)] 
If neither is true, the knob is in between. In addition, 
let “knob.of.faucet(f)(t)“, “supply.cont.of.faucet(f)(t)” 
and “supply.of.faucet(f)(t)” denote the existing knob, 
supply container and water supply, respectively, of f 
when f is an existing faucet. 

The enabling condition for the “Faucet.flow” process 
type is written over an interval of time (I will soon 
explain why) and is true iff a faucet, f, is not fully 
closed over some open interval, “(t,..t,)“. The following 
is written with f, t, and tp free. k is used to simplify 
the formula. 

[VtG(t,..t2)][-CIosed.knob(k)(t)] (6) 
where “k” is “knob.of.faucet(f)(t)” 

I will write “Faucet.not.closed(f){t,,t.$ as a shorthand 
for Formula 6. 

The effect of a “Faucet.flow” process is that water 
flows from the faucet’s supply container to a receiving 
container, which is either the faucet’s sink, or an open 
container under the faucet’s head. To describe the 
effect, I rely on two defined predicates, “Liq.xfer” and 
“rate.liq.xfer” (only “rate.liq.xfer” will be formally 
presented here). “Liq.xfer(c,,c2,tb,te)” is true iff the 
following holds. 

1. 
2. 

There is some liquid in a container, c,, at t,. 
Throughout the open time interval from t, to t,, 
where “Q,<t,“, granules from the liquid in c, are 
transferred to a different container, c2. The 
transfer could have begun before t, and could 
have ended after t,. “Liq.xfer” only states that a 
transfer occurred throughout the particular 
interval “(tb..te)“. Further, the liquid need not 
remain in c2 (e.g., it could be transferred 
elsewhere). 

“rate.liq.xfer(c, ,c2,t,.t,)” denotes the average rate of 
a liquid transfer satisfying “Liq.xfer(c, ,c2,t,,,t,)“. It is 
just the volume of the liquid actually transferred 
divided by the time of transfer. I calculate this volume 
by summing over the volumes of granules transferred 
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since (1) all the liquid that is transferred may not form 
a single individual (e.g., if part of it was transferred 
elsewhere from c2 during “($,..ta)“), and (2) granules 
share no parts, so I will get an accurate measurement 
of volume. Since the number of granules transferred 1s 
discrete, I place a minimum length on the time interval 
over which. this rate can be calculated -- this 
minimum being large enough so that a reasonably large 
number of granules are certain to have transferred. If 
these intervals are allowed to be arbitrarily small, 
inaccurate measurements can result. Let “atLx” denote 
this minimum interval length, which I set to one-tenth 
second. 

[Vr,c, ,c2~tb~t,l (7) 
[r=liq.xfer.rate(c,,C~,t~,t,)~Liq.Xfer(C,,CP,tb,te)A 

te--tGAtLx A 

1 
r=- * vol.gset(+(c, ,c2,tb,t,)(t,))l 

%+b 
where 

+b, +‘tb’t,,)tt,)= (8) 
(xlGranule(x) A 

[3t,~(tb..te)ltp~(tb..t,)] 
[t,$ * fiwid(x)(t, _ +) A 

COntainS(C,,x)(t,) A Gontains(cZ,x)(tp)]~ 
and where “vol.gset(x)(t)” is just the volume of a set of 
existing granules, x, at time t. 

[Vx,y,t] [y=vol.gset(x) * (9) 
Set(x) A [VzGx][Granule(z) A Exists(z)(t)] A 

Y=~~xpl(z)l’)] 

“Set(x)” is true iff x is a set. 
I define the effect of a “Faucet.flow” process to be 

that, if the faucet is fully open, water transfers from 
the faucet’s supply container to a receiving container 
at the rate of one-quarter cup per second. If it is 
partially open, the rate is between one-sixtieth and 
one-quarter cup per second (this is idealized to 
simplify its presentation). The following describes the 
effect of a “Faucet.flow” process, p, that is occurring 
during “(t,..t2)” ( remember, for p to occur, the faucet 
must not be closed). Let “faucet.of.flow(p)” denote the 
faucet involved with p. c, r and k are introduced to 
simply the formula. 

Liq.xfer(c,r,t, ,t& A 

[ Open.knob(k) ( t, ..q + 

cups( 1) rate.liq.xfer(c,r,t,,t2)=seconds(4~ A 1 

CuPsW trate.liq.xfer(c,r,t, ,t,)< cups(l) 
seconds(60) seconds(4) 1 

where 
“c” is “supply.cont.of.faucet(faucet.of.flow(p))(t)” 
“r” is “receptacle.of.flow(p)(t)” 
“k” is “knob.of.faucet(faucet.of.flow(p))(t)” 

“receptacle.of.flow” is a function that is defined using 
geometrical primitives; I will not discuss it in this 
paper except to state that, for a “Faucet.flow” process, 
it refers either to the faucet’s sink or to an open 
container directly below the faucet’s head. For the 
formulas that follow, I will use “Effect(p)(t,,tZ)” to refer 
to Formula 10. 

The effect of a water flow process is written over an 
interval of time because there is a discrete quantity 
being measured, as I explained above. For this reason, 
I will place a minimum length on the intervals over 
which the effect of a faucet flow process is calculated 
(as will be seen in Formula 15). Let “Atef f” denote 
this minimum, which, like “AtLx”, is one-tenth second. 
For simple process types whose effects can be 
measured on a continuum, “Aterr” is zero, making it 
possible to describe such process types using 
instantaneous rates, if desired. I note that enabling 
conditions are expressed over intervals for similar 
reasons, although for the enabling condition of 
“Faucet.flow”, there is no need for a minimum length 
interval. 

There are 5 essential properties of simple process 
types. For each, I include a formula written for 
“Faucet.flow” that describes the property. Each simple 
process type will have 5 similar formulas. 

1. An instance begins when (or just after) the 
enabling condition goes from false to true for some 

set of players. t, represents the beginning time 
for a process. 

[ Vf:Kitchen.faucet,tb 1 (11) 
[ -[3t][t<tb A Faucet.not.closed(f)(t,tb)] A 

[3t][t>tb A Faucet.not.closed(f)(tb,t)] -+ 

[ IL 3P Faucet.flow(p) A f=faucet.of.flow(p) A 

[Vt][t<t, + ~Occurs(p)(t)] A 
[Vt][t>t,A Faucet.not.closed(f)(tb,t) + 

Occurstd~tb.. t) 111 
i.e., for appropriate tb’s, a faucet flow process 
begins at t, whose player -- its faucet -- is f 
and which continues while the faucet is not closed. 

2. An instance continues as long as the enabling 
condition remains true for those players. 

[ Vf:Kitchen.faucet,t, ,tS 1 (12) 
[ t,<tp A Faucet.not.closed(f)(t,,tJ + 

[ I[ 3P Faucet.flow(p) A f=faucet.of.flow(p) A 
-- 

Occurs(p)( t, . . tP) 11 
3. An instance ends when (or just before) the 

condition first becomes false after the process 
starts for those players. t, represents the ending 
time for the process. 

[ Vf:Kitchen.faucet,t. 1 (13) 

[[3t][t<t,, A Faucet.not.closed(f)(t,tJ] A 

-[3t][t>t, A Faucet.not.closed(f)(t,,t)] + 

[ IL 3P Faucet.flow(p) A f=faucet.of.flow(p) A 

[vt][t>t* + -Occurs(p)(t)] A 
[Vt][t<t, A Faucet.not.closed(f)(t,t,) + 

Occurdp+t.. tell 11 
i.e., for appropriate t,‘s, a faucet flow process 
ends at t, whose player -- its faucet -- is f and 
which has continued for as long as the faucet has 
not been closed. 

4. If two individual simple processes of the same type 
and with the same players overlap in the times of 
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their occurrences, they are the very same process. 

[ Vp, .Faucet.flow,p2:Faucet.flow 1 (14) 

[ faucet.of.flow(p,)=faucet.of.flow(p2) A 

E~tl[Occursb,)(t) A occurs(p,)Wl --+ P, =PJ 
5. The effect applies to the players while the process 

occurs over intervals larger than the given 
minimum length. 

[ Vp Faucet flow,t, ,t2 1 (15) 

[ -It ef fZt*-tl ’ occurs(p)( t, t2) -+Effect(p)(t, ,t2)] 

This knowledge allows the robot to determine when 
faucet flow processes begin, continue and end. It 
provides identity criteria for these processes and it 
describes their effect in the real world. Thus, the 
robot is well equipped to plan to control such 
processes. In Section 5, this knowledge is used to 
show the effectiveness of an I/O program. 

4. Robot Perception and Action 
Any robot that plans must know the consequences of 

executing its perceptual and action routines, i.e., its 
own I/O programs. In this section, I specify the IjO 
functionality of a hypothetical robot as part of PFR. 

In order to describe the effects of executing 
programs, a model of the robot’s internal state and 
capabilities is needed. The robot can move about, 
grasp certain kinds of objects with its (single) arm and 
hand, and can determine certain kinds of situations by 
“looking” through its (single) camera eye. Let 
“Near(x)(t)” be true iff the robot is near ObJect x at t. 
To be near an object means that the robot is able to 
see it and reach it. “Grasped(x)(t)” iff the robot is 
grasping object x at t. In order to be grasped, the 
ObJect must be of a certain shape, which I denote with 
“Graspable(x)(t)“. Only one obJect can be grasped at a 
time. In order to represent the robot’s ability to 
identify and find objects at given times, I introduce 
“Identifiable(x)(t)“, which partially models the robot’s 
internal memory state. 

The I/O language includes calls to primitive input 
and output procedures, sequencing, compound 
statements, if-then-else statements and while loops. 
Output procedure calls are program statements. Input 
procedure calls are program functions. There is no 
assignment statement. Constants denote individuals 
such as physical objects or instants of time. For 
simplicity, I assume that the execution of the control 
portion of statements takes zero time. This includes 
calls to input procedures, so they also take zero time 
to execute Also for simplicity, output procedures take 
fixed, greater-than-zero time to execute. In the 
descriptions that follow, each output procedure takes 2 
seconds. (For a full specificat.ion, see [Schmolze 861.) 
Let “E(S)(t,,t&” d enote the execution of statement S by 
the robot where execution begins at t, and ends at t2, 
such that a new statement can begin executing at tp 

grasp x. If x is identifiable, graspable, near the robot 
and nothing is already grasped, the robot will grasp x. 

[ vx,t, $2 I[ Ekrasp x)(t, J,)--+ t-1 6) 
tp-t, =seconds(2) A 

( Identifiable(x)(t,) A Near(x)(t, j A 
Graspable A -[3y][Grasped(y)(t,>] 

-+ Grasped(x 
open.knob k. If k is a faucet knob that is currently 

being grasped, this causes the robot to move k (if 
necessary) to its open position. It takes 2 seconds. 

For simplicity, I assume that the robot knows the 
current open position for k. If k is already open, the 
robot takes no action. If k is not open, it begins to 
move k immediately. At some point during execution of 
this procedure, k is in the open position, after which 
the robot stops moving it. Before describing 
“open.knob”, I define “Stationary(x)(t, ,t2)” to be true 
iff x does not change location from t, through t2. 

[Yx,t, ,tJ[Stationary(x)(t, ,t2> # (17) 

bwt,..t,)l[ occ.space(x)(t)= 
occ space(x)(t, i]] 

[ Vk.Faucet.knob,t, ,tp 1 (18) 

[ E(open.knob k)(t,,$) + t2-t,=seconds(Z) A 

( Grasped A Open.knob(k)(tl) + 

Open.knob(k)(t , . . tZl A Stationary(k)(t, ,t2)) A 

( Grasped A wOpen.knob(k)(t,) -+ 

Wwt,..t,M occ.space(k)(t)# 
occ.space(k)(t,)] A 

[3tG (t,. .t,)][Open.knob(k)(t) A 

Open.knob(k)(t.. tZ) A 

Stationary(k)(t,t&] A 

Cvt~(t,..tpmP en.knob(k)(t) -+ 

Own.knob(k)(t.. ,$] 

close.knob k: If k is a faucet knob that is currently 
being grasped, this causes the robot to move k (if 
necessary) to its closed position. It is very similar to 
the “open.knob” procedure. 

[ Vk:Faucet.knob,t, ,tp 1 1191 
[ E(close.knob k)(t,,t& -+ tp-t,=seconds(2) A 

(Grasped A Closed.knob(k)(t,) --+ 

Closed.knob(k)(t,. . t2) A Stationary(k) ,t*)) A 

( Grasped A wClosed.knob(k)(t,) + 

mw,..t~m occ.space(k)(t)# 
occ.space(k)(t,)] h 

[3tG(t,..tp)][Cl osed.knob(k)(t) ,\ 
Closed.knob(k)(tf. t2) 1~ 

Stationary(k)(t,t2)] A 
[vtG(t,..t,>][cl osed.knob(k)(t) -+ 

Closed.knob(k)( t. I ,,)I)] 

release. The robot releases whatever is being 
grasped. It takes 2 seconds. 

[Vt, ,tp][E(release)(t, ,t,j --+ c201 
t2--t, =seconds(2) A -[3y][Grasped(y)(t2)]] 

Less.full(C,P). An input procedure that 1s true iff 
container C is less than a certain fraction full of solid 
and/or liquid material, P IS the fraction if ? 1s 1. 
then this is true whenever C is not full C must be 
identified beforehand and the robot must be near it 
The robot estimates the value of this function using its 
visual capabilities along with knowledge of the 
container’s shape. However, for this paper, this ability 
of the robot is idealized. Let “o(P)(t)’ be true iff the 
evaluation of input procedure P at time t would be 
true. 
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c IL vt Identifiable(C)(t) A Near(C)(t) --+ 

( o(Less.full(C,P))(t) * 
vol.gset(Z)(t) 

contained.vol(C)(t) 
<P >I 

where 
“Z” is “(xlGranule(x) A Contains(C,x)(tj A -Gas(x 

Here, “contalned.vol(x)(t)” denotes the maximum volume 
of liquid material that x can contain at time t 
5. Filling a Pot with Water 

In this section, I present an I/O program that, when 
executed under given conditions, will cause the robot 
to partially fill a pot with water. The given conditions 
are that a pot (P) is upright, in a sink (S), and under 
the head of a faucet (F) that is controlled by a knob 
(K) with a water supply (W) that is stored in a supply 
container (C). K is in the closed position. The robot 
is near the faucet. 

FP. S,. grasp K; 
S2. open knob K; 

(22) 

S3. while Less.full(P,0.5) do idle.for seconds(0.1); 
S,: close.knob K, 
S5: release, 

When FP is executed, the robot grasps K and moves K 
to the open position. At this point, water begins 
flowing into P. In S3, the robot waits until the 
accumulated water occupies more than half of P. The 
robot then closes K and releases it, leaving P about 
half full of water. 

PFR can be used to show the effectiveness of the FP 
program The ontology and theories presented so far 
will be used to show that each statement of FP, when 
executed, produces a set of conditions needed for the 
next statement execution, and that at the end, the FP 
program has caused the robot to partially fill P with 
water. Furthermore, I will demonstrate how the robot 
has the knowledge to infer the identity of a faucet flow 
process, even though no such process is mentioned in 
the FP program. I will only sketch a proof in this 
paper. (A full proof, excluding program termination, of 
a similar I/O program can be found in [Schmolze 861.) 

I introduce T, through T,, where S, is executed from 
T, through T,, S2 is executed from T, through T,, etc. 
The relevant given conditions are. 

Faucet(F) A Pot(Pj A (23) 
K=knob.of.faucet(F)(Tg) A W=supply of.faucet(F)(TJ A 
C=supply.cont.of.faucet(F)(TO) A 
Contalns(C,W)(Tg) A v~l(W)(T~)>cups( 1000) A 
Exists(F)(T@) A Exists(K)(TJ A Exists(P)(T& f\ 
Exists(C)(Ta) A Exists(W)(TJ A 
contained.vol(P)(T&=cups( 1) A All.water(W)(TO) A 
Identrfiable(P)(T& A Identifiable(K)(T@) A 
Near(P)(T@) A Near(K)(T& A Graspable A 
Closed.knob(K)(Tg) A -[XIy][Grasped(y)(T,)] 

Here I have used “Pot”, which denotes a basic type for 
kitchen pots, and “All.water(x)(t)“, which is true iff x is 
composed entirely of water granules at time t 
(definition not shown here). 

The goal is that P contains at least half a cup of 
water at time TG. 

[Sl][Exists(l)(T,) A All.water(l)(TG) ?\ (24) 
Contains(P,l)(TG) A vol(l)(TG)>cups(O 5j] 

Throughout this proof sketch, I will need to make 

default assumptions. However, I have not investigated 
theories for making appropriate default assumptions in 
this research. Instead, I will simply make those 
assumptions that are needed and reasonable. As a 
result, I have a set of examples that a theory for 
making default assumptions must be able to produce. 
My first assumptions correspond to conditions that will 
not change throughout the execution of FP. 

Default assumptzon 
[VWTa..T5)] 

(25) 

[K=knob of faucet(F)(t) A W=supply of faucet(F)(t) “\ 
C=supply cant of.faucet(Fj(t) A 
Contains(C,W)(t) A vol(W)(t)>cups( 1000) A 
Exists(F)(t) A Exists(K)(t) A Exists(P)(t) A 
Exists(C)(t) A Exists(W)(t) A 
contained.vol(P)(t)=cups( 1) A All.water(W)(t) A 
Identifiable(P)(t) A Identifiable(K)(t) A 
Near(P)(t) A Near(K)(t) A Graspable(K)(t)] 

Additional assumptions are needed in a complete proof, 
such as that certain ObJects do not move throughout, 
that the open and closed positions for K do not 
change, etc. 

After executing S,, the knob K is grasped, i.e., 
“Grasped(K This follows trivially since the given 
condition in Formula 23 satisfies the condition of 
Formula 16. 

While executing Sp, the robot moves K (the currently 
grasped object) to its open position. Let T’, denote 
the instant that K first becomes fully open, after which 
it remains open. T’, is in the interval “(T,..T2)“. Also, 
according to Formula 18, the robot begins to move K 
immediately at T,. 

Open.knob(K)(T,, . .T2) A (26) 

[Vt~(T,..T’,)][~Open.knob(K)(t)n~Closed.knob(K)(t)] 

For similar reasons, during the execution of S,, there 
1s some instant when K becomes fully closed and 
remains closed (using Formula 19). Let this instant be 
T’,, which is in the interval “(T3,.T4)“. 

Closed.knob(K)(T, 5..T41A (27) 

[VtG (T3..T’3)][-0pen.knob(Kj(t) A -Closed.knob(K)(t)] 
I will now sh/ow that a “Faucet.flow” process begins 

at T, and ends at T’3. However, first I make the 
default assumption that K remains fully closed during 
“(T@..T,)“, fully open during “(T2..T3)“, and fully closed 
during “(T4. .Ts)“. 

Default assumption. (28) 
Closed.knob(K)(T @. J1> * OPenknob CT*. , T3) A 

Closed.knob(K)(T 4- .Ts> 
As a result, K is fully closed before T, and it is not 
fully closed just after T, (note that nothing needs to 
be said about K’s status precisely at T,). This satisfies 
the left side of Formula 11 with “tb=T,“, leading me to 
conclude that there is a “Faucet.flow” process, which 
I’ll call FF, with F as its “faucet.of.flow”, that begins at 
5 

and continues while K is not closed. However. 

Formula 11 will not let me conclude that FF ends at 
T’,; Formula 13 is needed to determine process endings. 
Letting “t,=T’3” in Formula 13, I conclude that a 
“Faucet.flow” process, which I’ll call FF2, has F as its 
“faucet.of.flow”, ends at T’,, and has continued for as 
long as K has not been closed. Of course, there is 
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only one process here, which is concluded from Formula 
14. Since FF and FF2 use the same faucet, F, and their 
occurrences overlap (e.g., at T3), then “FF2=FF”. 

Faucet.flow(FF) A F=faucet.of.flow(FF) A (29) 
Occurs(FF)(T,. +Tv3) A [Vt][t<T, +-Occurs(FF)(t)] A 

[Vt][t>T’3-+-Occurs(FF)(t)] 
Thus, the robot can identify a faucet flow process 

and can determine its times of occurrence. 
Given the times of occurrence of FF, I can now 

determine its effect. First, I assume that P receives 
the water flowing from F (space does not allow a 
discussion of the necessary geometry). 

[VtG (T, ..T’3)][P= receptacle.of.flow(FF)(t)] (30) 
By applying the formula describing the effects of 
“Faucet.flow”, Formula 15, to the above times for FF’s 
occurrence, 29, I conclude that a liquid transfer took 
place from C to P during “(T,..T’,)“. 

Liq.xfer(C,P,T, ,T’,) (31) 
So, granules are accumulating in P that come from C 
(i.e., are part of what was W). From this, I can 
conclude that water is accumulating in P (and if I 
added more theories, that this water has properties 
similar to those of W, such as being either hot or cold). 
Also, given that FF is occurring, I can conclude the 
approximate rates of transfer. During “(T’, . .T$“, it 
transfers at the maximum rate of 1 cup every four 
seconds. During the other times it transfers at a rate 
somewhere between 1 cup per minute and 1 cup per 4 
seconds. 

I now make the default assumptions that the liquid 
transferred by FF remains in P throughout execution of 
FP and that it remains liquid. Also, any non-gaseous 
object in P during execution of FP came from F’s water 
supply, w. 

Default assumption: 

[Vx,W&] 
(32) 

K Liquid(x)(t) A Contains(P,x)(t)+ 

[Vt’G(t..Tg)][Liquid(x)(t’) A Contains(P,x)(t’)]) A 

(-Gas(x)(t) A Contains(P,x)(t)+ 

wt(x)W smeWMTg))] 
Given the above, I conclude that P will continue to 

fill with water and that, eventually, “Less.full(P,0.5)” 
will be false. In fact, this will happen between 0 and 2 
seconds after Tp, taking into account the varying rate 
of water flow and the fact that the time of T’, is not 
precisely known. Therefore, S, takes between 0 and 2 
seconds to execute, and the entire program takes 
between 8 and 10 seconds. So, the robot should begin 
execution at “Te=TC-seconds(lO)” to be sure P will be 
filled in time. It turns out that during the execution 
of s,, another half cup of water could flow, so P will be 
between half and completely full. 

I am nearly at the given goal, Formula 24, but it is 
stated in terms of a liquid object and not in terms of a 
set of liquid granules that are contained in P. However, 
Formula 4 lets the robot identify the liquid in P as a 
physical object, and so the goal is achieved. 

6. Conclusions 
Physics For Robots (PFR) represents the everyday 

physics that a robot needs to use in planning to 
perform everyday tasks. Using a PFR representation 
scheme, a robot can reason about natural processes as 
well as actions. It can take into account the time 

events take, the gradual changes they cause and the 
fact that many processes, once initiated, continue 
without further attention. Therefore, it can plan to 
control many processes simultaneously. PFR also 
specifies identity criteria for physical objects that 
break apart, come together, mix, or come into or go 
out of existence. Therefore, the robot can plan to 
recognize and manipulate objects undergoing 
transformations, and to determine the properties of 
these objects based on their material composition. 

The contributions of this research are: 
0 a strategy to develop and evaluate representations 

of everyday physics for robot planning, 
0 a general representation for part of everyday 

physics: including an ontology of time, space, 
physical objects and events, theories governing 
processes, material composition, etc. 

o an application specific representation: describing 
everyday phenomena from cooking, such as water 
flow from a faucet, etc. 

The crucial research to be done next is not only to 
extend these types of representations to more areas, 
but to use these results to design reasoning 
mechanisms that will allow robots to plan for everyday 
tasks. 
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