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ABSTRACT 

Intelligent agents must be able to interact even with- 
out the benefit of communication. In this paper we 
examine various constraints on the actions of agents 
in such situations and discuss the effects of these con- 
straints on their derived utility. In particular, we de- 
fine and analyze basic raiionaliiy; we consider various 
assumptions about independence; and we demonstrate 
the advantages of extending the definition of rational- 
ity from individual actions to decision procedures. 

I Introduction 

The affairs of individual intelligent agents can sel- 
dom be treated in isolation. Their actions often inter- 
act, sometimes for better, sometimes for worse. In this 
paper we discuss ways in which cooperation can take 
place in the face of such interaction. 

A. Previous work in Distributed AI 

In recent years, a sub-area of artificial intelli- 
gence called distributed artificial intelligence (DAI) 
has arisen. Researchers have attempted to address 
the problems of interacting agents so as to increase 
efficiency (by harnessing multiple reasoners to solve 
problems in parallel [29]) or as necessitated by the 
distributed nature of the problem domain (e.g., dis- 
tributed air traffic control [30]). 

Smith and Davis’ work on the contract net [6] pro- 
duced a tentative approach to cooperation using a 
contract-bid metaphor to model the assignment of 
tasks to processors. Lesser and Corkill have made em- 
pirical analyses of distributed computation, trying to 
discover cooperation strategies that lead to efficient 
problem solutions for a network of nodes [3,4,7,21]. 

*This research has been supported by the Office of Naval Re- 
search under grant number N00014-81-K-0004 and by DARPA 
under grant numbers N00039-83-C-0136 and N00039-86-C-0033. 

Georgeff has attacked the problem of assuring non- 
interference among distinct agents’ plans [12,13]; he 
has made use of operating system techniques to iden- 
tify and protect critical regions within plans, and has 
developed a general theory of action for these plans. 
Lansky has adapted her work on a formal, behavioral 
model of concurrent action towards the problems of 
planning in multi-agent domains [20]. 

These DA1 efforts have made some headway in con- 
structing cooperating systems; the field as a whole haa 
also benefited from research into the formalisms nec- 
essary for one agent to reason about another’s knowl- 
edge and beliefs. Of note are the efforts of Appelt [l], 
Moore [24], Konolige [19,18], Levesque [22], Halpern 
and Moses [8,16]. 

B. Their assumptions 

Previous DA1 work has assumed for the most part 
that agents are mutually cooperative through their 
designer’s fiat; there is built-in “agent benevolence.” 
Work has focused on how agents can cooperatively 
achieve their goals when there are no conflicts of inter- 
est. The agents have identical or compatible goals and 
freely help one another. Issues to be addressed include 
those of synchronization, efficient communication, and 
(inadvertent) destructive interference. 

c. Overview of this paper 

1. True conflicts of interest 

The research that this paper describes discards the 
benevolent agent assumption. We no longer assume 
that there is a single designer for all of the interacting 
agents, nor that they will necessarily help one another. 
Rather, we examine the question of how high-level, au- 
tonomous, independently-motivated agents ought to 
interact with each other so as to achieve their goals. 
In a world in which we get to design only our own 
intelligent agent, how should it interact with other in- 
telligent agents? 
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There are a number of domains in which au- 
tjonomous, independently-motivated agents may be ex- 
pected to interact. Two examples are resource man- 
agement applications (such as an automated secre- 
tary [15]), and military applications (such as an au- 
tonomous land vehicle). These agents must represent 
the desires of their designers in an environment that 
includes other intelligent agents with potentially con- 
flicting goals. 

Our model of agent interaction thus allows for true 
conflicts of interest. As special cases, it includes pure 
conflict (i.e., zero sum) and conflict-free (i.e., common 
goal) encounters. By allowing conflict of interest inter- 
actions, we can address the question of why rational 
agents would choose to cooperate with one another, 
and how they might coordinate their actions so as to 
bring about mutually preferred outcomes. 

2. No communication 

Although communication is a powerful instrument 
for accomodating interaction (and has been examined 
in previous work [28]), in our analysis here we consider 
only situations in which communication between the 
agents is impossible. While this might seem overly re- 
strictive, such situations do occur, e.g., as a result of 
commmunications equipment failure or in interactions 
between agents without a common communications 
protocol. Furthermore, the results are valuable in the 
analysis of cooperation with communication [28,27]. 

Despite the lack of communication, we make the 
strong assumption that sufficient sensory information 
is available for the agents to deduce at least partial 
information about each other’s goals and rationality. 
For example, an autonomous land vehicle in the battle- 
field may perceive the actions of another autonomous 
land vehicle and use plan recognition techniques [9] to 
deduce its destination or target, even in the absence 
of communication. 

3. Study of coristrairrts 

In this paper we examine various constraints on the 
actions of agents in such situations and discuss the 
effects of these constraints on the utility derived by 
agents in an interaction. For example, we show that it 
can be beneficial for one agent to exploit information 
about the rationality of another agent with which it 
is interacting. We show that it can also be beneficial 
for an agent to exploit the similarity between itself 
and other agents, except in certain symmetric situa- 
tions where such similarity leads to indeterminate or 
nonoptimal action. 

The study of such constraints and their conse- 
quences is important for the design of intelligent, inde- 
pendently motivated agents expected to interact with 
other agents in unforeseeable circumstances. Without 
such an analysis, a designer might overlook powerful 
principles of coooperation or might unwittingly build 
in interaction techniques that are nonoptimal or even 
inconsistent. 

Section 2 of this paper provides the basic frame- 
work for our analysis. The subsequent sections analyze 
progressively more complicated assumptions about in- 
teractions between agent.s. Section 3 discusses the 
consequences of acting rationally and exploiting the 
rationality of other agents in an interaction; section 
4 analyzes dependence and independence in decision 
making; and section 5 explores the consequences of 
rationality across situations. The concluding section 
discusses the coverage of our analysis. 

II Framework 

Throughout the paper we make the assumption that 
there are exactly two agents per interaction and ex- 
actly two actions available to each agent. This as- 
sumption substantially simplifies our analysis, while 
retaining the key aspects of the general case. Except 
where indicated to the contrary, all results hold in gen- 
eral [10,11,14,27]. 

The essence of interaction is the dependence of one 
agent’s utility on the actions of another. We can char- 
acterize this dependence by defining the payoff for each 
agent i in an interaction s as a function pi that maps 
every joint action into a real number designating the 
resulting utility for i. Assuming that M and N are the 
sets of possible moves for the two agents (respectively), 
we have 

pf ; A4 x l?i --+ R. 

In describing specific interactions, we present the 
values of this function in the form of payoff matrices 
[23], like the one shown in figure 1. The number in the 
lower left hand corner of each box denotes the payoff 
to agent J if the agents perform the corresponding ac- 
tions, and the number in the upper right hand corner 
denotes the payoff to K. For example, if agent J per- 
forms action a in this situation and agent Ii performs 
action c, the result will be 4 units of utility for J and 
1 unit for Ii’. Each agent is interested in maximizing 
its own utility. 
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Figure 1: A payoff matrix 

Although the utilities present in a payoff matrix can 
generally take on any value, we will only need the or- 
dering of outcomes in our analysis. Therefore, we will 
only be using the numbers 1 through 4 to denote the 
utility of outcomes. 

An agent’s job in such a situation is to decide which 
action to perform. We characterize the decision proce- 
dure for agent i as a function W; from situations (i.e., 
particular interactions) to actions. If S is the set of 
possible interactions, we have 

Wi : S + M. 

In the remainder of the paper we take the viewpoint 
of agent J. 

III Basic Rationality 

We begin our analysis by considering the conse- 
quences of constraining agent J so that it will not 
perform an action that is basically irrational. Let Ri 
denote a unary predicate over moves that is true if and 
only if its argument is rational for agent i in situation 
s. Then agent J is basically rational if its decision 
procedure does not generate irrational moves, i.e., 

lR”,(m) * WJ(S) # m. 

WJ here is a function that designates the action per- 
formed by J in each situation, as described above. In 
order to use this definition to judge which actions are 
rational, however, we need to further define the ratio- 
nality predicate R”, . 

An action m’ dominaies an action m for agent J 
in situation s (written D;(m’, m)) if and only if the 
payoff to J of performing action m’ is greater than the 
payoff of performing action m (the definition for agent 
I< is analogous). The difficulty in selecting an action 
stems from lack of information about what the other 
agent will do. If such information were available, the 
agent could easily decide what action to perform. Let 

the term A;((m) denote the action that agent K will 
perform in situation s if agent J performs action m: 

WI&) = &(W.r(s)). 

In what follows we call AL the reac2ion function for 
IC. Then the formal definition of dominance is 

D;(m’, m) ++ p$(m’, 4&n’)) > P~(mA;((m)). 

We can now define the rationality predicate. An 
action is basically irrational if there is another action 
that dominates it. 

(3m’ D~(m’,m)) 3 ‘R:(m) 

Even if J knows nothing about K’s decision pro- 
cedure, this constraint guarantees the optimality of a 
decision rule known as dominance analysis. According 
to this rule, an action is forbidden if there is another 
action that yields a higher payoff for every action of 
the other agent, i.e., 

(3m’hVn’ p;(m, n) < p:(m’, n’)) 3 W(s) # m. 

Theorem Basic rationality implies dominance analy- 
sis. 

Proof: A straightforward application of the definition 
of rationality. Cl 

As an example of dominance analysis, consider the 
payoff matrix in figure 2. In this case, it is clearly best 
for J to perform action a, no matter what K does 
(since 4 and 3 are both better than 2 and 1). There is 
no way that J can get a better payoff by performing 
action b. 

K 

J 

Figure 2: Row Dominance Problem 

Of course, dominance analysis does not always ap- 
ply. As an example, consider the payoff matrix in fig- 
ure 3. In this situation, an intelligent agent J would 
probably select action a. Rowever, the rationale for 
this decision requires an assumption about the ratio- 
nality of the other agent in the interaction. 
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Figure 3: Column Dominance Problem 

In dealing with another agent it is often reasonable 
to assume that the agent is also basically rational. The 
formalization of this assumption of mutual rationality 
is analogous to that for basic rationality. 

lRk(m) 3 W&s) #m 

Using this assumption one can prove the optimality 
of a technique called iterated dominance analysis. 

Theorem Basic rationality implies iterated domi- 
nance analysis. 

Proof: For this proof, and those of several following 
theorems, see [lo] and [ll]. III 

Iterated dominance analysis handles the column 
dominance problem in figure 3. Using the basic ra- 
tionality of K, we can show that action d is irrational 
for K. Therefore, neither ad nor bd is a possible out- 
come, and J need not consider them.2 Of the remain- 
ing two posrible outcomes, ac dominates be (from J’s 
perspective), so action b is irrational for J. _ 

IV Action Dependence 

Unfortunately, there are situations that cannot be han- 
dled by the basic rationality assumptions alone. Their 
weakness is that they in no way account for dependen- 
cies between the actions of interacting agents. This sec- 
tion offers several different, but inconsistent, approaches 
to dealing with this deficiency. 

The simplest case is complete independence. The in- 
dependence assumption states that each agent’s choice of 
action is independent of the other. In other words, each 
agent’s reaction function yields the same value for every 
one of the other agent’s actions. For all m, m’, n, and n’, 
we would then have 

2We write mn to describe the situation where J has chosen 
action m, and K has chosen action n; we call this a joint action. 

A&(m) = A&(m’) 
A;(n) = A”J(n’). 

The main consequence of independence is a decision 
rule commonly known as case analysis. If for every %xed 
move” of K, one of J’s actions is superior to another, then 
the latter action is forbidden. The difference between case 
analysis and dominance analysis is that it allows J to com- 
pare two possible actions for each action by K without 
considering any %ross terms.” 

As an example, consider the payoff matrix in figure 4. 
Given independence of actions, a utility-maximizing agent 
J should perform action a: if K performs action c, then 
J gets 4 units of utility rather than 3, and if K performs 
action d, then J gets 2 units of utility rather than 1. Dom- 
inance analysis does not apply in this case, since the payoff 
(for J) of the outcome ad is less than the payoff of bc. 

K 

J 

Theorem 
analysis. 

Figure 4: Case Analysis Problem 

Basic rationality and independence imply case 

By combining the independence assumption with mutual 
rationality, we can also show the correctness of an iterated 
version of case analysis. 

Theorem Mutual rationality and independence imply it- 
erated case analysis. 

As an example of iterated case analysis, consider the 
situation in figure 5. J cannot use dominance analysis, 
iterated dominance analysis, nor case analysis to select an 
action. However, using case analysis K can exclude action 
c. With this information and mutual rationality, J can 
exclude action Q. 

K 

J 

Figure 5: Iterated Case Analysis i Problem 

Note that, if two decision procedures are not indepen- 
dent, the independence assumption can lead to nonoptimal 
results. As an example, consider the following well-known 
“paradox.” An alien approaches you with two envelopes, 
one marked “!I?’ and the other marked ‘)?“. The first enve- 
lope contains some number of dollars, and the other con- 
tains the same number of cents. The alien is prepared to 
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Alien V General Rationality 

J 

Figure 6: Omniscient Alien Problem 

General rationality is a stronger version of basic ratio- 
nality, the primary difference being that general rationality 
applies to decision procedures rather than to individual ac- 
tions. We introduce a new set of relations and functions to 
define general rationality. Let IRi denote a unary predicate 
over procedures that is true if and only if its argument is 
rational for agent i. A generally rational agent can use a 
procedure only if it is rational. 

-%(P) * 33 (W&J) # P(s)). 

Recall that WJ here is a function that designates the ac- 
tion performed by J in each situation, as described above. 
In order to use this definition to judge which actions are 
rational, we of course need to define further the rationality 
predicate RJ. 

give you the contents of either envelope. The catch is that 
the alien, who is omniscient,, is aware of the choice you will 
make. In an attempt to discourage greed on your part, he 
has decided to put one unit of currency in the envelopes if 
you pick the envelope marked $ but one thousand units if 
you pick the envelope marked #. Bearing in mind that the 
alien has decided on the contents of the envelope before 
you pick one, which envelope should you select,? 

The payoff matrix for this situation is shown in figure 
6. Since the payoff for $ is greater that, that for # for 
either of the alien’r option@, cma anallyair dictatea chooring 
the % envelope. Assuming that the alien’s omniscience is 
accurate, this lead to a payoff of $1.00. While selecting 
the envelope marked # violates case analysis, it leads to a 
payoff of $10.00. 

We can easily solve this problem by describing the alien’s 
reaction function and abandoning the independence con- 
straint. The appropriate axioms are A&($) = 1 and 
A%(+‘) = 1000. 

The definition of rationality for a decision procedure is 
analogous to that for individual actions. A procedure is 
irrational if there is another procedure that dominate8 it: 

(3P’ DJ(P’, P)) * dzJ(P). 

One procedure dominates another if and only if it yields 
as good a payoff in every game and a better payoff in at 
least, one game. Let the term dk(P) denote the action that 
agent K will take in situation s if agent J uses procedure 
P. Then the formal definition of dominance is: 

These constraints limit J’s attention to the lower left 
hand corner and the upper right hand corner of the ma- 
trix. Since the payoff for selecting the # envelope is better 
than the payoff for selecting the $ envelope, a rational agent 
will choose #. Although the example given here is whimsi- 
cal, there are real-world encounters where the assumption 
of independence is unwarranted, and where the effect illus- 
trated above must enter the rational agent’s analysis. 

Another interesting example of action dependence is 
common behavior. The definition requires that we consider 
not only the current situation s but also the permuted sit- 
uation s’ in which the positions of the interacting agents 
are reversed. An agent J and an agent K have common 
behavior if and only if the action of K in situation s is the 
same as that of agent J in the permuted situation s’.~ 

Va WK(a) = WJ(~‘) 

Common behavior is a strong constraint. While it may 
be insupportable in general, it is reasonable for interac- 
tion among artificial agents, especially those built from the 
same design. Unfortunately, it is not as strong as we would 
like, except when combined with general rationality. 

3This constraint is similar to the similar bargainer.9 assump- 
tion in [28,27]. 

nl(P’, P) - 
vs pdJ(P’(s),dR(~‘)) 2 pd,(P(s)AON 

A 3s p:(P’(s),&&“)) > pdJ(P(s)A#‘)). 

The advantage of general rationality is that, together 
with common behavior (defined in the last section), it al- 
lows us to eliminate joint actions that are dominated by 
other joint actions for all agents, a technique called domi- 
nated case elimination. 

Theorem General rationality 
dominated case elimination. 

and common behavior imply 

Proof: Let, s be a situation with joint actions uv and zy 
such that psJ(u, v) > psJ(z, y) and p;((u, v) > p;C(z, y), and 
let, P be a decision procedure such that P(s) = z and 
P(a’) = y (where s’ is the permuted situation, where J 
and K’s positions have been reversed). Let Q be a deci- 
sion procedure that is identical to P except that Q(s) = u 
and Q(s’) = v. Under the common behavior assumption, 
Q dominates P for both J and K and, therefore, P is gen- 
erally irrational. q  

In other words, if a joint action is disadvantageous for 
both agents in an interaction, at least one will perform 
a different action. This conclusion has an analog in the 
informal arguments of [5] and [17]. 
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No-conflict situations are handled as a special case of 
this result. The best plan rule states that, if there is a 
joint action that maximizes the payoff to all agents in an 
interaction, then it should be selected. 

Carallary Gnatal rationality and common bshuvior im- 
ply best plan. 

J 

Figure 9: Battle of the Sexes 
Proof: Apply dominated case elimination to each of the 
alternatives. Cl 

As an example of best plan, consider the situation pic- 
tured in figure 7. None of the preceding techniques (e.g., 
dominance analysis, case analysis, iterated case analysis) 
applies. However, UC dominates all of the other joint ac- 
tions, and so J will perform action a and K will perform 
action c (under the assumptions of general rationality and 
common behavior). 

K 

C 1 d ] 

a 4 2 
4 2 

J IE b 1133 

Figure 7: Best Plan 

Generlll rationality and common behavior also handle 
difkult rituationr like the prisoner’s dilemma [2,512ti] pica 
tured in figure 8. Since the situation is symmetric (i.e., 
s=a ‘, using our earlier notation), common behavior re- 
quires that they both perform the same action; general ra- 
tionality eliminates the joint action bd since it is dominated 
by ac. The agents perform actions a and c respectively, and 
each receives 3 units of utility. By contrast, case analysis 
dictates that the agents perform actions b and d, leading 
to a payoff of only 2 units for each. 

K 

J 

Figure 8: Prisoner’s Dilemma 

Unfortunately, general rationality and common behav- 
ior are not always consistent. As an example, consider 
the battle of the sexes problem in figure 9. Again the sit- 
uation is symmetric, and common behavior dictates that 
both agents perform the same action. However, both joint 
actions on the ac/bd diagonal are forbidden by dominated 
case elimination. 

This inconsistency can be eliminated by occasionally re- 
stricting the simultaneous use of general rationality and 

common behavior to non-symmetric situations. Neverthe- 
less, in a no-communication situation, the resolution of a 
conflict such as that in figure 9 remains undetermined by 
the constraints we have introduced. 

VI Conclusions 

A. Coverage of this approach 

There are 144 distinct interactions between two agents 
with two moves and no duplicated payoffs. Of these, the 
techniques presented here cover 117. The solutions to the 
remaining 27 cases are unclear, e.g., the situation in fig. 
10. 

K 

Figure 10: Anomalous situation 

For a discussion of a variety of other techniques that can 
be used to handle these situations, as well as a discussion 
contrasting all of these approachs with those used in game 
theory, see [27]. 

B. Suitability of this approach 

This paper’s analysis of interactions presupposes a vari- 
ety of strong assumptions. First, the agents are assumed to 
have common knowledge of the interaction matrix, includ- 
ing choices of actions and their outcomes. Second, there 
is no incompleteness in the matrix (i.e., there are no miss- 
ing utilities). Third, the interaction is viewed in isolation 

( i.e., no consideration is given to future interactions and 
the effects current choices might have on them). Fourth, 
there must be effective simultaneity in the agents’ actions 
(otherwise, there are issues concerning which agent moves 
first, and the new situation that then confronts the second 
agent). 

Admittedly, these are serious assumptions, but there are 
some situations where they are satisfied. Consider as an 
example two ALVs approaching opposite ends of a narrow 
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tunnel, each having the choice of using the tunnel or try- 
ing one of several alternate routes. It is not unreasonable 
to assume that. they have common knowledge of one an- 
other’s approach (e.g., through reconnaisance). Nor is it 
unreasonable to assume that the agents have some models 
of one another’s utility functions. Finally, in the domain of 
route navigation, the choices are often few and well-defined. 
There might be no concern (in this case) over future en- 
counters, and the decisions are effectively simultaneous. 
The types of analysis in this paper are an appropriate tool 
to use in deciding what action to take. 

For most domains, of course, the assumptions listed 
above are far too limiting, and clearly more work needs 
to be done in developing this approach so that each of the 
most restrictive assumptions can be removed in turn. The 
work in [28,27] represents steps in that direction. Cur- 
rently, research on the question of incomplete matrices is 
being pursued, so that the type of conflict analysis pre- 
sented in this paper can be applied to interactions with 
incomplete information [26]. Future work will focus on is- 
sues arising from multiple encounters, such as retaliation 
and future compensation for present loss. 

Intelligent agents will inevitably need to interact flexibly 
with other entities. The existence of conflicting goals will 
need to be handled by these automated agents, just as it 
is routinely handled by humans. The results in this paper 
and their extensions should be of use in the design of in- 
telligent agents able to function successfully in the face of 
such conflict. 
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