
PLANNING WITH ABSTRACTION
Josh Tenen berg

Department of Computer Science
University of Rochester

Rochester, NY 14620
josh@rochester

objects of type v are also objects of type w, and inherit all
properties provable of type w. We will call w an abstraction of v,
and v a specialization of w. These taxonomies enable us to make
assertions about a class of objects that we need not repeat for all

Abstract

Intelligent problem solvers for complex domains must have the
capability of reasoning abstractly about tasks that they are called
upon to solve. The method of abstraction presented here allows

of its subclasses. So, for instance, if it is asserted that all one to reason analogically and hierarchically, making both the

task of formalizing domain theories easier for the system
designer, as well as allowing for increased computational
efficiencies. It is believed that reasoning about concepts that

share structure is essential to improving the performance of
automated planning systems by allowing one to apply previous
compua tional effort expended in the solution of one problem to a

broad range of new problems.

supportable objects can be stacked, then it need not be asserted
separately that blocks can be stacked, boxes can be stacked, and
trays can be stacked. It suffices to assert that blocks, boxes and

trays are all supportable objects. This structure is not strictly a
tree, which means that each object can be abstracted along
several different dimensions, with the effect that every node
inherits all of the properties of every other node from which there

is a path. For example, a Bottle is both a Container and a Holdable

object , since there are paths in the graph from Bottle to both
Holdable and Container. Note that this structure admits no

exceptions. We prefer instead to weaken those assertions we can
make of a class in order to preserve consistency.

1. Introduction
Most artificial intelligence planning systems explore issues-of

search and world representation in toy domains. The blocks world
is such a domain, with one of its salient and unfortunate

characteristics being that all represented objects (blocks) are
modeled as being perfectly uniform in physical features. We

would like to model a richer domain, where objects bear varying
degrees of similarity to one another. For instance, we might wish

PhysObs

/ty
Supporter Contents Container to model blocks and trunks, which are both stackable but of

different sizes and weights, or boxes and bottles, which are both
containers but of different shape and material. As a consequence
of solving problems in this richer domain, we will want plans to

solved problems to be applicable to new problems based upon the
similarites of the objects to be manipulated. So, for instance, a
plan for stacking one block on top of another will be applicable to
a similar trunk stacking in terms of its gross features, but will differ

at more detailed levels. We will present a representation for plans

of varying degrees of abstraction based upon a hierarchical

organization of both objects and acti ons that provides a
qualitative similarity metric for problems posed to the planner.
This plan representation has the following property. When a plan

Block Box Tray HoldCont Room

Impermeable Cat-t

fZ
Glass Bottle

figure 1
We would like to represent actions similarly. Typically

[McCarthy and Hayes 19691, actions are represented in terms of
those conditions that suffice to hold before the performance of
the action (called preconditions) that ensure that the desired
effects will hold after the performance of the action. However, an
inherent inefficiency with this is that many actions share

preconditions and effects which must be specified separately for

each action, providing no means with which to determine which
actions are similar and hence replaceable by one another in
analogous problems

What we will do alternatively is to provide an action

taxonomy, by grouping actions into inheritance classes. An
example of a partial action hierarchy is given in figure 2. The

boxed nodes denote actions and the dotted arcs between actions

denote inheritance. As with the object hierarchy, if there is an

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

inheritance arc from action v to action w, we say that v is a

specialization of w, and w is an abstraction of v. The solid arcs
from a literal into an action denote necessary preconditions for
that action, and the solid arcs from an action to a literal denote
effects of that action. Each action inherits all preconditions and

effects from every one of its abstractions. So, for instance,
CarriedAloft is a precondition of p/aceln(x,y) inherited from
put(x,y), and /n(x,y) is an effect of p/ace/n(x,y) inherited from
contain(x,y). As we proceed down .this graph from the root node
traversing inheritance nodes backward, by collecting the
preconditions for each action encountered, we are adding
increasing constraints on the context in which the action may be

performed in order to have the desired effects. At the source
nodes, which represent the primitive actions, the union of all of
the preconditions on every outgoing path constitute a sufficient
set of preconditions. An action can only be applied if its sufficient
set of preconditions are all satisfied in the current state. The
sufficient set of preconditions for p/ace/nBox has been italicized,

and is exactly the union of those preconditions for each action
type on all paths from p/ace/nBox to contain. Additional action
hierarchies we might have are remove with specializations

pourOut and /iftOut, and the hierarchy open, with specializations
openDoor and removelid.

Open(y)
NextTo(ROBOT, y) (containol -b In(x,y)
Container(y)
ConnectedTo(ROBOT, x) , l ’

w 4
.

.* .

CarriedAloft

In(ROBOT,y) . l *.
.

In(x,z) \
. . L

In(hand(ROBOT),y)
.

Em ptytz)

Box(yl -
figure 2

III. Plan Abstractions
Planning involves finding a temporally ordered sequence of

primitive actions which when applied with respect to the temporal
ordering from a given initial state produces a state of the world in
which the desired goals hold, and for which the sufficient
preconditions for each primitive action must be satisfied by the

state in which the action is performed. In this paper, a total
temporal ordering of actions will be used for simplicity, although
the ideas presented here can be extended to more general

temporal orderings (partial orderings [Sacerdoti 771, concurrent

actions [Allen 841). Such a totally ordered sequence of actions will
be called a primitive p/an, or simply a p/an. Finding plans to solve
given problems involves searching for a state of the world which
satisfies our goals from those states of the world which are
possible from the initial state through the performance of one or

more actions. To reduce this search, we will make use of plans
that have already been found for solving previous problems. In
order to use saved plans, the similarity between the previous

problem solved by this plan and the current problem we wish to

solve must be evaluated. We describe p/an graphs which are a
means for performing this evaluation. These plan graphs are

generalizations of triangle tables [Fikes, Hart, and Nilsson 19721.
Using explanation based generalization [Mitchell, Keller, and

Kedar-Cabelli 1985) techniques, from a primitive plan a plan graph

is constructed which embeds the causal structure of the primitive
plan such that the purpose of each plan step can be determined.
Each action is represented not only as a primitive, but as a path

from a primitive to an abstract action taken from an action

hierarchy, where the causal structure enables us to determine
which hierarchy to choose. Given a new problem, this plan graph

is searched for its most specific subgraph whose causal structure is
consistent with the new problem. This subgraph represents an
abstract plan for the new problem, and will be used as a guide for

finding the primitive plan for this problem. If an action in the
original plan cannot be applied due to some difference between
the old and the new problem, such as a difference in
corresponding objects manipulated, (e.g., a ball in one case, a box
in the other) we can replace this action by choosing another which
is a different specialization of the same abstraction (pickupBall
replacing pickup8ox, both of which are specializations of pickup).

Thus many problems can be solved by performing search within
the constraints of the abstract plan we have retrieved for this

problem, rather than having to perform an unconstrained global
search.

A plan graph of a plan will have nodes for each action in the
primitive plan, and nodes with directed arcs for each precondition
and effect of these actions. If an effect of an action satisfies a
precondition of another, this will appear as an arc from the first

action, to its effect, to the second action. These causal chains
establish the purpose of each action in terms of the overall goal of
the plan. We will formally define plan graphs in two stages. The
first stage includes only the causal structure, while the second
incorporates abstractions.

A plan graph G = (V,E) for primitive plan P is a directed acyclic
graph where V and E are defined as follows. The set of vertices is

partitioned into two subsets V, and V,, precondition nodes and
action nodes. Likewise, E is partitioned into two two subsets Ec

and E,, causal edges and specialization edges. For every action in
P, there is a node in V, labeled by its corresponding action. If p is
an effect of action a in P, then there is a corresponding node in V,

labeled p, and the edge (a,p) is in Ec, and for every action b in P
that this instance of p satisfies there is an edge (p,b) in E,. For
example, if action Al establishes condition K which is a
precondition of action A2, then (K,AZ) is in E, if and only if there

does not exist action A3 that occurs after Al but before A2 that
clobbers K (establishes 1 K). Clearly any precondition of each

action that is not satisfied by a previous action must be satisfied by

the initial state. For every such precondition p there is a
corresponding node in VP labeled p, and for every action a in P for
which this instance of p is a precondition, there is an edge (p,a) in

E,. Each action node in E, is additionally labeled by a number
indicating its temporal order, the nth action labeled by n.

This graph will be specified further by the addition of action

abstractions, but note that as it stands it is similar to a graph

Planning: AUTOMATED REASONING / 77

version of triangle tables [Fikes, Hart, and Nilsson 19721, and
fulfills much the same function. We can use the same technique as

used in triangle tables for generalizing a plan by replacing all
constants in the action and precondition nodes by variables, and
redoing the precondition proofs to add constraints on variables in
different actions of the plan that should be bound to the same

object (see previous reference for details). These constraints will
have to be added to the graph as additional preconditions, but are
left off in our examples for clarity. The preconditions for this plan
graph are the set of source nodes (nodes with no incoming arcs),
and the goals of this plan graph are the set of sink nodes (nodes
with no outgoing arcs). This graph has the property that any

subset of its goals can be achieved from any initial situation in
which we can instantiate all of the preconditions by applying each
of the actions in order. A plan graph for the problem in figure 3 of

moving a ball from one box to another is given in figure 4 (nodes
representing preconditions satisfied by the initial state rather than
by a previous action are not included in this figure). This graph

will be altered to include abstract actions in a straightforward
fashion.

figure 3

1 n(k,y)

t 0 5

y IplacelnBox(x,y) 1 y

t

ConnectedTo(ROBOT, x) CarriedAloft NextTo(ROBOT,y)

NextTo(ROBOT,x)

\I reachlnBox(hand(ROBOT), z) 1 117
1 a-

figure 4
Figure 5 is an example of the altered plan from figure 4 (the

outlined subgraph of figure 5 will be explained later). This
alteration is done as follows. For each primitive action A0 in V,,

we will add nodes to V, labeled Al, AZ, A, (where n may be

different for each primitive action) and edges to E, labeled (Aa,
A,), (A,, A*), (A,-,, A,), where there exists some action

hierarchy such that A, is an abstraction of each Ak for k<i, and A,
satisfies at least one effect p for which there exists a node in V,
labeled p and an edge in E, labeled (Ao, p). More simply, we add
an abstraction path from an action hierarchy to the plan graph.

We then redirect each precondition arc (p, Ao) to point to the
highest abstraction A, for which there is an arc (p, A,) in the chosen
action hierarchy. In other words, p is a precondition of abstraction
A,, but not of any abstraction of A,. For instance, p/ace/&ox is

replaced by the abstraction sequence placeinBox, place/n, put,
contain, and the preconditions NextTo and ConnectedTo are
redirected to contain, while CarriedAloft is redirected to put. We
additionally redirect effect arcs (Aa, p) such that the effects come
from the highest abstraction A, for which there is an arc (A,, p) in

the chosen action hierarchy. In other words, p is an effect of

abstraction A,, but not of any abstraction of A,. Turning again to
figure 5, the effect arc into ConnectedTo is redirected to come
from attachToAgent, since this will be an effect of every
specialization of this abstraction, and the effect arc to Grasped is
redirected to come from grasp. We will additionally add temporal
numberings to each abstraction on a path from each primitive

action (although the examples will only number the highest
abstractions for each action).

r _ __-_-.-.-.-.-.-. -.-.-,-.-.-.-‘-‘-‘-.-‘-‘-‘-‘-‘-‘-’-’-’-’-.-.~

Inky)

‘.

ConnectedTo(ROBOT, x) ’ x., CarriedAloft
4

f NextTo(ROBOT,x)
i

$x&J

I 4
i.-.-.-.-. (_ -.- -.-.-.-.-.

IgrarpBailoI
mox(hand(ROBOT), x, z) 1

figure 5
The primitive action nodes of this plan graph indicate the

primitive plan that solves the problem for which the plan was

constructed. The distance between an action node and one of the
goals of the entire plan graph along its shortest causal chain is a
rough measure of the significance of the action to the overall
plan. The shorter the distance, the more likely this action or an

abstraction of it will be required in a similar problem; the greater
the distance, the less likely this action will be useful in a similar
problem. This plan can thus be abstracted by one or both of the
following: removing causal chains from one or more precondition
nodes, and removing specialization paths from one or more action

nodes. Each resultant partial plan graph represents a plan with

some of the detail unspecified.

-8 / SCIENCE

More formally, a partial plan graph P of plan graph P’ is any
subset of the nodes and arcs of P’ such that no source nodes are
action nodes, at least one sink node (goal) of P’ is in P, and these

will be the only sink nodes in P, and for every node in P, there
exists at least one path from this node to a sink node (unless that
node is itself a sink node). Additionally, if b is an action node,

then every node p for which there exists an arc (p,b) in P’ will be

added to P along with this arc. We will additionally “mark” each
source node in P that was also a source node in P’. This mark
indicates that this precondition is satisfied by the initial state of
the original problem, as opposed to being satisfied by the
performance of a previous action. The reason for marking these
nodes will be explained later. From this definition, there will be
several partial plan graphs that can be constructed from a given
plan graph. The subgraph outlined by the dotted line in figure 5 is
one exapmle. As before, the preconditions of a partial plan graph
are the formulas attached to the source nodes (not included in the
given figures), while the goals of each partial plan graph are the

formulas attached to the sink nodes.
Figure 7 is the plan graph for a plan to solve the problem from

figure 6. Here a box must be moved between rooms. In both this

problem and that of figure 3, the goal is to move an object from
one container to another. This draws analogies between rooms

and boxes, which are both containers according to our object
hierarchy, and between placing objects in boxes and pushing
objects into rooms, which are both containment actions,
according to our action hierarchy. At an abstract level, the plan of

attaching the object to the agent, and moving the agent from one
container to the other suffices for both problems, and in fact this
is the abstract plan represented by the identical partial plan graph
that is outlined by the dotted line in both figures 5 and 7. So

although the problems that these graphs solve are different, at
this level of abstraction they are identical.

1

figure 6

We can generalize from this in that for any partial plan graph

P of plan graph P’, there will exist a set II of plan graphs for which
P will be a partial plan graph of each of them. That is, P will
describe each primitive plan of each element from this set at some

level of abstraction. We will use the symbol TIP to denote the

largest such set. For instance, if we label the outlined partial plan
graph of figure 5 K, then the graphs of figures 5 and 7 are in ITK.
We will say that the primitive plan of each member of TIP is an
expansion of the partial plan graph P. The more general P is, that
is, the smaller a subgraph of P’ it is and hence the more abstract

each of its constituent actions are and the smaller its causal chains,
the larger will be the cardinality of TIP. We will say that partial

plan graph P solves problem Q if and only if there exists an
element of IIp whose primitive plan solves Q for some
instantiation of all of its variables by ground terms.

Given a partial plan graph P and a problem instance Q that P
solves, we can find an expansion of P that solves Q by only
searching for specializations of the abstract actions of P without

r’- . - . - . - . - - . - . - . -
_ _ _ _ , _ . _ - , - - - - . - - _ - . - . - - - - . - - - w . 7

Inky)

4 -

/ (FI 1 NextTo(;BOT,y) i

\ ‘, i I

f ConnectedTo(ROBOT, x) . \.,

I A
I I’\ L ._.-.-. -.-.A .-.-.- -.-.A

Grasped(x) i

/
. .

i NextTo(ROBOT,x)
i
I 4 r ._ .- -. - .A - -.- i

j~getNeat(x)
L.- .-.- *-.-.-.-.- - - i
ImoveTo(x)I

figure 7
having to backtrack through the actions of P itself. P thus serves as

an abstract guide to solving Q. So, for instance, given the partial
plan graph outlined in figure 5, we can find the remainder of the
primitive plan (those actions not inside the dotted line) that solves
the problem from figure 6 by only having to do local search. By

this, we mean that for any non-primitive action in this partial plan
graph, (such as contain, in figure 7), we follow arcs backward

through that abstract action’s specialization tree (figure 2 in this
case) until we find a primitive action whose preconditions are all
satisfied by the state in which it is executed (push/n, in this
example). If no such primitive exists, then additional pnmltlves

must be inserted in this plan to establish the sufficient
preconditions for some specialization, where these inserted

actions do not clobber preconditions of any of the already
established succeeding actions

Unfortunately, we cannot In general know if a given partral

plan solves a given problem instance unless we perform the
possibly unbounded local search for the primitive plan that
verifies this. It may not be possible to find specializations of each

extant abstract action without reordering some of the actions,
and therefore backtracking through and altering the partial plan
graph itself. Although we are not guaranteed certainty, we can
still use the plan graphs as a heu%st:c for search. We will define a
partial plan graph P as being applmble to a problem Q If and only
if the goals of Q are a subset of the goals of P, and the marked

preconditions of P are a subset of the conditions that hold In the
initial state of Q. Recall that we marked all of those preconditions
in a partial plan graph that were satisfied by the Initial state of the
original problem. Applicability thus means that the current Initial
state satisfies the same preconditions at this /eve/ of abstractron as
the original initial state.

Suppose we wish to find a primitive plan for problem Q
consisting of an initial state and a set of goals (for simplicity we

Planning: AUTOML4TED REASONING , ‘9

will assume that this goal is a single literal). Additionally suppose
that the goals of plan graph P are the same as those of Q. We will
attempt to find the most specialized partial plan graph P’ of P for

which an expansion exists that will solve Q, even though it is
possible that no such P’ exists. We will do this by traversing P

backward from its goal node through the causal and

specialization arcs, considering increasingly larger partial plans of
P. We will continue this traversal as long as the partial plan
represented by all of the paths pursued is still applicable to Q,

stopping when we can no longer traverse any arc and still have
applicability of the current partial plan to problem Q. The size of

the partial plan that we have constructed is thus a qualitative
measure of similarity between the original problem and the
current one. If there are only insignificant differences, the partial
plan may be equivalent to the entire plan graph. If the differences
between the problems are large, this may result in a graph of only
a few actions expressed at high levels of abstraction. But given
the exponential nature of searching through combinatorial

spaces, knowing the temporal ordering of even a few of the
action abstractions that will eventually appear specialized in our
plan may help significantly.

IV. Previous Research

Abstraction in planning is typically viewed in terms of

decompositional abstraction as used in NOAH-like planners
[Sacerdoti 19771. In these planners, action A is an abstraction of

actions B,C,D if the latter actions are each steps in the
performance of action A. This type of abstraction is thus

orthogonal to inheritance abstraction presented here.
ABSTRIPS [Sacerdoti 19741, although using different

techniques, shares some important similarities. ABSTRIPS is an
iterative planner, where increasingly large subsets of

preconditions of each action are considered at each successive

iteration. The developed plan at each level is then used to guide
search at more detailed levels, where the satisfaction of emergent
preconditions is attempted locally, similar to what is done in this
paper.

Of even greater similarity, but within a different domain, is

the work presented in [Plaisted 19811, who uses abstraction within
a theorem prover. He details how a desired proof over a set of
clauses can be obtained by first mapping the clause set to a set of
abstract clauses, obtaining a proof in this (hopefully simpler)

space, and then using this proof as a guide in finding the proof in
the original, detailed space. His mapping process and abstract

proof are similar to our search for an abstract plan within our

saved plan space - but rather than constructing an abstract plan

for each new problem, we attempt to appropriate one from a

previously solved problem.

V. Conclusion
The primary motivation for using abstraction was so that

search for solutions to new problems can be improved by using
solutions to old problems. We believe that this approach can be
used to these ends in a domain in which objects are
distinguishable at various levels of detail. We will try matching
abstract plans to problems that have the same goals. Any such

new problem whose initial state does not contain all of the
preconditions of the original initial state will thus not match the
abstract plan at every level, but will likely do so at some level. The

partial plan graph still provides two important functions in this
case. First, it ignores “unimportant” preconditions at the most

general levels, where the importance of a precondition is
determined by the height at which it appears in the action

hierarchy. Second, the search space of the new problem can be

explored along those paths that do not match the original
problem, while attempting to leave intact those paths that do
match.

We must point out that the abstraction described in this paper

has not been implemented for even a small domain. In fact, one
of the obstacles to doing such an implementation is that one may
likely only see benefits in a large domain. Thus, there will be little

point to use this method as a representation for the vanilla blocks
world. An additional issue is in the choice of problems that the

system will encounter. One can always construct problem

sequences given as input to the problem solving system such that
the abstractions in the model will optimize performance. By the

same token, one can always construct problem sequences where

the abstractions will give quite poor performance. The ultimate
test of a set of abstractions will therefore be empirical in that they
must be cost-effective (in terms of some resource measure) only as
compared with other problem solvers (human or machine) for a
given domain. We can make no such claims for the particular

abstractions of the limited physical world domain illustrated in
this paper. The importance of this work is in how we can structure
knowledge for solving problems in domains that are far richer
than the ones in which the current generation of planners have
approached. It is believed that inheritance abstraction will be a

powerful technique in this endeavor.

Special thanks to my advisor, Dana Ballard, whose energy,
knowledge, piercing insights and trust have made it all
worthwhile, to Leo Hartman, who always seems to have an answer
when an answer is needed, and to Jay Weber, who will hopefully
solve the questions of how we go about constructing abstraction
hierarchies.

References

[Allen 841
Allen, J.F., “Towards a General Theory of Action and Time”,
Artificial Intelligence 23: 123 - 154, 1984.

[Fikes, Hart, and Nilsson 19721
Fikes, R., Hart, P. , and Nilsson, N., “Learning and executing
generalized robot plans”, Artificial Intelligence 3:251 - 288,
1972

[Hendrix 19791
Hendrix, G.C., “Encoding Knowledge in Partitioned Networks”
in, Associative Networks, ed. Findler, N.V. 1979

[McCarthy and Hayes 19691
McCarthy, J., and Hayes, P., “Some philosophical problems
forom the standpoint of artificial intelligence”, In B.Meltzer
and D. Michie (editors), Machine Intelligence 4, 1969.

[Mitchell, Keller and Kedar-Cabelli 19851
Mitchell, T., Keller, R. and Kedar-Cabelli, S., “Explanation
Based Generalization: A Unifying View”, Rutgers Computer
Science Dept. ML-TR-2, 1985.

[Plaisted 19811
Plaisted, D., “Theorem Proving with Abstraction”, Artificial
intelligence 16:47-108, 1981

[Sacerdoti 19741
Sacerdoti, E., “Planning in a hierarchy of abstraction spaces”,
Artificial Intelligence 5: 115 - 135, 1974.

[Sacerdoti 19771
Sacerdoti, E. A structure for plans and behavior. American
Elsevier Publishing Company, New York, 1977

80 / SCIENCE

