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objects of type v are also objects of type w, and inherit all 
properties provable of type w. We will call w an abstraction of v, 
and v a specialization of w. These taxonomies enable us to make 
assertions about a class of objects that we need not repeat for all 

Abstract 

Intelligent problem solvers for complex domains must have the 
capability of reasoning abstractly about tasks that they are called 
upon to solve. The method of abstraction presented here allows 

of its subclasses. So, for instance, if it is asserted that all one to reason analogically and hierarchically, making both the 

task of formalizing domain theories easier for the system 
designer, as well as allowing for increased computational 
efficiencies. It is believed that reasoning about concepts that 

share structure is essential to improving the performance of 
automated planning systems by allowing one to apply previous 
compua tional effort expended in the solution of one problem to a 

broad range of new problems. 

supportable objects can be stacked, then it need not be asserted 
separately that blocks can be stacked, boxes can be stacked, and 
trays can be stacked. It suffices to assert that blocks, boxes and 

trays are all supportable objects. This structure is not strictly a 
tree, which means that each object can be abstracted along 
several different dimensions, with the effect that every node 
inherits all of the properties of every other node from which there 

is a path. For example, a Bottle is both a Container and a Holdable 

object , since there are paths in the graph from Bottle to both 
Holdable and Container. Note that this structure admits no 

exceptions. We prefer instead to weaken those assertions we can 
make of a class in order to preserve consistency. 

1. Introduction 
Most artificial intelligence planning systems explore issues-of 

search and world representation in toy domains. The blocks world 
is such a domain, with one of its salient and unfortunate 

characteristics being that all represented objects (blocks) are 
modeled as being perfectly uniform in physical features. We 

would like to model a richer domain, where objects bear varying 
degrees of similarity to one another. For instance, we might wish 
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Supporter Contents Container to model blocks and trunks, which are both stackable but of 

different sizes and weights, or boxes and bottles, which are both 
containers but of different shape and material. As a consequence 
of solving problems in this richer domain, we will want plans to 

solved problems to be applicable to new problems based upon the 
similarites of the objects to be manipulated. So, for instance, a 
plan for stacking one block on top of another will be applicable to 
a similar trunk stacking in terms of its gross features, but will differ 

at more detailed levels. We will present a representation for plans 

of varying degrees of abstraction based upon a hierarchical 

organization of both objects and acti ons that provides a 
qualitative similarity metric for problems posed to the planner. 
This plan representation has the following property. When a plan 
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figure 1 
We would like to represent actions similarly. Typically 

[McCarthy and Hayes 19691, actions are represented in terms of 
those conditions that suffice to hold before the performance of 
the action (called preconditions) that ensure that the desired 
effects will hold after the performance of the action. However, an 
inherent inefficiency with this is that many actions share 

preconditions and effects which must be specified separately for 

each action, providing no means with which to determine which 
actions are similar and hence replaceable by one another in 
analogous problems 

What we will do alternatively is to provide an action 

taxonomy, by grouping actions into inheritance classes. An 
example of a partial action hierarchy is given in figure 2. The 

boxed nodes denote actions and the dotted arcs between actions 

denote inheritance. As with the object hierarchy, if there is an 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



inheritance arc from action v to action w, we say that v is a 

specialization of w, and w is an abstraction of v. The solid arcs 
from a literal into an action denote necessary preconditions for 
that action, and the solid arcs from an action to a literal denote 
effects of that action. Each action inherits all preconditions and 

effects from every one of its abstractions. So, for instance, 
CarriedAloft is a precondition of p/aceln(x,y) inherited from 
put(x,y), and /n(x,y) is an effect of p/ace/n(x,y) inherited from 
contain(x,y). As we proceed down .this graph from the root node 
traversing inheritance nodes backward, by collecting the 
preconditions for each action encountered, we are adding 
increasing constraints on the context in which the action may be 

performed in order to have the desired effects. At the source 
nodes, which represent the primitive actions, the union of all of 
the preconditions on every outgoing path constitute a sufficient 
set of preconditions. An action can only be applied if its sufficient 
set of preconditions are all satisfied in the current state. The 
sufficient set of preconditions for p/ace/nBox has been italicized, 

and is exactly the union of those preconditions for each action 
type on all paths from p/ace/nBox to contain. Additional action 
hierarchies we might have are remove with specializations 

pourOut and /iftOut, and the hierarchy open, with specializations 
openDoor and removelid. 
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III. Plan Abstractions 
Planning involves finding a temporally ordered sequence of 

primitive actions which when applied with respect to the temporal 
ordering from a given initial state produces a state of the world in 
which the desired goals hold, and for which the sufficient 
preconditions for each primitive action must be satisfied by the 

state in which the action is performed. In this paper, a total 
temporal ordering of actions will be used for simplicity, although 
the ideas presented here can be extended to more general 

temporal orderings (partial orderings [Sacerdoti 771, concurrent 

actions [Allen 841). Such a totally ordered sequence of actions will 
be called a primitive p/an, or simply a p/an. Finding plans to solve 
given problems involves searching for a state of the world which 
satisfies our goals from those states of the world which are 
possible from the initial state through the performance of one or 

more actions. To reduce this search, we will make use of plans 
that have already been found for solving previous problems. In 
order to use saved plans, the similarity between the previous 

problem solved by this plan and the current problem we wish to 

solve must be evaluated. We describe p/an graphs which are a 
means for performing this evaluation. These plan graphs are 

generalizations of triangle tables [Fikes, Hart, and Nilsson 19721. 
Using explanation based generalization [Mitchell, Keller, and 

Kedar-Cabelli 1985) techniques, from a primitive plan a plan graph 

is constructed which embeds the causal structure of the primitive 
plan such that the purpose of each plan step can be determined. 
Each action is represented not only as a primitive, but as a path 

from a primitive to an abstract action taken from an action 

hierarchy, where the causal structure enables us to determine 
which hierarchy to choose. Given a new problem, this plan graph 

is searched for its most specific subgraph whose causal structure is 
consistent with the new problem. This subgraph represents an 
abstract plan for the new problem, and will be used as a guide for 

finding the primitive plan for this problem. If an action in the 
original plan cannot be applied due to some difference between 
the old and the new problem, such as a difference in 
corresponding objects manipulated, (e.g., a ball in one case, a box 
in the other) we can replace this action by choosing another which 
is a different specialization of the same abstraction (pickupBall 
replacing pickup8ox, both of which are specializations of pickup). 

Thus many problems can be solved by performing search within 
the constraints of the abstract plan we have retrieved for this 

problem, rather than having to perform an unconstrained global 
search. 

A plan graph of a plan will have nodes for each action in the 
primitive plan, and nodes with directed arcs for each precondition 
and effect of these actions. If an effect of an action satisfies a 
precondition of another, this will appear as an arc from the first 

action, to its effect, to the second action. These causal chains 
establish the purpose of each action in terms of the overall goal of 
the plan. We will formally define plan graphs in two stages. The 
first stage includes only the causal structure, while the second 
incorporates abstractions. 

A plan graph G = (V,E) for primitive plan P is a directed acyclic 
graph where V and E are defined as follows. The set of vertices is 

partitioned into two subsets V, and V,, precondition nodes and 
action nodes. Likewise, E is partitioned into two two subsets Ec 

and E,, causal edges and specialization edges. For every action in 
P, there is a node in V, labeled by its corresponding action. If p is 
an effect of action a in P, then there is a corresponding node in V, 

labeled p, and the edge (a,p) is in Ec, and for every action b in P 
that this instance of p satisfies there is an edge (p,b) in E,. For 
example, if action Al establishes condition K which is a 
precondition of action A2, then (K,AZ) is in E, if and only if there 

does not exist action A3 that occurs after Al but before A2 that 
clobbers K (establishes 1 K). Clearly any precondition of each 

action that is not satisfied by a previous action must be satisfied by 

the initial state. For every such precondition p there is a 
corresponding node in VP labeled p, and for every action a in P for 
which this instance of p is a precondition, there is an edge (p,a) in 

E,. Each action node in E, is additionally labeled by a number 
indicating its temporal order, the nth action labeled by n. 

This graph will be specified further by the addition of action 

abstractions, but note that as it stands it is similar to a graph 
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version of triangle tables [Fikes, Hart, and Nilsson 19721, and 
fulfills much the same function. We can use the same technique as 

used in triangle tables for generalizing a plan by replacing all 
constants in the action and precondition nodes by variables, and 
redoing the precondition proofs to add constraints on variables in 
different actions of the plan that should be bound to the same 

object (see previous reference for details). These constraints will 
have to be added to the graph as additional preconditions, but are 
left off in our examples for clarity. The preconditions for this plan 
graph are the set of source nodes (nodes with no incoming arcs), 
and the goals of this plan graph are the set of sink nodes (nodes 
with no outgoing arcs). This graph has the property that any 

subset of its goals can be achieved from any initial situation in 
which we can instantiate all of the preconditions by applying each 
of the actions in order. A plan graph for the problem in figure 3 of 

moving a ball from one box to another is given in figure 4 (nodes 
representing preconditions satisfied by the initial state rather than 
by a previous action are not included in this figure). This graph 

will be altered to include abstract actions in a straightforward 
fashion. 

figure 3 
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figure 4 
Figure 5 is an example of the altered plan from figure 4 (the 

outlined subgraph of figure 5 will be explained later). This 
alteration is done as follows. For each primitive action A0 in V,, 

we will add nodes to V, labeled Al, AZ, . . . . A, (where n may be 

different for each primitive action) and edges to E, labeled (Aa, 
A,), (A,, A*), . . . . (A,-,, A,), where there exists some action 

hierarchy such that A, is an abstraction of each Ak for k<i, and A, 
satisfies at least one effect p for which there exists a node in V, 
labeled p and an edge in E, labeled (Ao, p). More simply, we add 
an abstraction path from an action hierarchy to the plan graph. 

We then redirect each precondition arc (p, Ao) to point to the 
highest abstraction A, for which there is an arc (p, A,) in the chosen 
action hierarchy. In other words, p is a precondition of abstraction 
A,, but not of any abstraction of A,. For instance, p/ace/&ox is 

replaced by the abstraction sequence placeinBox, place/n, put, 
contain, and the preconditions NextTo and ConnectedTo are 
redirected to contain, while CarriedAloft is redirected to put. We 
additionally redirect effect arcs (Aa, p) such that the effects come 
from the highest abstraction A, for which there is an arc (A,, p) in 

the chosen action hierarchy. In other words, p is an effect of 

abstraction A,, but not of any abstraction of A,. Turning again to 
figure 5, the effect arc into ConnectedTo is redirected to come 
from attachToAgent, since this will be an effect of every 
specialization of this abstraction, and the effect arc to Grasped is 
redirected to come from grasp. We will additionally add temporal 
numberings to each abstraction on a path from each primitive 

action (although the examples will only number the highest 
abstractions for each action). 
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figure 5 
The primitive action nodes of this plan graph indicate the 

primitive plan that solves the problem for which the plan was 

constructed. The distance between an action node and one of the 
goals of the entire plan graph along its shortest causal chain is a 
rough measure of the significance of the action to the overall 
plan. The shorter the distance, the more likely this action or an 

abstraction of it will be required in a similar problem; the greater 
the distance, the less likely this action will be useful in a similar 
problem. This plan can thus be abstracted by one or both of the 
following: removing causal chains from one or more precondition 
nodes, and removing specialization paths from one or more action 

nodes. Each resultant partial plan graph represents a plan with 

some of the detail unspecified. 
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More formally, a partial plan graph P of plan graph P’ is any 
subset of the nodes and arcs of P’ such that no source nodes are 
action nodes, at least one sink node (goal) of P’ is in P, and these 

will be the only sink nodes in P, and for every node in P, there 
exists at least one path from this node to a sink node (unless that 
node is itself a sink node). Additionally, if b is an action node, 

then every node p for which there exists an arc (p,b) in P’ will be 

added to P along with this arc. We will additionally “mark” each 
source node in P that was also a source node in P’. This mark 
indicates that this precondition is satisfied by the initial state of 
the original problem, as opposed to being satisfied by the 
performance of a previous action. The reason for marking these 
nodes will be explained later. From this definition, there will be 
several partial plan graphs that can be constructed from a given 
plan graph. The subgraph outlined by the dotted line in figure 5 is 
one exapmle. As before, the preconditions of a partial plan graph 
are the formulas attached to the source nodes (not included in the 
given figures), while the goals of each partial plan graph are the 

formulas attached to the sink nodes. 
Figure 7 is the plan graph for a plan to solve the problem from 

figure 6. Here a box must be moved between rooms. In both this 

problem and that of figure 3, the goal is to move an object from 
one container to another. This draws analogies between rooms 

and boxes, which are both containers according to our object 
hierarchy, and between placing objects in boxes and pushing 
objects into rooms, which are both containment actions, 
according to our action hierarchy. At an abstract level, the plan of 

attaching the object to the agent, and moving the agent from one 
container to the other suffices for both problems, and in fact this 
is the abstract plan represented by the identical partial plan graph 
that is outlined by the dotted line in both figures 5 and 7. So 

although the problems that these graphs solve are different, at 
this level of abstraction they are identical. 

1 

figure 6 

We can generalize from this in that for any partial plan graph 

P of plan graph P’, there will exist a set II of plan graphs for which 
P will be a partial plan graph of each of them. That is, P will 
describe each primitive plan of each element from this set at some 

level of abstraction. We will use the symbol TIP to denote the 

largest such set. For instance, if we label the outlined partial plan 
graph of figure 5 K, then the graphs of figures 5 and 7 are in ITK. 
We will say that the primitive plan of each member of TIP is an 
expansion of the partial plan graph P. The more general P is, that 
is, the smaller a subgraph of P’ it is and hence the more abstract 

each of its constituent actions are and the smaller its causal chains, 
the larger will be the cardinality of TIP. We will say that partial 

plan graph P solves problem Q if and only if there exists an 
element of IIp whose primitive plan solves Q for some 
instantiation of all of its variables by ground terms. 

Given a partial plan graph P and a problem instance Q that P 
solves, we can find an expansion of P that solves Q by only 
searching for specializations of the abstract actions of P without 
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figure 7 
having to backtrack through the actions of P itself. P thus serves as 

an abstract guide to solving Q. So, for instance, given the partial 
plan graph outlined in figure 5, we can find the remainder of the 
primitive plan (those actions not inside the dotted line) that solves 
the problem from figure 6 by only having to do local search. By 

this, we mean that for any non-primitive action in this partial plan 
graph, (such as contain, in figure 7), we follow arcs backward 

through that abstract action’s specialization tree (figure 2 in this 
case) until we find a primitive action whose preconditions are all 
satisfied by the state in which it is executed (push/n, in this 
example). If no such primitive exists, then additional pnmltlves 

must be inserted in this plan to establish the sufficient 
preconditions for some specialization, where these inserted 

actions do not clobber preconditions of any of the already 
established succeeding actions 

Unfortunately, we cannot In general know if a given partral 

plan solves a given problem instance unless we perform the 
possibly unbounded local search for the primitive plan that 
verifies this. It may not be possible to find specializations of each 

extant abstract action without reordering some of the actions, 
and therefore backtracking through and altering the partial plan 
graph itself. Although we are not guaranteed certainty, we can 
still use the plan graphs as a heu%st:c for search. We will define a 
partial plan graph P as being applmble to a problem Q If and only 
if the goals of Q are a subset of the goals of P, and the marked 

preconditions of P are a subset of the conditions that hold In the 
initial state of Q. Recall that we marked all of those preconditions 
in a partial plan graph that were satisfied by the Initial state of the 
original problem. Applicability thus means that the current Initial 
state satisfies the same preconditions at this /eve/ of abstractron as 
the original initial state. 

Suppose we wish to find a primitive plan for problem Q 
consisting of an initial state and a set of goals (for simplicity we 
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will assume that this goal is a single literal). Additionally suppose 
that the goals of plan graph P are the same as those of Q. We will 
attempt to find the most specialized partial plan graph P’ of P for 

which an expansion exists that will solve Q, even though it is 
possible that no such P’ exists. We will do this by traversing P 

backward from its goal node through the causal and 

specialization arcs, considering increasingly larger partial plans of 
P. We will continue this traversal as long as the partial plan 
represented by all of the paths pursued is still applicable to Q, 

stopping when we can no longer traverse any arc and still have 
applicability of the current partial plan to problem Q. The size of 

the partial plan that we have constructed is thus a qualitative 
measure of similarity between the original problem and the 
current one. If there are only insignificant differences, the partial 
plan may be equivalent to the entire plan graph. If the differences 
between the problems are large, this may result in a graph of only 
a few actions expressed at high levels of abstraction. But given 
the exponential nature of searching through combinatorial 

spaces, knowing the temporal ordering of even a few of the 
action abstractions that will eventually appear specialized in our 
plan may help significantly. 

IV. Previous Research 

Abstraction in planning is typically viewed in terms of 

decompositional abstraction as used in NOAH-like planners 
[Sacerdoti 19771. In these planners, action A is an abstraction of 

actions B,C,D if the latter actions are each steps in the 
performance of action A. This type of abstraction is thus 

orthogonal to inheritance abstraction presented here. 
ABSTRIPS [Sacerdoti 19741, although using different 

techniques, shares some important similarities. ABSTRIPS is an 
iterative planner, where increasingly large subsets of 

preconditions of each action are considered at each successive 

iteration. The developed plan at each level is then used to guide 
search at more detailed levels, where the satisfaction of emergent 
preconditions is attempted locally, similar to what is done in this 
paper. 

Of even greater similarity, but within a different domain, is 

the work presented in [Plaisted 19811, who uses abstraction within 
a theorem prover. He details how a desired proof over a set of 
clauses can be obtained by first mapping the clause set to a set of 
abstract clauses, obtaining a proof in this (hopefully simpler) 

space, and then using this proof as a guide in finding the proof in 
the original, detailed space. His mapping process and abstract 

proof are similar to our search for an abstract plan within our 

saved plan space - but rather than constructing an abstract plan 

for each new problem, we attempt to appropriate one from a 

previously solved problem. 

V. Conclusion 
The primary motivation for using abstraction was so that 

search for solutions to new problems can be improved by using 
solutions to old problems. We believe that this approach can be 
used to these ends in a domain in which objects are 
distinguishable at various levels of detail. We will try matching 
abstract plans to problems that have the same goals. Any such 

new problem whose initial state does not contain all of the 
preconditions of the original initial state will thus not match the 
abstract plan at every level, but will likely do so at some level. The 

partial plan graph still provides two important functions in this 
case. First, it ignores “unimportant” preconditions at the most 

general levels, where the importance of a precondition is 
determined by the height at which it appears in the action 

hierarchy. Second, the search space of the new problem can be 

explored along those paths that do not match the original 
problem, while attempting to leave intact those paths that do 
match. 

We must point out that the abstraction described in this paper 

has not been implemented for even a small domain. In fact, one 
of the obstacles to doing such an implementation is that one may 
likely only see benefits in a large domain. Thus, there will be little 

point to use this method as a representation for the vanilla blocks 
world. An additional issue is in the choice of problems that the 

system will encounter. One can always construct problem 

sequences given as input to the problem solving system such that 
the abstractions in the model will optimize performance. By the 

same token, one can always construct problem sequences where 

the abstractions will give quite poor performance. The ultimate 
test of a set of abstractions will therefore be empirical in that they 
must be cost-effective (in terms of some resource measure) only as 
compared with other problem solvers (human or machine) for a 
given domain. We can make no such claims for the particular 

abstractions of the limited physical world domain illustrated in 
this paper. The importance of this work is in how we can structure 
knowledge for solving problems in domains that are far richer 
than the ones in which the current generation of planners have 
approached. It is believed that inheritance abstraction will be a 

powerful technique in this endeavor. 

Special thanks to my advisor, Dana Ballard, whose energy, 
knowledge, piercing insights and trust have made it all 
worthwhile, to Leo Hartman, who always seems to have an answer 
when an answer is needed, and to Jay Weber, who will hopefully 
solve the questions of how we go about constructing abstraction 
hierarchies. 
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