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Abstract: We consider structures of actions which are partially 
ordered for time, which may occur in parallel, and which have 
lasting effects on the state of the world. Such action structures are 
of interest for problem-solving with multiple actors, and for 
understanding narrative texts where several things are going on at 
the same time, They are also of interest for other branches of 
computer science besides AI. 

Actions in the action structure are characterized in terms of 
preconditions, postconditions, and prevail conditions, where the 
prevail condition is a requirement on what must hold for the 
duration of the action. All three conditions are partial states of the 
world, and therefore elements of a lattice. We develop the 
formalism, give an example, and specify formally the criterion for 
admissible action’ structures, where postconditions of earlier actions 
serve as prevail- or preconditions of later actions in a coherent 
way, and there are no conflicting attempts to change (“update”) a 
feature in the world. 

1. Introduction. 

Our topic is the formal analysis of actions, i.e. things that happen 
in the world. The phenomenon described by the phrase ‘John gives 
the ball to Mary’, and the operation where an industrial robot 
moves a workpiece from a conveyor to an NC-machine, are 
examples of actions. Actions have a duration in time, and several 
actions may occur in parallel; these are essential properties of 
actions. It is not essential that there should be an identifiable actor 
who ‘does’ the action, so ‘thunder’ or ‘a thunderstorm’ could also 
qualify as an action. We shall use the term ‘action structure’ for a 
set of actions together with information about them, in particular, 
information about their relative order in time. 

A formal analysis of action structures must be very much concerned 
with their effects: will (or may) a given action structure have a 
certain effect on the world; are two given action structures 
equivalent with respect to their effects on the world, etc. 

Action structures have been studied in several branches of computer 
science (and also of course in several other disciplines), but with 
different and sometimes complementary assumptions or constraints. 
Usually action structures have been seen as ‘plans’ or ‘programs’, 
i.e. pre-scriptions for intended behavior in a machine. It is 
however also possible to see an action structure as a tie-scription of 
what has happened, an account of history. In A.I., research on 
‘planning and problem-solving’ has traditionally focused on the 
analysis of effects of sequences of actions, and has only recently 
begun to address the complicating issue of parallel1 actions. (A 
discussion of related work in this field is in section 11 of this paper). 

This research was supported by the Swedish Board of Technical 
Development. 

On the other hand, the Operating systems and Data base fields 
have for a long time included work on concurrent programming, 
where the main issue is “how two or more sequential programs may 
be executed concurrently as parallel processes” [Andr83]. In 
principle there should not be any particular difference between 
structures of actions in the real world, and actions inside computers. 
In practice, however, there is a difference which is also indicated by 
the very term “concurrent program”: one deals with a number of 
programs, one for each processor, and uses special constructs for 
synchronization. This works well if each of the programs is 
relatively complex, and synchronization can be perceived as a 
relatively marginal annotation. 

For action structures in the real world, it is less natural to use the 
“concurrent program” viewpoint. One would prefer to make 
statements about what actions happen, and in which order they 
happen. That is therefore the approach that is taken in the present 
paper. - Section 11 also contains a more extensive discussion of 
how results from concurrent programming research relates to our 
topic. 

2. Key ideas and results. 

The key ideas in this paper are: 

- An action structure is viewed as a set of actions, each of which 
has a start-point and an end-point. The set of such points is 
partially ordered for time. 

- Partial state descriptions are used, where each ‘feature’ or 
proposition in a partial state description can have a definite value 
(e.g. a truth-value), or be undefined. The relation of ‘containing 
more information than’ defines a lattice over the space of partial 
state descriptions. 

- Each action is associated with a prc-condition, a 
post-condition. and a prevail-condition. All three conditions 
are partial states. The precondition and postcondition characterize 
what must hold at the beginning and the end of the action, 
respectively. The effect of the action on the world is therefore 
characterized (explicitly or implicitly ) by the pre- and 
postconditions. The prevail-condition characterizes what must hold 
for the whole duration of the action. 

For a concrete example, consider a small car rental company with 
only one outlet. The action of ‘customer renting a car’ has as its 
precondition and as its post-condition that the car is in the 
company premises, but it does not have to be in the premises 
during the rental period. On the other hand, the action of 
‘mechanic on duty fming the car’ requires the car to be on the 
premises for the duration of an action, which we would express as a 
prevail-condition. 
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Thus in the case of pre-/ postcondition, it is possible but not 
necessary for the postcondition to be different from the 
precondition, in which case the action has an effect on those aspects 
or features of the world that are recorded in the conditions. In the 
case of prevail- condition, the condition must necessarily be equal 
at the beginning and the end of the action, since it should hold and 
be constant for the duration of the action. 

In a sense that will become clear below, the pre- and 
postconditions correspond to the concept of ‘non-shared resource’ 
or ‘read and write access’ in operating systems terms. 

Prevail-conditions correspond to the concept of ‘shared resource’ or 
‘read only access’. 

Also, the pre- and post-conditions correspond to the ‘delete’ and 
‘add’ clauses in Strips-like problem solving systems. The 
prevail-conditions do not have a direct counterpart in systems like 
STRIPS, since the problem of whether another, parallel action can 
violate a prevail-condition of an action, does not arise when all 
actions are assumed to happen in sequence. 

In programming languages such as Occam [May83], parallel 
programs are constructed using the seq, par, and Kleene star 
(repetition) operators. Those operators are however not sufficient 
for constructing all possible (and useful) action structures; Figure 1 
shows an example of an action structure that can not be 
constructed from them, Our approach does not have those 
restrictions, and is in that sense similar to the Petri net approach 
[Pete82]. 

In this paper, we formulate the model and discuss its motivation. 
We also propose how the admissibility criterion for action structures 
can be expressed formally, and work out an example. 

3. Partial models 

We described above how, in our approach, the set of start-points 
and end-points of actions is viewed as a partially time-ordered set. 
But in every actual train of occuring actions, the set of 
time-points is of course totally ordered (as long as we can assume 
common-sense, Newtonian time). The action structure is therefore 
a way of characterizing a set of similar trains of actions. As such, 
it is an alternative to other ways of characterizing a set of 
‘admissible worlds’. One other, well-known method would be a 
logical system, where formulas and their truth-values are defined, 
and the admissible worlds are characterized using formulas that 
have the value true exactly in the admissible worlds [Krip63, 
Resch71]. 

When we characterize the momentary state of the world where 
actions take place, we can similarly choose to use pavtial states. In 
a very simple example’ we might characterize the world only in 
terms of the position of a number of electrical switches, which can 
be in position ‘1’ or ‘0’. A partial state in that world would be a 
function which assigns to each switch, either of the values ‘l’, ‘0’) or 
‘undefined’. 

Partial states go well together with partially time-ordered action 
structures, for the following reason: if the ‘state’ (i.e. those aspects 
of the world that we consider in the formal characterization) 
consists of a number of components, and two actions happen in 
parallel or ‘at the same time’, but they affect distinct and unrelated 
aspects of the world, then we can analyze their effects without 
needing to know which of them actually occurred first, and without 
needing to understand their interactions if they actually occurred at 
the same time. In such a case, it is reasonable to assign a partial 
state to the start-point and end-point of each of those actions. 

After this introduction, 
the presentation. 

we can now proceed to the formal part of 

4. The lattice of partial states 

We assume that we have a domain S of partial states of the world, 
and a partial order E on S such that <S, &> is a lattice. The lattice 
operations are written u, n, c and the top and bottom elements are 
written T, I as usual. 

We pay particular attention to domains which are constructed M 
the Cartesian product of a finite number of feature domains. For 
example, the world which is characterized by the position of four 
different switches would be seen as 

Fl x F2 x F3 x F4 
where each of the Fi is the feature domain consisting of the four 
elements u, 1, 0, and k, with the following order: 

uclck 
uEOSk 

as shown also in the Hasse diagram in figure 2. One world-state 
vector is defined to be E another world-state iff corresponding 
elements are C, as usual. We shall generally use u (‘undefined’) and 
k (‘contradiction’) for the bottom and top element in feature 
domains. 

Let s be an element in a domain Fl x F2 x . . . x Fn. The element of 
Fi which is used for forming a, will be called the projection of I) 
into the dimension i, and will be written s[i]. The element s will be 
said to haue the i:th feature iff s(i] is different from u. We write 

dim(s) 
for the set of all i such that s has the i:th feature. 
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Two elements s and s’ are said to be co-dimcnsion.aZ iff 
dim(s) = dim(s’) 

and they are said to be anti-dimensionaL iff dim(s) and dim(s’) 
are disjoint sets. 

The element 
equals k. 

s is said to be consistent iff none of its projections 

It will be desirable to generalize these concepts to be used also for 

If, b, v, el 

those domains that are not formed as Cartesian products, and in 
particular, for domains that are formed by constraining a Cartesian 
product using propositions expressed in logic. 

6. The domains of operations and actions. 

We now introduce a domain V of operations. For example, “to 
turn on switch number 3” might be one operation. In many cases it 
will be natural to form operations using a “verb” in some sense, 
combined with a number of “case slots”. In the present treatment 
we however make no assumptions about the structure of operations. 

The domain of actions is next defined as: an action is a fourtuple 

triple An action structure over a set A of valid actions is now a 
5, p], where p (for plan) is a set of triples 

[h a, t’] 

[T 

where again t and t’ are time-points in T, a is in A, and 
every triple in the set. Each member triple 

It, a, t’l 
or in expanded form, 

it, If, b, v, 4, t’l 
will be called an action occuwencc. 

t I t’ for 

obvious constraints are: 

In order to draw a given action structure graphically, we should in 
principle make one dot for each time-point; represent the temporal 
order on time-points using dotted arrows, and then indicate the 
action occurrences using solid arrows, with the understanding that a 
solid arrow may be drawn on top of the dotted arrow since the 
action anyway implies that its beginning- point precedes its 
end-point. 

6. Coherent action structures. 

The preconditions, postconditions, and prevail-conditions impose a 
number of constraints on an action structure. Some of the relatively 

where f, b, and e are states, and v is an operation. In the sense that 
was described in section 2 above, f,b, and e are the prevail 
condition, the pre-condition, and the post-condition, respectively. 

From the domain of actions, we distinguish a subset A of valid 
actions. Intuitively, valid actions are those fourtuples [f,b,v,e] where 
f characterizes the state of the world for the duration of the action, 
b characterizes the state of the world immediately before the 
operation v takes place, and e characterizes the state of the world 
at its conclusion. 

- at the beginning of an action, all its preconditions must be 
present, either because they were present from the beginning of the 
action structure, or because they were the result of previous 
action(s) 

- several actions which affect the same ‘feature’ of a state but in 
different ways, must not be allowed to occur in parallell. In other 
words, the temporal order must guarantee that one of them comes 
before the other 

For example, suppose the states of the world are fourtuples which 
indicate the position of each of four switches, such as 

11, 0, u, 11 
If TurnOn is the operation of turning on switch 2, in a state where 
it is off, then the following action should be in the set A of valid 
actions: 

[I, [u,O,u,u], TurnOn% [u,l,u,ul1 
where of course I = [u,u,u,u]. In this example the prevail- 
condition is the bottom element of the partial state lattice because 
there are no constraints in the prevail-condition. 

We always require from valid actions [f,b,v,e] that b and e must be 
co-dimensional with each other, and anti-dimensional with f. 

We introduce an identity operation Noop which leaves every state 
- 

- several actions which require the same prevail-condition may 
occur in parallel. However, there must not be other, also parallel 
actions that have a prevail-condition feature in their pre- or 
postconditions. 

Th e purpose of th e present section is to capture these intuitions 
through a formal definition, which we call for the action structure 
to be coherent. 

unchanged, i.e. 
Is, 1, NOOP, J-I 

These intuitions actually represent a simplification relative to the 
real world. Consider for example the scenario of parking a car 
parallel to the curb, between two other cars, starting from the point 

where ‘our’ car is positioned to the left of the car in front of the 
parking slot ( in right-hand traffic) (figure 4). We consider three 
actions: 

is a member of A for every s in S. 

We are now ready to introduce the action structures themselves, 
first intuitively/graphically and then formally. We will draw an 
action structure as in figure 3, where full arrows represent actions. 
If two actions begin at the same time, they start in the same point; 
if one immediately succeeds another then the endpoint of one arrow 
is the beginning-point of the next arrow. If a delay is allowed 
between one action and the next, then a dotted arrow is drawn 
from the end-point of one to the beginning- point of the next. In 
this way, we can also express e.g. that two actions (must) begin at 
the same time, or that the termination of one (must) preceed the 
termination of another. 

This very natural structure is formally expressed as follows. We use 
a set T of tire-points, corresponding to the beginning-points 
and end-points of the arrows in the figure. A partial order s is 
defined on T, representing the order of temporal precedence. 

al: keep the car moving in the reverse direction, at suitable 
speed 
a2: keep the car’s front wheels at an angle pointing right 
a3: keep the car’s front wheels at an angle pointing left. 

The action plan of course is to do a2 and a3 in sequence, and al in 
parallel to both of them. These actions affect the same ‘resource’ or 
‘feature’ of the state, name?y the position of the car. Still, it is 
admissible and in fact necessary to perform them in parallel - fist 
turning the wheels right and left, and only then moving backwards, 
would not have the intended effect. 

In the present paper we do not account for such coordinated 
actions. Here we only wish to capture the intuition of actions which 
can occur in parallel because they do not interfere with each other. 
In a wider perspective and in future work, it will however be 
necessary to deal with the case of coordinated actions. 
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Let [T, I, P] b e an action structure. For each member t of T, we 
define the incoming action occurrences in p to be those of the form 

It’, a, tl 
i.e. having the given t as their last element. Graphically, if each 
action occurrence is represented as an arrow, the incoming action 
occurrences are those whose arrows end in the given time-point. 

the partial state where the stove is hot, there is no batter, and 
otherwise we do not know. 

The actions whose operations occur in figure 5 can now be defined 
as follows: 

[I, UOUU, MakeBatter, uluu] 
[I, Ouuu, HeatStove, luuu] 

The incoming states for a time-point t are defined as follows: [ luuu, uuu0, MakeCoffee, uuul] 
- the post-condition of each incoming action occurrence, is an [luuu, ulOu, FryPancakes, uOlu] 
incoming state; [I, uulu, EatPancakes, uuOu] 
- the join of the prevail-conditions of all the incoming action (L, uuul, HaveCoffee, uuuO] 
occurrences, is also an incoming state. [I, luuu, CoolStove, Ouuu] 

Similarly, the outgoing action occurrences are those of the form 
It, a, t’l 

having the given t as their fast element, and the outgoing states 
are the pre-conditions of the outgoing action occurrences, plus the 
join of the prevail-conditions of all the outgoing action occurrences. 

We are now ready to formulate the coherence criterion. 

If we use these actions in the structure of figure 5, and check out 
the coherence criterion above, we obtain a violation. The key 
problem is that the result of making the coffee, i.e. the fact that 
coffee exists, must be ‘made known’ to the action of having coffee, 
which of course has coffee existence as a precondition. This is 
accomplished by adding an action of the form 

[uuul, I, Noop, I] 
from node t4 to node t7 in the figure. 

An action structure [T, 5, p] is defined to be coherent if, for every 
time-point t in T, 

1. the incoming states are consistent and anti-dimensional, 

2. the outgoing states are consistent and anti-dimensional, 

3. the join of the incoming states equals the join of the outgoing 
states, if the time-point has both incoming and outgoing states. 

One may ask why we do not instead augment the existing arcs from 
t4 to t5 and from t5 to t7 so as to contain also the information that 
coffee exists. The reason is that in a more general case, there could 
have been two (or more) parallel1 paths from t4 to t7, and then 
there would be no reason why one or the other should ‘carry’ the 
coffee existence information. 

The join of states mentioned 
state of the time-point t. 

in point 3 will be called the cuwent 

Furthermore, an action structure [T, 5, p] is also coherent if one 
can add to p some number of action occurrences of the form 

It, Is, 1, Noop, 11, t’] 
and the resulting action structure is coherent. 

The way an incoming state cold be inconsistent is if incoming action 
occurrences have incompatible prevail conditions, and similarly for 
outgoing states. 

There is a similar problem concerning those nodes which are the 
first ones to have a feature (i.e. no earlier time-point has a current 
state that haa the feature). We shall call such nodes the first we 
node(s) for the feature. In order to satisfy the coherence criterion, 
we have to add Noop actions from the initial time-point t0 to the 
first use nodes for each feature (at least if the first use node has 
some predecessor at all). The last nodes have to be similarly 
connected to the final time- point t9. (This is somewhat inelegant, 
but we outline below how one can avoid the need to formally 
introduce those Noop actions). The resulting action structure is 
shown in figure 6. For simplicity, a Noop action such as 

[uuul, I, Noop, I] 
is written just as [uuul] in the figure, and is drawn as a 
-a-s-*-9 arrow. 

This definition captures most of the intuitions, but it leaves out 
some constraints. We shall first motivate this definition with a 
concrete example, and then proceed to the additional requirements 
and the formally derived properties of the concept. 

It is now trivial to check off that the action structure in figure 6 is 
coherent. The current state of the respective time- points, i.e. the 
join of their incoming or outgoing states, is as follows: 

to 0000 

7. An example. 
t1 uouu 
t2 ouuu 

Suppose we are to prepare and consume a meal consisting of 
pancakes followed by a cup of coffee. The coffee is to be cooked on 
the stove, and since there is only room for one pot at a time on the 
stove, and we do not want to interrupt the eating in order to cook, 
we decide to make the coffee before the pancakes. (Thus hot 
pancakes have higher priority than fresh cooked coffee). Figure 5 
shows the action structure, including the operations of making the 
batter, heating the stove, and allowing the stove to cool. 

t3 luu0 
t4 1101 
t5 1Olu 
t6 Ouuu 
t7 UUOl 
to8 uuuo 
t9 0000 

When action structures are repeated cyclically (for example, in 
robotics applications, for the programs of manufacturing cells), it is 
often undesirable to have a single startpoint and endpoint for the 
cycle. We would like a cycle to have several, parallel first actions, 
each of which can start as soon as all its prerequisites have been 
made available. Our model can easily be adapted for that purpose: 
instead of having the extra Noop actions that go to the first use 
node and from the last use node for each state feature, we would 
form a vector of first use nodes and another vector of last use 
nodes, across the feature space. The definitions of incoming and 
outgoing states in action structures must of course be modified 

In order to analyze the action structure, we use partial states with 
four truth-value components, namely the answers to the following\ 
questions: 

is the stove hot? 
is there batter? 
is there pancakes? 
is there coffee? 

As before, each component of the partial state is either of u, 0, 1, or 
k. We write the states without punctuation, so 1Ouu is for example 
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accordingly. The operation of combining two successive cycles is 
then be performed by introducing an appropriate Noop action from 
the last use node of each feature in one cycle, to the first use node 
of the same feature in the next cycle. 

8. Additional requirements. 

Consider the action structure described in figure 7. It is a 
prevail-condition of operations vl and v2 that the first dimension 
feature shall be 1. The operation v3 changes that value from 1 to 0, 
and v4 changes it back to 1. The action structure in the figure is 
coherent, according to the definition in section 6. Yet we see that 
the action structure may possibly not be correctly executable, 
namely if operation v3 takes effect before vl has concluded. 

The example illustrates a side-effect problem: the problem which 
arises if another action, maybe in a remote part of the action 
structure, locally violates a condition of an action, or at least (with 
unfortunate timing) threatens to violate it. 

The following is a possible way of characterizing that constraint 
formally: 

Let [T,l,p] be an action structure. A sequence of action occurrences 
in p is called a chain iff it has the form 

[tO,al,tl], [tl,a2,t2],(t2,a3,t3] ,... 
An action occurrence 

[t, lf,b,v,el, ~1 
is said to subsume another action occurrence 

[t’, [f’,b’,v’,e’], u’] 
in the i:th feature, iff 

t g t’ c u’ c u 
and 

f’[i] E f[i] 

An action structure [T,<,p] is now said to be aligned for the i:th 
feature iff there is some subset p’ of p which is a chain, and where 
every action occurrence whose f,b, or e has the i:th feature, is either 
a member of p’ or is subsumed by some member of p’. 

It is easily seen that in an action structure that is aligned for the 
i:th feature, those actions whose b and e have the i:th feature 
(active actions, drawn a-/) and those whose f have the i:th 
feature (passive actions, drawn ----->) together form a 
structure of the type shown in figure 8. Substructures of passive, 
possibly parallel1 actions with a single start-point and end-point, 
are sequentially combined with active actions. 

Our intuitions for admissible action structures can now be 
formulated as follows: an action structure [T,l,p] is admissible iff 
there exists some p’ which is a superset of p, where all the action 
occurrences i p’-p are formed using the operation Noop, and where 
[T,<,p’] is coherent, and aligned for all features. 

The following ‘model existence’ property is stated here without 
proof: 

If [T,<,p] is an admissible action structure, and 3 is a total order 
over T such that 

t 5 t’ -> t i: t’ 
then one can assign a consistent state s(t) to each time-point t in 
T, in such a way that the following holds for every action 
occurrence [t’, [f,b,v,e], t”] in p: 

b 5 s(t’) e c s(t”) 
and for every t such that t’ < t < t”, 

s(t)[i] = u for each i in dim(b), 
and for every t such that t’ < t 5 t”, 

f c s(t) 

and finally (“frame property”), if u > t is the immediate successor 
of t, s(u)[i] = s(t)[i] unless the b or e condition of an action forces 
them to be different according to the above. 

9. Verbs or 
conditions. 

verb phrases that express post- and prevail- 

We have not said anything about the intended structure of 
operations. From a software engineering background, it may be 
natural to view operations as essentially procedure calls, i.e. names 
of procedures with their proper parameters. Pre- conditions, 
post-conditions, and prevail-conditions are then a part of the 
specification and/or the description of the procedures, but one 
would not expect to derive those conditions from the name or the 
definition (the ‘body’) of the operation. 
If the operations are instead thought of as verb phrases in natural 
language, this picture changes somewhat. A verb phrase like ‘(to) 
open the door’ directly suggests what is the postcondition, and also 
(taking for granted that one can not open a door that is already 
open) the corresponding precondition. 

In common sense reasoning, we also have access to a reportoire of 
‘methods’ for how to achieve a goal. The method for achieving a 
goal is often used in place of the mere attainment of the goal. For 
example, if we say: ‘as John was driving home that afternoon, he 
was hit by the lightning and died’, we refer to the action which, if 
properly completed, would have the postcondition ‘John is at 
home’, but which in this particular occurrence was tragically 
interrupted. 

Similarly, if we watch a movie where the hero is asked to ‘please 
leave the room’, and he does so by crashing through the window, 
the possible entertainment effect is derived from the non-standard 
way in which the hero achieved the requested result. 

These examples will suffice here as indications of how we would like 
to analyze some natural-language verb phrases in terms of 
intended world-states, and standard methods for achieving them. 
But there are also plenty of examples of how verb phrases refer to 
prevail conditions, namely phrases of the form 

‘keep’ + condition 
For example, ‘keep the car on the road’, ‘keep the car at the 
regulated speed’, ‘keep the pot slowly boiling’, ‘keep the audience 
interested’, ‘keep all the rooms clean’, all show how a lot of common 
sense phenomena may be understood in terms of qualitative 
regulators or feed back loops. The formal characterization of such 
actions would of course refer to the state that is intended to be 
kept, as a prevail-condition. In such cases the prevail-condition is 
not merely a prerequisite for doing the essential action, but it 
defines the essential action. 

It is interesting to notice that this could be an entry point to “naive 
control theory”, which would seem to have a potential for being of 
high industrial relevance. Also, we should maybe now return to von 
Neumann’s early insight that feedback systems are of outmost 
importance for intelligent behavior, and blow new life into the term 
‘cybernetics’ that he coined. 

10. Non-flat feature domains. 

Above we have introduced feature-values as domains, but all 
examples have been chosen from the trivial case of flat, finite 
domains. It is easy to see how the more general case can be useful 
especially for prevail conditions. For example, suppose we have 
actions for painting a wall with color X, for different specific X, and 
we also have an action of photographing a white statue with that 
wall as background, which (in the prevail condition of the action) 
requires the wall to be non-white. If now the feature domain is 
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organized so that 
u E non-white g red E k 

branch is allowed to violate the prevail-condition, 
one can not characterize what is a parallell branch. 

basically because 

then we can organize our action structure so that the paint-red 
action is succeeded by the photographing action. At the time-point 
between those two actions, the incoming post-condition (red) is 
matched against an outgoing prevail condition (non-white). In 
order to satisfy the last requirement on coherent action structures, 
we must add an outgoing Noop action whose prevail condition says 
that the wall is red. The two outgoing prevail conditions ‘red’ and 
‘non-white’, are co-dimensional but not equal, but that does not 
matter - the important thing is that their join (‘red’) is consistent. 

~e’cnporuZ logic ([Resch71]) uses the temporal ordering of points in 
time, as the accessibility relation, with modal operators such as: 

FA A is true at some future time 
GA A will be true at all future times 

etc. As far as we can see, temporal logic (as used e.g. by Halpern, 
Manna and Moszkowski [Halp83]) leads to the same problem as 
were just discussed for dynamic logic. 

Manna and Pnueli [MannBlb] apply temporal logic to the 
specification of concurrent programs, using the approach of 

11. Related work. “cooperating sequential processes” which is not well adapted to our 
goal, for the reasons quoted above. 

The theories and languages for concurrent programming address the 
issue of specifying ‘two or more sequential programs that may be 
executed concurrently as parallell processes’ (quoted from the 
survey article of Andrews and Schneider, (Andr831). Their goal is 
therefore different from the goal of the present work, which is to 
characterize parallell processes in the world outside the computer, 
but evidently the techniques may sometimes be interchangable. 

One of the approaches to concurrent programming is to consider 
cooperating ScquentiaZ processes [Dijk68], i.e. to use a set of 
sequential programs, equipped with special synchronization 
operations. That approach may make good sense for concurrent 
programming, especially in machine-oriented programs, but is not 
as attractive for describing real-world action structures since there 
is usually not a good set of ‘processors’ to write programs for and to 
synchronize. 

Another approach, path expressions, separates the specification 
of operations from the constraints on execution order [Camp74]. In 
that respect they can be considered as similar to the approach 
taken in the present paper, since the action structure does not 
specify the ‘procedure’ for performing an operation, but only the 
allowable orderings. Also, the alignment criterium that was 
introduced in section 8, can be thought of as a set of path 
constraints, one for each feature. But the path operators that are 
used for writing path expressions, such as “,” for concurrency and 
“;” for sequencing, do not easily lend themselves to expressing 
structures like the one in figure 1. Also, path expressions have not 
(to our knowledge) developed the counterpart of the precondition/ 
postcondition /prevail- condition characterization of operations. 

A large amount of work has been based on modal Logic, both as a 
tool for concurrent programming, and in A.I. for characterizing 
structures of actions or events (which is exactly the goal of the 
present paper). Basically, the ‘accessibility relation’ that 
characterizes the Kripke semantics for modal logic [Krip63] is then 
used as the relation between a world-state and a (or the) 
succeeding world-state. Dynamic logic ((Prat76j) allows one to 
use a collection of such accessibility relations. Each elementary 
operation (from world-state to world-state) may be one such 
relation, and relations may be composed algebraically, using 
operators such as “;” for sequential composition, “union” for 
parallel composition, and the Kleene star for infinite sequential 
repetition. 

The big problem with that approach, from our point of view, is that 
world-states are not explicitly named and talked about. The 
language only allows you to say things like “in the resulting state 
after first doing a, and then doing b and c in parallell, the 
proposition P will hold”. Consequently, the language can not 
characterize structures like the one shown in figure 1. Also, it 
becomes quite difficult (probably impossible) to express the 
constraint of prevail-conditions, namely that no other, parallel1 

Yet another approach, which is also frequently called “temporal 
logic”, is to use a many-sorted first-order logic where e.g. ‘times’, 
‘intervals’, ‘states’, and ‘events’ are distinct sorts, and where there 
are the obvious relations and functions such as 

During(il,i2) 
Holds(p,i) 

and so on. This approach, which we can call “explicit temporal 
logic” (to distinguish from “modal temporal logic”) has been 
repeatedly used in A.I. Along with (one interpretation of) the logic 
programming paradigm, work with this approach is done by 
defining an ontology, first intuitively and then formally by writing 
down a large number of axioms in first-order logic. The axioms 
must of course characterize those sorts and relations. McDermott 
has done this for one particular ontology, which uses states, times, 
chronicles, etc. ((McDerm82J). Allen has done a similar work for a 
different ontology, which treats intervals of time as the basic 
concept ([AlleBl]). A cri i t q ue of these works, which seems to extend 
to the approach in general, has been written by Turner ([Turn84]). 

Yet another approach, particularly in AL, has been to extend a 
temporal logic, of some kind, with additonal constructs which turn 
it into a programming Language. The procedural logic of Georgeff 
et al ([Geor85]) is a case in point. 

Outside the framework of formal logic, early AL research on 
planning and problem-solving developed methods that have 
inspired the results in this paper. The handling of preconditions and 
postconditions builds directly on STRIPS, as has already been 
discussed. Its successor, the NOAH system ([Sace75]) used a partial 
order on the actions in the plan, in order not to over-commit itself 
during the plan-making process. 

Also, many “scmuntic net” type enterprises (in the broad sense of 
the attempts to develop adequate knowledge representations to be 
used for language understanding, scene recognition, question 
answering, etc., based on common sense and ad hoc notions) have 
introduced “nodes” “arcs” , etc. for actions or events, and are able 
to express tempera; relations, preconditions, and/or effects of those 
actions. Too often, of course, the expressiveness of such 
representations is so great that a formal analysis of what it is they 
express, is not possible. 

In relation to these various approaches, ours can be characterized as 
an explicit temporal logic, and in that respect it is similar to the 
approach of McDermott and of Allen. However, we do not tread the 
usual path of logic, i.e. to define the language, write out axioms, 
define a semantics, and so on. The structures described above are 
the ones which would have been used for the semantics, if we had 
followed the standard path. But we do not see the need for 
language and axioms, at least not at this point. The purpose of the 
present paper has been to nail down a minimal set of necessary 
concepts (a simple ontology for action structures, if you wish), and 
to characterize the logically admissible action structures. 
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