
A Representation of AC tion Structures

Erik Sandewall and Ralph Rgnnquist
Department of Computer and Information Science

Linkiiping University
Linkiiping, Sweden

Abstract: We consider structures of actions which are partially
ordered for time, which may occur in parallel, and which have
lasting effects on the state of the world. Such action structures are
of interest for problem-solving with multiple actors, and for
understanding narrative texts where several things are going on at
the same time, They are also of interest for other branches of
computer science besides AI.

Actions in the action structure are characterized in terms of
preconditions, postconditions, and prevail conditions, where the
prevail condition is a requirement on what must hold for the
duration of the action. All three conditions are partial states of the
world, and therefore elements of a lattice. We develop the
formalism, give an example, and specify formally the criterion for
admissible action’ structures, where postconditions of earlier actions
serve as prevail- or preconditions of later actions in a coherent
way, and there are no conflicting attempts to change (“update”) a
feature in the world.

1. Introduction.

Our topic is the formal analysis of actions, i.e. things that happen
in the world. The phenomenon described by the phrase ‘John gives
the ball to Mary’, and the operation where an industrial robot
moves a workpiece from a conveyor to an NC-machine, are
examples of actions. Actions have a duration in time, and several
actions may occur in parallel; these are essential properties of
actions. It is not essential that there should be an identifiable actor
who ‘does’ the action, so ‘thunder’ or ‘a thunderstorm’ could also
qualify as an action. We shall use the term ‘action structure’ for a
set of actions together with information about them, in particular,
information about their relative order in time.

A formal analysis of action structures must be very much concerned
with their effects: will (or may) a given action structure have a
certain effect on the world; are two given action structures
equivalent with respect to their effects on the world, etc.

Action structures have been studied in several branches of computer
science (and also of course in several other disciplines), but with
different and sometimes complementary assumptions or constraints.
Usually action structures have been seen as ‘plans’ or ‘programs’,
i.e. pre-scriptions for intended behavior in a machine. It is
however also possible to see an action structure as a tie-scription of
what has happened, an account of history. In A.I., research on
‘planning and problem-solving’ has traditionally focused on the
analysis of effects of sequences of actions, and has only recently
begun to address the complicating issue of parallel1 actions. (A
discussion of related work in this field is in section 11 of this paper).

This research was supported by the Swedish Board of Technical
Development.

On the other hand, the Operating systems and Data base fields
have for a long time included work on concurrent programming,
where the main issue is “how two or more sequential programs may
be executed concurrently as parallel processes” [Andr83]. In
principle there should not be any particular difference between
structures of actions in the real world, and actions inside computers.
In practice, however, there is a difference which is also indicated by
the very term “concurrent program”: one deals with a number of
programs, one for each processor, and uses special constructs for
synchronization. This works well if each of the programs is
relatively complex, and synchronization can be perceived as a
relatively marginal annotation.

For action structures in the real world, it is less natural to use the
“concurrent program” viewpoint. One would prefer to make
statements about what actions happen, and in which order they
happen. That is therefore the approach that is taken in the present
paper. - Section 11 also contains a more extensive discussion of
how results from concurrent programming research relates to our
topic.

2. Key ideas and results.

The key ideas in this paper are:

- An action structure is viewed as a set of actions, each of which
has a start-point and an end-point. The set of such points is
partially ordered for time.

- Partial state descriptions are used, where each ‘feature’ or
proposition in a partial state description can have a definite value
(e.g. a truth-value), or be undefined. The relation of ‘containing
more information than’ defines a lattice over the space of partial
state descriptions.

- Each action is associated with a prc-condition, a
post-condition. and a prevail-condition. All three conditions
are partial states. The precondition and postcondition characterize
what must hold at the beginning and the end of the action,
respectively. The effect of the action on the world is therefore
characterized (explicitly or implicitly) by the pre- and
postconditions. The prevail-condition characterizes what must hold
for the whole duration of the action.

For a concrete example, consider a small car rental company with
only one outlet. The action of ‘customer renting a car’ has as its
precondition and as its post-condition that the car is in the
company premises, but it does not have to be in the premises
during the rental period. On the other hand, the action of
‘mechanic on duty fming the car’ requires the car to be on the
premises for the duration of an action, which we would express as a
prevail-condition.

Planning: AUTOMATED REASONING / 89

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

Thus in the case of pre-/ postcondition, it is possible but not
necessary for the postcondition to be different from the
precondition, in which case the action has an effect on those aspects
or features of the world that are recorded in the conditions. In the
case of prevail- condition, the condition must necessarily be equal
at the beginning and the end of the action, since it should hold and
be constant for the duration of the action.

In a sense that will become clear below, the pre- and
postconditions correspond to the concept of ‘non-shared resource’
or ‘read and write access’ in operating systems terms.

Prevail-conditions correspond to the concept of ‘shared resource’ or
‘read only access’.

Also, the pre- and post-conditions correspond to the ‘delete’ and
‘add’ clauses in Strips-like problem solving systems. The
prevail-conditions do not have a direct counterpart in systems like
STRIPS, since the problem of whether another, parallel action can
violate a prevail-condition of an action, does not arise when all
actions are assumed to happen in sequence.

In programming languages such as Occam [May83], parallel
programs are constructed using the seq, par, and Kleene star
(repetition) operators. Those operators are however not sufficient
for constructing all possible (and useful) action structures; Figure 1
shows an example of an action structure that can not be
constructed from them, Our approach does not have those
restrictions, and is in that sense similar to the Petri net approach
[Pete82].

In this paper, we formulate the model and discuss its motivation.
We also propose how the admissibility criterion for action structures
can be expressed formally, and work out an example.

3. Partial models

We described above how, in our approach, the set of start-points
and end-points of actions is viewed as a partially time-ordered set.
But in every actual train of occuring actions, the set of
time-points is of course totally ordered (as long as we can assume
common-sense, Newtonian time). The action structure is therefore
a way of characterizing a set of similar trains of actions. As such,
it is an alternative to other ways of characterizing a set of
‘admissible worlds’. One other, well-known method would be a
logical system, where formulas and their truth-values are defined,
and the admissible worlds are characterized using formulas that
have the value true exactly in the admissible worlds [Krip63,
Resch71].

When we characterize the momentary state of the world where
actions take place, we can similarly choose to use pavtial states. In
a very simple example’ we might characterize the world only in
terms of the position of a number of electrical switches, which can
be in position ‘1’ or ‘0’. A partial state in that world would be a
function which assigns to each switch, either of the values ‘l’, ‘0’) or
‘undefined’.

Partial states go well together with partially time-ordered action
structures, for the following reason: if the ‘state’ (i.e. those aspects
of the world that we consider in the formal characterization)
consists of a number of components, and two actions happen in
parallel or ‘at the same time’, but they affect distinct and unrelated
aspects of the world, then we can analyze their effects without
needing to know which of them actually occurred first, and without
needing to understand their interactions if they actually occurred at
the same time. In such a case, it is reasonable to assign a partial
state to the start-point and end-point of each of those actions.

After this introduction,
the presentation.

we can now proceed to the formal part of

4. The lattice of partial states

We assume that we have a domain S of partial states of the world,
and a partial order E on S such that <S, &> is a lattice. The lattice
operations are written u, n, c and the top and bottom elements are
written T, I as usual.

We pay particular attention to domains which are constructed M
the Cartesian product of a finite number of feature domains. For
example, the world which is characterized by the position of four
different switches would be seen as

Fl x F2 x F3 x F4
where each of the Fi is the feature domain consisting of the four
elements u, 1, 0, and k, with the following order:

uclck
uEOSk

as shown also in the Hasse diagram in figure 2. One world-state
vector is defined to be E another world-state iff corresponding
elements are C, as usual. We shall generally use u (‘undefined’) and
k (‘contradiction’) for the bottom and top element in feature
domains.

Let s be an element in a domain Fl x F2 x . . . x Fn. The element of
Fi which is used for forming a, will be called the projection of I)
into the dimension i, and will be written s[i]. The element s will be
said to haue the i:th feature iff s(i] is different from u. We write

dim(s)
for the set of all i such that s has the i:th feature.

90 i SCIENCE

Two elements s and s’ are said to be co-dimcnsion.aZ iff
dim(s) = dim(s’)

and they are said to be anti-dimensionaL iff dim(s) and dim(s’)
are disjoint sets.

The element
equals k.

s is said to be consistent iff none of its projections

It will be desirable to generalize these concepts to be used also for

If, b, v, el

those domains that are not formed as Cartesian products, and in
particular, for domains that are formed by constraining a Cartesian
product using propositions expressed in logic.

6. The domains of operations and actions.

We now introduce a domain V of operations. For example, “to
turn on switch number 3” might be one operation. In many cases it
will be natural to form operations using a “verb” in some sense,
combined with a number of “case slots”. In the present treatment
we however make no assumptions about the structure of operations.

The domain of actions is next defined as: an action is a fourtuple

triple An action structure over a set A of valid actions is now a
5, p], where p (for plan) is a set of triples

[h a, t’]

[T

where again t and t’ are time-points in T, a is in A, and
every triple in the set. Each member triple

It, a, t’l
or in expanded form,

it, If, b, v, 4, t’l
will be called an action occuwencc.

t I t’ for

obvious constraints are:

In order to draw a given action structure graphically, we should in
principle make one dot for each time-point; represent the temporal
order on time-points using dotted arrows, and then indicate the
action occurrences using solid arrows, with the understanding that a
solid arrow may be drawn on top of the dotted arrow since the
action anyway implies that its beginning- point precedes its
end-point.

6. Coherent action structures.

The preconditions, postconditions, and prevail-conditions impose a
number of constraints on an action structure. Some of the relatively

where f, b, and e are states, and v is an operation. In the sense that
was described in section 2 above, f,b, and e are the prevail
condition, the pre-condition, and the post-condition, respectively.

From the domain of actions, we distinguish a subset A of valid
actions. Intuitively, valid actions are those fourtuples [f,b,v,e] where
f characterizes the state of the world for the duration of the action,
b characterizes the state of the world immediately before the
operation v takes place, and e characterizes the state of the world
at its conclusion.

- at the beginning of an action, all its preconditions must be
present, either because they were present from the beginning of the
action structure, or because they were the result of previous
action(s)

- several actions which affect the same ‘feature’ of a state but in
different ways, must not be allowed to occur in parallell. In other
words, the temporal order must guarantee that one of them comes
before the other

For example, suppose the states of the world are fourtuples which
indicate the position of each of four switches, such as

11, 0, u, 11
If TurnOn is the operation of turning on switch 2, in a state where
it is off, then the following action should be in the set A of valid
actions:

[I, [u,O,u,u], TurnOn% [u,l,u,ul1
where of course I = [u,u,u,u]. In this example the prevail-
condition is the bottom element of the partial state lattice because
there are no constraints in the prevail-condition.

We always require from valid actions [f,b,v,e] that b and e must be
co-dimensional with each other, and anti-dimensional with f.

We introduce an identity operation Noop which leaves every state
-

- several actions which require the same prevail-condition may
occur in parallel. However, there must not be other, also parallel
actions that have a prevail-condition feature in their pre- or
postconditions.

Th e purpose of th e present section is to capture these intuitions
through a formal definition, which we call for the action structure
to be coherent.

unchanged, i.e.
Is, 1, NOOP, J-I

These intuitions actually represent a simplification relative to the
real world. Consider for example the scenario of parking a car
parallel to the curb, between two other cars, starting from the point

where ‘our’ car is positioned to the left of the car in front of the
parking slot (in right-hand traffic) (figure 4). We consider three
actions:

is a member of A for every s in S.

We are now ready to introduce the action structures themselves,
first intuitively/graphically and then formally. We will draw an
action structure as in figure 3, where full arrows represent actions.
If two actions begin at the same time, they start in the same point;
if one immediately succeeds another then the endpoint of one arrow
is the beginning-point of the next arrow. If a delay is allowed
between one action and the next, then a dotted arrow is drawn
from the end-point of one to the beginning- point of the next. In
this way, we can also express e.g. that two actions (must) begin at
the same time, or that the termination of one (must) preceed the
termination of another.

This very natural structure is formally expressed as follows. We use
a set T of tire-points, corresponding to the beginning-points
and end-points of the arrows in the figure. A partial order s is
defined on T, representing the order of temporal precedence.

al: keep the car moving in the reverse direction, at suitable
speed
a2: keep the car’s front wheels at an angle pointing right
a3: keep the car’s front wheels at an angle pointing left.

The action plan of course is to do a2 and a3 in sequence, and al in
parallel to both of them. These actions affect the same ‘resource’ or
‘feature’ of the state, name?y the position of the car. Still, it is
admissible and in fact necessary to perform them in parallel - fist
turning the wheels right and left, and only then moving backwards,
would not have the intended effect.

In the present paper we do not account for such coordinated
actions. Here we only wish to capture the intuition of actions which
can occur in parallel because they do not interfere with each other.
In a wider perspective and in future work, it will however be
necessary to deal with the case of coordinated actions.

Planning: AUTOMATED REASONING / 0 1

El

92 / SCIENCE

Let [T, I, P] b e an action structure. For each member t of T, we
define the incoming action occurrences in p to be those of the form

It’, a, tl
i.e. having the given t as their last element. Graphically, if each
action occurrence is represented as an arrow, the incoming action
occurrences are those whose arrows end in the given time-point.

the partial state where the stove is hot, there is no batter, and
otherwise we do not know.

The actions whose operations occur in figure 5 can now be defined
as follows:

[I, UOUU, MakeBatter, uluu]
[I, Ouuu, HeatStove, luuu]

The incoming states for a time-point t are defined as follows: [luuu, uuu0, MakeCoffee, uuul]
- the post-condition of each incoming action occurrence, is an [luuu, ulOu, FryPancakes, uOlu]
incoming state; [I, uulu, EatPancakes, uuOu]
- the join of the prevail-conditions of all the incoming action (L, uuul, HaveCoffee, uuuO]
occurrences, is also an incoming state. [I, luuu, CoolStove, Ouuu]

Similarly, the outgoing action occurrences are those of the form
It, a, t’l

having the given t as their fast element, and the outgoing states
are the pre-conditions of the outgoing action occurrences, plus the
join of the prevail-conditions of all the outgoing action occurrences.

We are now ready to formulate the coherence criterion.

If we use these actions in the structure of figure 5, and check out
the coherence criterion above, we obtain a violation. The key
problem is that the result of making the coffee, i.e. the fact that
coffee exists, must be ‘made known’ to the action of having coffee,
which of course has coffee existence as a precondition. This is
accomplished by adding an action of the form

[uuul, I, Noop, I]
from node t4 to node t7 in the figure.

An action structure [T, 5, p] is defined to be coherent if, for every
time-point t in T,

1. the incoming states are consistent and anti-dimensional,

2. the outgoing states are consistent and anti-dimensional,

3. the join of the incoming states equals the join of the outgoing
states, if the time-point has both incoming and outgoing states.

One may ask why we do not instead augment the existing arcs from
t4 to t5 and from t5 to t7 so as to contain also the information that
coffee exists. The reason is that in a more general case, there could
have been two (or more) parallel1 paths from t4 to t7, and then
there would be no reason why one or the other should ‘carry’ the
coffee existence information.

The join of states mentioned
state of the time-point t.

in point 3 will be called the cuwent

Furthermore, an action structure [T, 5, p] is also coherent if one
can add to p some number of action occurrences of the form

It, Is, 1, Noop, 11, t’]
and the resulting action structure is coherent.

The way an incoming state cold be inconsistent is if incoming action
occurrences have incompatible prevail conditions, and similarly for
outgoing states.

There is a similar problem concerning those nodes which are the
first ones to have a feature (i.e. no earlier time-point has a current
state that haa the feature). We shall call such nodes the first we
node(s) for the feature. In order to satisfy the coherence criterion,
we have to add Noop actions from the initial time-point t0 to the
first use nodes for each feature (at least if the first use node has
some predecessor at all). The last nodes have to be similarly
connected to the final time- point t9. (This is somewhat inelegant,
but we outline below how one can avoid the need to formally
introduce those Noop actions). The resulting action structure is
shown in figure 6. For simplicity, a Noop action such as

[uuul, I, Noop, I]
is written just as [uuul] in the figure, and is drawn as a
-a-s-*-9 arrow.

This definition captures most of the intuitions, but it leaves out
some constraints. We shall first motivate this definition with a
concrete example, and then proceed to the additional requirements
and the formally derived properties of the concept.

It is now trivial to check off that the action structure in figure 6 is
coherent. The current state of the respective time- points, i.e. the
join of their incoming or outgoing states, is as follows:

to 0000

7. An example.
t1 uouu
t2 ouuu

Suppose we are to prepare and consume a meal consisting of
pancakes followed by a cup of coffee. The coffee is to be cooked on
the stove, and since there is only room for one pot at a time on the
stove, and we do not want to interrupt the eating in order to cook,
we decide to make the coffee before the pancakes. (Thus hot
pancakes have higher priority than fresh cooked coffee). Figure 5
shows the action structure, including the operations of making the
batter, heating the stove, and allowing the stove to cool.

t3 luu0
t4 1101
t5 1Olu
t6 Ouuu
t7 UUOl
to8 uuuo
t9 0000

When action structures are repeated cyclically (for example, in
robotics applications, for the programs of manufacturing cells), it is
often undesirable to have a single startpoint and endpoint for the
cycle. We would like a cycle to have several, parallel first actions,
each of which can start as soon as all its prerequisites have been
made available. Our model can easily be adapted for that purpose:
instead of having the extra Noop actions that go to the first use
node and from the last use node for each state feature, we would
form a vector of first use nodes and another vector of last use
nodes, across the feature space. The definitions of incoming and
outgoing states in action structures must of course be modified

In order to analyze the action structure, we use partial states with
four truth-value components, namely the answers to the following\
questions:

is the stove hot?
is there batter?
is there pancakes?
is there coffee?

As before, each component of the partial state is either of u, 0, 1, or
k. We write the states without punctuation, so 1Ouu is for example

Planning: AUTOMATED REASONING / 93

i ? .
I i .

I
i
i ’ .’

7) i/
=i
9 i

i i rol i z!
i 3

94 / SCIENCE

accordingly. The operation of combining two successive cycles is
then be performed by introducing an appropriate Noop action from
the last use node of each feature in one cycle, to the first use node
of the same feature in the next cycle.

8. Additional requirements.

Consider the action structure described in figure 7. It is a
prevail-condition of operations vl and v2 that the first dimension
feature shall be 1. The operation v3 changes that value from 1 to 0,
and v4 changes it back to 1. The action structure in the figure is
coherent, according to the definition in section 6. Yet we see that
the action structure may possibly not be correctly executable,
namely if operation v3 takes effect before vl has concluded.

The example illustrates a side-effect problem: the problem which
arises if another action, maybe in a remote part of the action
structure, locally violates a condition of an action, or at least (with
unfortunate timing) threatens to violate it.

The following is a possible way of characterizing that constraint
formally:

Let [T,l,p] be an action structure. A sequence of action occurrences
in p is called a chain iff it has the form

[tO,al,tl], [tl,a2,t2],(t2,a3,t3] ,...
An action occurrence

[t, lf,b,v,el, ~1
is said to subsume another action occurrence

[t’, [f’,b’,v’,e’], u’]
in the i:th feature, iff

t g t’ c u’ c u
and

f’[i] E f[i]

An action structure [T,<,p] is now said to be aligned for the i:th
feature iff there is some subset p’ of p which is a chain, and where
every action occurrence whose f,b, or e has the i:th feature, is either
a member of p’ or is subsumed by some member of p’.

It is easily seen that in an action structure that is aligned for the
i:th feature, those actions whose b and e have the i:th feature
(active actions, drawn a-/) and those whose f have the i:th
feature (passive actions, drawn ----->) together form a
structure of the type shown in figure 8. Substructures of passive,
possibly parallel1 actions with a single start-point and end-point,
are sequentially combined with active actions.

Our intuitions for admissible action structures can now be
formulated as follows: an action structure [T,l,p] is admissible iff
there exists some p’ which is a superset of p, where all the action
occurrences i p’-p are formed using the operation Noop, and where
[T,<,p’] is coherent, and aligned for all features.

The following ‘model existence’ property is stated here without
proof:

If [T,<,p] is an admissible action structure, and 3 is a total order
over T such that

t 5 t’ -> t i: t’
then one can assign a consistent state s(t) to each time-point t in
T, in such a way that the following holds for every action
occurrence [t’, [f,b,v,e], t”] in p:

b 5 s(t’) e c s(t”)
and for every t such that t’ < t < t”,

s(t)[i] = u for each i in dim(b),
and for every t such that t’ < t 5 t”,

f c s(t)

and finally (“frame property”), if u > t is the immediate successor
of t, s(u)[i] = s(t)[i] unless the b or e condition of an action forces
them to be different according to the above.

9. Verbs or
conditions.

verb phrases that express post- and prevail-

We have not said anything about the intended structure of
operations. From a software engineering background, it may be
natural to view operations as essentially procedure calls, i.e. names
of procedures with their proper parameters. Pre- conditions,
post-conditions, and prevail-conditions are then a part of the
specification and/or the description of the procedures, but one
would not expect to derive those conditions from the name or the
definition (the ‘body’) of the operation.
If the operations are instead thought of as verb phrases in natural
language, this picture changes somewhat. A verb phrase like ‘(to)
open the door’ directly suggests what is the postcondition, and also
(taking for granted that one can not open a door that is already
open) the corresponding precondition.

In common sense reasoning, we also have access to a reportoire of
‘methods’ for how to achieve a goal. The method for achieving a
goal is often used in place of the mere attainment of the goal. For
example, if we say: ‘as John was driving home that afternoon, he
was hit by the lightning and died’, we refer to the action which, if
properly completed, would have the postcondition ‘John is at
home’, but which in this particular occurrence was tragically
interrupted.

Similarly, if we watch a movie where the hero is asked to ‘please
leave the room’, and he does so by crashing through the window,
the possible entertainment effect is derived from the non-standard
way in which the hero achieved the requested result.

These examples will suffice here as indications of how we would like
to analyze some natural-language verb phrases in terms of
intended world-states, and standard methods for achieving them.
But there are also plenty of examples of how verb phrases refer to
prevail conditions, namely phrases of the form

‘keep’ + condition
For example, ‘keep the car on the road’, ‘keep the car at the
regulated speed’, ‘keep the pot slowly boiling’, ‘keep the audience
interested’, ‘keep all the rooms clean’, all show how a lot of common
sense phenomena may be understood in terms of qualitative
regulators or feed back loops. The formal characterization of such
actions would of course refer to the state that is intended to be
kept, as a prevail-condition. In such cases the prevail-condition is
not merely a prerequisite for doing the essential action, but it
defines the essential action.

It is interesting to notice that this could be an entry point to “naive
control theory”, which would seem to have a potential for being of
high industrial relevance. Also, we should maybe now return to von
Neumann’s early insight that feedback systems are of outmost
importance for intelligent behavior, and blow new life into the term
‘cybernetics’ that he coined.

10. Non-flat feature domains.

Above we have introduced feature-values as domains, but all
examples have been chosen from the trivial case of flat, finite
domains. It is easy to see how the more general case can be useful
especially for prevail conditions. For example, suppose we have
actions for painting a wall with color X, for different specific X, and
we also have an action of photographing a white statue with that
wall as background, which (in the prevail condition of the action)
requires the wall to be non-white. If now the feature domain is

Planning: AUTOMATED REASONING / 95

organized so that
u E non-white g red E k

branch is allowed to violate the prevail-condition,
one can not characterize what is a parallell branch.

basically because

then we can organize our action structure so that the paint-red
action is succeeded by the photographing action. At the time-point
between those two actions, the incoming post-condition (red) is
matched against an outgoing prevail condition (non-white). In
order to satisfy the last requirement on coherent action structures,
we must add an outgoing Noop action whose prevail condition says
that the wall is red. The two outgoing prevail conditions ‘red’ and
‘non-white’, are co-dimensional but not equal, but that does not
matter - the important thing is that their join (‘red’) is consistent.

~e’cnporuZ logic ([Resch71]) uses the temporal ordering of points in
time, as the accessibility relation, with modal operators such as:

FA A is true at some future time
GA A will be true at all future times

etc. As far as we can see, temporal logic (as used e.g. by Halpern,
Manna and Moszkowski [Halp83]) leads to the same problem as
were just discussed for dynamic logic.

Manna and Pnueli [MannBlb] apply temporal logic to the
specification of concurrent programs, using the approach of

11. Related work. “cooperating sequential processes” which is not well adapted to our
goal, for the reasons quoted above.

The theories and languages for concurrent programming address the
issue of specifying ‘two or more sequential programs that may be
executed concurrently as parallell processes’ (quoted from the
survey article of Andrews and Schneider, (Andr831). Their goal is
therefore different from the goal of the present work, which is to
characterize parallell processes in the world outside the computer,
but evidently the techniques may sometimes be interchangable.

One of the approaches to concurrent programming is to consider
cooperating ScquentiaZ processes [Dijk68], i.e. to use a set of
sequential programs, equipped with special synchronization
operations. That approach may make good sense for concurrent
programming, especially in machine-oriented programs, but is not
as attractive for describing real-world action structures since there
is usually not a good set of ‘processors’ to write programs for and to
synchronize.

Another approach, path expressions, separates the specification
of operations from the constraints on execution order [Camp74]. In
that respect they can be considered as similar to the approach
taken in the present paper, since the action structure does not
specify the ‘procedure’ for performing an operation, but only the
allowable orderings. Also, the alignment criterium that was
introduced in section 8, can be thought of as a set of path
constraints, one for each feature. But the path operators that are
used for writing path expressions, such as “,” for concurrency and
“;” for sequencing, do not easily lend themselves to expressing
structures like the one in figure 1. Also, path expressions have not
(to our knowledge) developed the counterpart of the precondition/
postcondition /prevail- condition characterization of operations.

A large amount of work has been based on modal Logic, both as a
tool for concurrent programming, and in A.I. for characterizing
structures of actions or events (which is exactly the goal of the
present paper). Basically, the ‘accessibility relation’ that
characterizes the Kripke semantics for modal logic [Krip63] is then
used as the relation between a world-state and a (or the)
succeeding world-state. Dynamic logic ((Prat76j) allows one to
use a collection of such accessibility relations. Each elementary
operation (from world-state to world-state) may be one such
relation, and relations may be composed algebraically, using
operators such as “;” for sequential composition, “union” for
parallel composition, and the Kleene star for infinite sequential
repetition.

The big problem with that approach, from our point of view, is that
world-states are not explicitly named and talked about. The
language only allows you to say things like “in the resulting state
after first doing a, and then doing b and c in parallell, the
proposition P will hold”. Consequently, the language can not
characterize structures like the one shown in figure 1. Also, it
becomes quite difficult (probably impossible) to express the
constraint of prevail-conditions, namely that no other, parallel1

Yet another approach, which is also frequently called “temporal
logic”, is to use a many-sorted first-order logic where e.g. ‘times’,
‘intervals’, ‘states’, and ‘events’ are distinct sorts, and where there
are the obvious relations and functions such as

During(il,i2)
Holds(p,i)

and so on. This approach, which we can call “explicit temporal
logic” (to distinguish from “modal temporal logic”) has been
repeatedly used in A.I. Along with (one interpretation of) the logic
programming paradigm, work with this approach is done by
defining an ontology, first intuitively and then formally by writing
down a large number of axioms in first-order logic. The axioms
must of course characterize those sorts and relations. McDermott
has done this for one particular ontology, which uses states, times,
chronicles, etc. ((McDerm82J). Allen has done a similar work for a
different ontology, which treats intervals of time as the basic
concept ([AlleBl]). A cri i t q ue of these works, which seems to extend
to the approach in general, has been written by Turner ([Turn84]).

Yet another approach, particularly in AL, has been to extend a
temporal logic, of some kind, with additonal constructs which turn
it into a programming Language. The procedural logic of Georgeff
et al ([Geor85]) is a case in point.

Outside the framework of formal logic, early AL research on
planning and problem-solving developed methods that have
inspired the results in this paper. The handling of preconditions and
postconditions builds directly on STRIPS, as has already been
discussed. Its successor, the NOAH system ([Sace75]) used a partial
order on the actions in the plan, in order not to over-commit itself
during the plan-making process.

Also, many “scmuntic net” type enterprises (in the broad sense of
the attempts to develop adequate knowledge representations to be
used for language understanding, scene recognition, question
answering, etc., based on common sense and ad hoc notions) have
introduced “nodes” “arcs” , etc. for actions or events, and are able
to express tempera; relations, preconditions, and/or effects of those
actions. Too often, of course, the expressiveness of such
representations is so great that a formal analysis of what it is they
express, is not possible.

In relation to these various approaches, ours can be characterized as
an explicit temporal logic, and in that respect it is similar to the
approach of McDermott and of Allen. However, we do not tread the
usual path of logic, i.e. to define the language, write out axioms,
define a semantics, and so on. The structures described above are
the ones which would have been used for the semantics, if we had
followed the standard path. But we do not see the need for
language and axioms, at least not at this point. The purpose of the
present paper has been to nail down a minimal set of necessary
concepts (a simple ontology for action structures, if you wish), and
to characterize the logically admissible action structures.

96 I SCIENCE

References.

[AIIe81] Allen, J.F. “An interval based representation of temporal
knowledge”. Proc. 7th IJCAI, 1981, pp. 221-226.

[Andr83] Andrews, Gregory R., and Schneider, Fred B. “Concepts
and Notations for Concurrent Programming”. Computing Surveys,
Vol. 15, No. 1, March 1983.

[Camp741 Campbell, R.H., and Habermann, A.N. “The specification
of process synchronization by path expressions”. Lecture notes in
Computer Science, vol. 16. Springer Verlag, 1974, pp. 89-102.

[Dijk68] Dijkstra, E. W. “Cooperating sequential processes”. In F.
Genuys (ed), Programming Languages. Academic Press, New York,
1968.

(Geor85] Georgeff, Michael P., Lansky, Amy L., and Bessiere, Pierre
“A Procedural Logic I’. Proc. 9th IJCAI, 1985, pp. 516-523.

[HaIp83] Halpern, J., Manna, Z., and Moszkowski, B. “A hardware
semantics based on temporal intervals”. Proc. 19th ICALP.
Springer Lecture Notes in Computer Science, Vol. 54, pp. 278- 292.

[Krip63] Kripke, S. “Semantical considerations on modal logic”.
Acta Philosophica Fennica, Vol. 16, pp. 83-94.

[MannSl] Manna, Z., and Wolper, P. “Synthesis of Communicating
Processes from Temporal Logic Specifications”. Proc. of the
Workshop on Logics of Programs, Yorktown Heights, NY. Lecture
notes in Computer Science, Springer Verlag, 1981.

[Mann8lb] Manna, Z. and PnueIi, A. “Verification of concurrent
programs: the temporal framework”. In: Boyer, R.S. and Moore,
J.S. (eds) The correctness problem in computer science, pp. 215-
273, Academic Press, New York, 1981.

(May831 May, D., Inmos Ltd., Bristol, U.K. “Occam”. SIGPLAN
Notices, April 1983. (Occam is a trademark of Inmos Ltd.)

(McDerm82] McDermott, D. “A temporal logic for reasoning
actions and plans”. Cognitive Science, Vol. 6, pp. 101-155.

about

(Pete821 Peterson, J.L. “Petri Net theory and the modeling of
systems”. Prentice-Hall, Inc., 1982.

[Prat76] Pratt, V.R. “Semantical considerations on Floyd-Hoare
logic” Proc. 17th IEEE Symp. on Foundations of Computer Science,
pp. 108- 121.

[Reschirl] Rescher, J. and Urquhart, A. “Temporal logic”. Springer
Verlag, 1971.

[Sace75] Sacerdoti, E.D. “A structure for plans and behavior”.
Ph.D. thesis, reprinted by Elsevier North Holland Publishing Co.,
New York, 1977.

[Tate76] Tate, A. “Project planning using a hierarchic non- linear
planner”. Univ. of Edinburgh, Dept. of A.I. Research, Report 25.

[Turn841 Turner, Raymond “Logics for artificial intelligence”. Ellis
Horwood, Ltd., 1984.

Planning: AUTOMATED REASONING / 97

