
“COMMONSENSE” ARITHMETIC REASONING

Reid Simmons

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
Abstract

“Arithmetic reasoning” can range in complexity from simple
integer arithmetic to powerful symbolic algebraic reasoning of
the sort done by MACSYMA. We describe an arithmetic reason-
ing system of intermediate complexity called the Quantity Lat-
tice. In a computationally efficient manner the Quantity Lattice
integrates qualitative and quantitative reasoning, and combines
inequality reasoning with reasoning about simple arithmetic ex-
pressions, such as addition or multiplication. The system has
proven useful in doing simulation and analysis in several domains,
including geology and semiconductor fabrication, by supporting
useful forms of reasoning about time and the changes that hap
pen when processes occur.

1 Introduction

“Cogito Ergo Sum” - I think, therefore I add

“Arithmetic reasoning” denotes a broad class of inferences
which range in complexity from simple integer arithmetic, such
as “l+ 1 = 2,” to complex symbolic algebra, such as “sz(2 logz+
l)dz = zc2 log z + C.” We have identified a particular class of
arithmetic reasoning which we believe to be very common in
tasks such as simulation, planning and diagnosis. This class of
arithmetic reasoning is intermediate in both expressive power
and computational efficiency. This paper describes an imple-
mented system called the Quantity Lattice and details its expres-
sive power and potential range of applications. We also indicate
where the Quantity Lattice fits in the spectrum of arithmetic
reasoning tools.

Certain classes of arithmetic inferences seem to crop up fre-
quently in everyday life. Some involve solely qualitative relation-
ships :

l A < B and B 5 C. Is A < C?

l Joe is taller than Amy and Jack is shorter than Amy. Is
Joe taller than Jack?

Others involve mixed qualitative and quantitative information :

a X < 1 and Y = 2. What is the
Y?

relationship between X and

l New York is less than 120 miles away and Washington is
138 miles away. Which city is closer?

A large class of simple arithmetic reasoning problems
qualitative relationships with arithmetic expressions:

combine

X 5 1 and Y = 2. What is the relationship between X+X
and Y?

I finish class at 3, then eat for at most 1 hour, and after-
wards study for 2 to 3 hours, but have to be at a meeting
by 6. Is there enough time to fit in a half hour nap?

A geologic formation is eroded all the way down to sea level.
Uplift follows. Is it possible for airborne erosion to affect
that formation again?

Two silicon wafers are oxidized at the same rate for the
same amount of time. They are then etched for the same
amount of time, but one wafer etches faster than the other.
Which wafer will be thicker at the end?

These questions, and many more like them, can all be an-
swered by reasoning about ordinal relationships (>, <, =, 2, 5

#) between expressions and by reasoning about the value of
simple arithmetic expressions (+, *, -, /). To handle cases where
the values of the numbers are only partially specified, the rea-
soning must also be able to combine qualitative and quantitative
information. There are several systems reported in the AI lit-
erature which handle various subsets of this class of inferences,
including those which deal with time [Allen,Dean,Vere], space
[Davis] and actions [Forbus,Simmons].

The Quantity Lattice is an arithmetic reasoning system which
handles a wider class of arithmetic inferences than the systems
referred to above. The remainder of this paper describes the
Quantity Lattice and details the inferences it supports, discusses
why the Quantity Lattice is useful and compares it with other
arithmetic reasoning systems.

2 The Quantity Lattice

The primary significance of the Quantity Lattice’ is that it smooth-
ly integrates relationships, arithmetic ezpressions, qualitative and
quantitative information, permitting it to handle a wide range of
“commonsense” arithmetic inferences. By “integrates” we mean
that adding one type of knowledge may constrain other types and
thereby enable additional inferences to be made. For example, if
we tell the system that “Y = X + 5” it will infer the additional
qualitative constraint “Y > X,” even though it does not yet know
anything about the actual values of X or Y. If we now tell the
system that “X < 2” it will deduce the additional quantitative
constraint that “Y < 7.”

The Quantity Lattice has been used for reasoning about time

‘The name “Quantity Lattice” is historical
representation is a mathematical lattice.

and does not imply that the

118 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

and about the effects of processes [Mohammed,Simmons,Williams]
In temporal reasoning it has been used to maintain a consistent
partial order of time points and to answer queries about relation-
ships between time points and about the durations of intervals.
Its main application, however, has been in reasoning about the
effects of processes. Consider, for example, the geologic model
which states “the height of a formation after uplift equals the
height before uplift plus the amount of uplift” (from [Simmons!).
If the only numeric information known is that the amount of up-
lift is positive, the Quantity Lattice can still infer that the height
after uplift is strictly greater than the height before uplift. If we
later tell the system that the height before uplift is at least 100
and the amount of uplift is at least 50, it can then infer that the
height after uplift is at least 150. The Quantity Lattice supports
such inferences in a computationally efficient manner.

An obvious question is “why implement an arithmetic reason-
ing system when existing symbolic algebra packages like MAC-
SYMA can perform the same class of inferences and more?” The
main answer is efficiency. The Quantity Lattice is designed to
efficiently handle problems in which there are thousands of vari-
ables, expressions and inequalities, but where each expression
contains only a small fraction of the total number of variables.
The algorithms and data structures used by the Quantity Lattice
are designed to take advantage of this type of arithmetic problem
which is often encountered in doing commonsense reasoning such
as in the geology or semiconductor manufacture domains.

Another major advantage of the Quantity Lattice is that it
maintains justifications for all its inferences. This dependency
information facilitates doing retraction and is used to generate
explanations of how two quantities are related. The system de-
scribed in [Mohammed] to diagnose failures in semiconductor fab-
rication depends in large part on the explanations generated by
the Quantity Lattice to determine how attributes of the wafer
relate to parameters of the manufacturing process.

2 .l Representat ion

The Quantity Lattice supports reasoning about ordinal relation-
ships between expressions whose values are real numbers. An
ordinal relationship is one of >, <, =, 2,s) #. An expression is
a simple expression, such as “A,” a numeric expression, such as
“5,” or an arithmetic expression, such as “B + 5.”

Expressions are represented as nodes in a digraph. The nodes
are called quantities and the arcs of the graph are called relation-
ships. An arithmetic expression is simply a quantity with an
associated formula, a list of its operator and arguments.

Information is added to the Quantity Lattice by asserting
or retracting relationships between expressions, such as “A =
B + 5.” The system constrains the value of an expression by
reasoning about its position in the graph and, if it is an arithmetic
expression, by the values of its arguments. It uses the assertions
to infer relationships between expressions and to infer upper and
lower numeric bounds on the values of expressions.

The upper and lower numeric bounds are represented by as-
sociating a real valued interval with each quantity. The interval
indicates that the actual value of the expression falls somewhere
within the interval range. For example, if the only constraint on
A is that it is positive, A would have the interval (0, oo], denoted
by A E (O,OO].~

‘A parenthesis indicates a half-open interval, a bracket indicates a half-
closed interval.

As a simple example, the two equations “A = B t 5” and
“B > 0” are represented by five quantities : A, B, 5, 0 and
(B + 5). The quantities A and (B + 5) are linked by an ‘<=” arc
in the graph and B and 0 are linked by a “2” arc. The quantity
5 has the interval [5,5] and the quantity 0 has the interval [0, 0).

2.2 Inferences

Two types of inferences are performed by the Quantity Lattice :
(i) determining the relationship between two quantities,
(ii) constraining the value of an arithmetic expression.

These types of inferences are carried out by using five different
reasoning techniques :

1.

2.

3.

4.

5.

Determining relationships using graph search

Determining relationships using numeric constraint propa-
gation

Constraining the value of arithmetic expressions using in-
terval arithmetic

Constraining the value of arithmetic expressions using re-
lational arithmetic

Constraining the value of arithmetic expressions using con-
stant elimination arithmetic

These reasoning techniques are integrated in the sense that infer-
ences performed by one technique can be used by another to per-
form further inferences. For example, the relational arithmetic
technique infers ordinal relationships between an arithmetic ex-
pression and its arguments. These relationships can be used by
the graph search technique to find new relationships between
quantities.

2.2.1 Graph Search

There are two ways for the system to determine the relation-
ship between the quantities A and B - one qualitative and one
quantitative. The qualitative technique searches the graph of
quantities using a simple breadth-first search to find a path be-
tween the quantities. Figure 2 presents a small graph in which
we are trying to find the relationship between A and B. Each
quantity is marked by the order in which it is searched and by
its relationship to A. Relationships are found by using a simple
transitivity table (see Figure 1). For example, since A = C and
C 5 E we can infer that A < E by finding the intersection of
the column marked = and the row marked < in the transitivity
table. Notice that the search along the bottom branch does not
proceed past G because its relationship to A is unknown.

The standard breadth-first search will find any path between

Figure 1: Transitivity Table for Ordinal Relationships

+-g++g’;’

< < < ?? ?? / < ?? - -
> 77 77 > > > ??
> 77 . . - 1 ?? > > > ??
= < i < > : = #/
?? : ii ?? I ?? # ?? 1

?? means that the relationship is unknown.

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 119

(,)

B ‘<
\ (W

D
, (5,??)

)G = ‘J

Figure 2: Graph Search of the Quantity Lattice Figure 3: Combining Paths to Constrain the Relationship

the two quantities. However, in some cases there are multiple itly “knows” the ordering of the reals (e.g. from “A < 1” and
“B > 2,” infer “A < B”).

However, this method alone is not sufficient to answer ques-
tions of the form “if A > 1, B < 0 and A < C what is the
relationship between B and C?” because we first need to de-
termine the upper and lower bounds of the intervals of B and
C. This is done by performing a numeric constraint propagation
whenever a relationship is asserted between two quantities. This
propagation ensures that the intervals of all quantities are con-
sistent with the assertion. For example, if we assert “A < C”
the system constrains the upper limit of A’s interval to be less
than the upper limit of C’s interval. Similarly, it constrains the
lower limit of C’s interval to be greater than A’s lower limit.
In turn, these constraints propagate to all quantities which are
<, 5, or = to A and >, 2, or = to C. This constraint propa-
gation algorithm has the same computational complexity as the

paths between two quantities with different paths yielding dif-
ferent relationships. Since we want to find the most constrained
relationship between the quantities (where <,>, and = are more
constrained than <,>: and #) we need to modify the search
slightly to combine the different relationships found via different
paths.

For example, Figure 3 presents a graph in which we are try-
ing to find the relationship between X and Y. The quantities
are again marked with the order of the search and relationship
found so far. Notice that W and Y are visited twice, and that
the second time they are visited the relationship recorded on the
quantity is the combination of the relationships found via the
multiple paths. For instance, following the path X, T, W the
relationship is < but following the path X, U, V, W the rela-
tionship is 2. The combination of 5 and 2 yields =, which is
the most constrained relationship between X and W. Thus the
most constrained relationship between X and Y is also =. In
general, a quantity is revisited only if the relationships found via
separate paths combine to yield a more constrained relationship.

graph search
Section 2.2.1

algorithm, for reasons similar to those presented in

Both the qualitative and quantitative inference techniques
described above perform consistency checking. When the user
asserts a relationship between two quantities, the Quantity Lat-
tice checks to see if the relationship is consistent. This involves
searching the Quantity Lattice graph to make sure that the in-
verse relationship cannot be inferred from the relationships al-
ready present. Thus, asserting a relationship in the Quantity
Lattice is of complexity O(R). When performing numeric con-
straint propagation, the system checks to ensure that the upper
bound of an interval is never less than its lower bound. If an in-
consistency is found, an exception is raised which the user must
handle. Typically, this entails finding the justifications underly-
ing the inconsistency and retracting one of them.

Although this extension to the standard breadth-first search
means that some quantities might be visited more than once,
since any combination of unconstrained relationships yields a
constrained one, they are visited at most twice. Thus the com-
plexity of this algorithm is O(R), where R is the number of re-
lationships (i.e. arcs) in the graph, the same order of complexity
as that of standard breadth-first search.

The result of a search is cached by adding a new relationship
the graph. This relationship is justified by a path between the to

quantities. There may actually be many equally constraining
paths, but for efficiency only one is found and recorded as the
justification.

2.2.3 Interval Arithmetic
2.2.2 Numeric Constraint Propagation

One of the important features of the Quantity Lattice is that
it combines reasoning about ordinal relationships with reasoning
about arithmetic expressions. The Quantity Lattice maintains
constraints between the two types of knowledge in order to pro-

The other method of determining the relationship between two
quantities is quantitative. The ordering between two quantities
can be determined if the intervals associated with the quantities
do not overlap, except possibly at their endpoints,3 since the
value of a quantity is constrained to lie within the interval. For
example, if A E (- 00, 23, B E [2,00) and C E [5, lo] then we can
infer that A 5 B and A < C, but cannot infer anything about
the relationship between B and C. In addition, equality can be
inferred if both intervals are single points and they have the same
value.

vide a more expressive system.
As mentioned, an arithmetic expression such as “B -L 5” is

represented as a quantity with an associated formula. An arith-
metic expression can be placed in the Quantity Lattice graph
like any other quantity by asserting relationships between it and
other quantities, such as “A = B + 5.” Thus, the value of an
arithmetic expression may be constrained by the values of other
quantities as described in the previous section. This quantitative method for determining relationships be-

tween quantities has two advantages over the graph search tech-
nique : (i) it is a constant time algorithm, and (ii) it can detect
relationships not explicit in the graph, since the system implic-

3The implementation actually allows the intervals to overlap by some c to
compensate for the approximate nature of computer arithmetic.

There are three other techniques used by the Quantity Lat-
tice to constrain the value of an arithmetic expression further.
One technique is quantitative (interval arithmetic) and the other
two are qualitative (relutionaf nrithmetic and constraint efimina-
tion arithmetic). Interval arithmetic computes the value of an

120 / SCIENCE

[x4 4 + [Yh YU] = [(xl + Yl), (5u-t w)] [d, xu] * [yl, yu] E
1

min(sl * yl, 21 * yu, 2u * yl, zu * YU),

max(sf * yf, xl * yu, zu * yf, 5~ * YU) I
[& 4 - [Y4 YU] = [(x1 - YU), (211 - Yf)]

-[x1, xu] s [-ml, -xl]
if (yf < 0) A (yu > 0)

min(sf/yf,zf/yu,zu/yf,z~/yu),
max(zf/yf, x1, yu, zu/yf, ZU, yu) I

otherwise

Figure 4: Interval Arithmetic Operators

arithmetic expression by applying the arithmetic operator of the
formula to the endpoints of the intervals of its arguments. For
example, “]3,6) + [-1,5]” yields “[2, ll).” The system main-
tains the most constrained interval by applying interval arith-
metic when the arithmetic expression is first constructed and
whenever the interval of an argument changes. Also, constrain-
ing the arithmetic expression through interval arithmetic may
in turn constrain the other quantities related to the arithmetic
expression via numeric constraint propagation.

Figure 4 presents some of the operators used by Quantity
Lattice in doing interval arithmetic.’ Although just five basic
operations are shown, it is quite easy to add other arithmetic
operators. In particular, the trigonometric and absolute value
operatorswere added for the version of the Quantity Lattice used
in the geologic reasoner of [Simmons].

As an example of interval arithmetic, consider the following
set of constraints :

l A 2 3, A 5 4, (i.e. A E [3,4])

a B 2 1, B 5 4, (i.e. B E [1,4])

0 C = 2, (i.e. C E [2,2])

. D= (B*C)/(A+ B)

Using interval arithmetic, the system computes that (B * C) E

[2,8] and (A + B) E [4,8] constraining D E [0.25,2]. If we now
assert “B 2 C” numeric constraint propagation will constrain
B E [2,4] (see Section 2.2.2). The system will then recompute
the arithmetic expressions, constraining D E [0.5,1.6].

Unlike many constraint propagation systems, for efficiency
reasons constraints in the Quantity Lattice are not bi-directional.
They have a preferred direction - constraints are propagated
up to an-arithmetic expression from its arguments. To achieve
inferences in the other direction, the user must explicitly assert
constraints for each argument of the arithmetic expression in
terms of the expression and its other arguments. For example,
given the expression “(A + B)” one would assert “B = (A+ B) -
A” and “A = (A + B) - B.”

‘For presentation purposes, the axioms ignore whether the intervals are
open or closed.

2.2.4 Relational Arithmetic

Interval arithmetic has some serious limitations. First, inter-

val arithmetic will often compute intervals which are larger t)han
commonsense dictates. For example, suppose we know that A >
B, B E [0, 1) and A E (O,l]. Interval arithmetic computes
that (A - B) E (- 1, l] but we should be able to infer that

(A - B) E (O,l] since A is greater than B. The problem is
even clearer when we realize that by using interval arithmetic we
cannot determine, in general, that A - A is zero. For example,
if A E [l, 21 then by interval arithmetic (A - A) E [- 1, l] since
[1,2] - [1,2] = [- 1, 11. Only by knowing that both intervals refer
to the same quantity can we infer that the answer is iO,O].

Another limitation is that often interval arithmetic cannot
increase our knowledge at all. For example, if all we know is that
“X = Y + 5,” then Y E (-00, co) and by interval arithmetic we
can only constrain X E (-oo,oo). Using interval arithmetic we
gain no information about the relationship between X and Y,
although we know, in fact, that X is greater than Y.

We have compensated for both these deficiencies in interval
arithmetic by combining it with an arithmetic technique based
on ordering relationships. Relational arithmetic maintains con-
straints on the qualitative relationship of an arithmetic expres-
sion to its arguments. The relationship depends on the relation-
ship of the expression or its arguments to the identity value for
the arithmetic operator of the expression.

Figure 5 presents axioms encoding this relational arithmetic
technique. Using these axioms and the examples presented above,
the system infers that since 5 > 0 then (Y + 5) > Y and there-
fore X > Y. Similarly, the system infers that since A > B then
(A - B) > 0. This inference, combined with numeric constraint
propagation, constrains the lower bound of (A - B) to be greater
than 0, while interval arithmetic constrains the upper bound to
be less than or equal to 1. Thus integrating the two techniques
constrains (A - B) E (0, l] w ic is the smallest consistent in- h h
terval for this problem.

The complexity of the relational arithmetic algorithm is O(R).
The algorithm includes three steps : (i) performing several com-
parisons of quantities to determine which axioms are applicable,

Figure 5: Axioms for Relational Arithmetic

For ref E {<, I, >, >,=,#t)

x ref 0 =+ (z + y) ref y

y rel 0 * (x + y) ref x

2 ref y * (x - y) rel 0

(x>OAy>O) * (2 ref 1 * (z * y) ref y) A (y ref 1 * (x * y) rel x)
(s>OAy<O) =b- (x ref 1 3 y rel (z * y)) A (y rel -1 3 (z * y) re/ -z)
(x<OAy>O) * (x ref -1 * (x * y) rel -y) A (y ref 1 =k- 2 Tel (z * y))
(x<OAy<O) 3 (xref -l=+- y rel (x * y)) A (y rel -1 * --2 rel (z * y))

(x > Or\ y > 0) * ((x rel y * (z/y) ref 1))
(x > OAy < 0) * ((2 ref -y =F- -1 ref (z/y)))
(x < Or\ y > 0) * ((x ref -y * (x/y) rel -1))
(2 < 0 A y < 0) =3 ((x rel y 3 1 ref (x/y)))

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 12 1

For rel E {<, 5, >, 2, =, #}
z rel y * (z + Z) rel (y + 2)

2 rel y =k- (z - 2) rel (y - t)
z rel y * (z - y) rel (2 - z)

z > 0 A 2 rel y 3 (z * 2) rel (y * 2)
z<OAzrely * (y * 2) rel (z * 2)

z 2 OA 2 rel y * (z/z) rel (y/z)
5 5 0 A z rel y 3 (y/z) rel (z/z)

Figure 6: Axioms for Constant Elimination Arithmetic

(ii) asserting the newly inferred relationship and (iii) per-
forming a numeric constraint propagation. All of these steps are
O(R) although if one of the quantities being compared is nu-
meric the comparisons can be done in constant time, such as in
the case of the axiom “z rel 0 + (z + y> rel y.”

2.2.5 Constant Elimination Arithmetic

All the above techniques are still not powerful enough to infer
that A > C if A = B + X, C = D + X and B > D. To
solve this problem, the system must be able to infer that if the
same amount is added to two expressions then the results are
related in the same way as the original expressions are. That
is, A rel B =+ (A + C) rel (B + C). Figure 6 presents axioms

which enable the system to reason about relationships between
two arithmetic expressions. 5 We call this constant elimination
arithmetic because it gives the system the power of a very simple
algebraic simplifier - one which can eliminate constants from
expressions.

Note that these axioms extend the power of the axioms in
Figure 5 which infer relationships involving only one arithmetic
expression and one simple expression. In fact, the axioms of

Figure 5 are only special cases of the ones in Figure 6. For
example, by substituting Y = 0 we derive X rel 0 3 (X +
2) rel (0 + 2) h h w ic simplifies to the addition rule in Figure 5.

However, for efficiency we have chosen to implement the special
cases of Figure 5 separately.

Also, for efficiency, we apply the axioms in Figure 6 in a con-
sequent manner - that is, only for those arithmetic expressions

actually in the system. Otherwise we could create an explo-

sion of arithmetic expressions of the form A + q for all quanti-
ties q in the Quantity Lattice. Finally, we note that an even
more general form of the axioms in Figure 6 are of the form
X rel Y =+ (X + 2;) rel (Y + Zj) for any & = Zj. We limit the
expressive power for the sake of efficiency by insisting that i = j.

The algorithm for constant elimination arithmetic is O(E * R)
where E is the number of arithmetic expressions in the sys-
tem. The term R arises because to determine whether the an-
tecedent clause of each axiom is true the Quantity Lattice must
be searched to determine the relationship between two quanti-
ties. The term E arises because when an expression of the form
“A op B” is constructed, the appropriate axiom in Figure 6 must
be applied for each existing expression of the form “A op C” or
“C op B.” In practice, however, the number of such expressions

5There
+ and

are also permutations of the axioms for the commutative operators

is usually a rather small percentage of E, and so the average
complexity is much better than the worst case complexity.

Although the computational complexity of this technique is
greater than that of the other four arithmetic reasoning tech-
niques presented above, we included constant elimination arith-
metic in the Quantity Lattice because the inferences it supports
are often needed in the domains we are exploring. For example,
in the semiconductor fabrication domain [Mohammed] we often
need to make inferences like “two silicon regions which start out
the same thickness will end up the same thickness if they are
oxidized at the same rate for the same amount of time.”

3 Results

Combining the five reasoning techniques of(i) graph search, (ii) nu-
meric constraint propagation, (iii) interval arithmetic, (iv) rela-
tional arithmetic and (v) constant elimination arithmetic enables
the Quantity Lattice to perform a large range of “commonsense”
arithmetic inference in a fairly efficient manner. It can, for in-
stance, handle all the questions listed in the introduction in O(R)
time except for the last question which takes O(E * R).

The Quantity Lattice has been tested in several domains, in-
cluding geology [Simmons], semiconductor fabrication [Mohammed]
and reasoning about temporal constraints [Williams]. In both
the geology and semiconductor fabrication domains the Quantity
Lattice is used to support qualitative simulation - it maintains
and reasons about a partial order of time points which repre-
sent when processes occur and when objects are created and de-
stroyed, and it helps in reasoning about the changes produced by
processes. For example, the effect of the geologic process “uplift”
would be represented by equations stating that the height of a
formation after the process equals the height before the process
plus some positive quantity “uplift-amount.” From this infor-
mation the Quantity Lattice would infer that the new height is
greater than the old height.

To measure the performance of the Quantity Lattice, we used
an example from the semiconductor fabrication domain and sim-
ulated the fabrication of a pair of resistors using the models of
IMohammed]. The simulation involved 27 processing steps and
took 384 seconds of CPU time on a Symbolics 3600. Of this, 112
seconds or 29’% was used by the Quantity Lattice. The simulator
asserted 3125 relationships among 1357 quantities, taking an av-
erage of 0.01 seconds per assertion. It constructed 660 arithmetic
expressions, of which about one-third were binary additions.

The simulator queried the Quantity Lattice to determine the
relationship between quantities over 23,006 times taking an av-
erage of 0.003 seconds per query. Of this, the vast majority were
for relationships between time points and most were relation-
ships that the system already knew or had already inferred and
cached. In fact, of the 23,507 queries 14,736 were already known
to the system and were answered taking an average of 0.0605 sec-
onds per query and 751 were determined quantitatively in con-
stant time (see Section 2.2.2) taking an average of 0.002 seconds
per query. The remaining 8020 were determined using graph
search taking an average of 0.0075 seconds per query. Of the
8020 graph searches, 1884 new relationships (paths) were found
between quantities.

In the geologic domain both a qualitative and quantitative
simulation are performed [Simmons], The qualitative simulation
is done using the same simulator as in the semiconductor fab-
rication domain and the performance of the Quantity Lattice is

122 / SCIENCE

similar to that described above. For the quantitative simulation,
much more emphasis is placed on constructing arithmetic expres-
sions and determining real values for the parameters of processes.
Thus the numeric constraint propagation and interval arithmetic
techniques are used more heavily than for the qualitative simu-
lation.

Using a 7 step geology simulation example, the quantitative
simulation constructed 718 arithmetic expressions, more than
was constructed for the 27 step semiconductor fabrication ex-
ample, while asserting less than half as many relationships as for
the semiconductor example. Constructing the arithmetic expres-
sions consumed 45% of the time spent in the Quantity Lattice,
as opposed to only 19% for the qualitative simulation. When re-
lationships were asserted between quantities 51% of the time was
spent propagating numeric constraints and 29% was spent check-
ing for consistency. These figures are reversed for the qualitative
simulation in which 56% of the time was spent doing consistency
checking with only 26% needed for constraint propagation.

4 Relation to Other Work

The Quantity Lattice was designed as a compromise between ex-
pressive power and computational complexity. Efficiency of op
eration was gained by taking advantage of the expected structure
of the problem - many loosely connected variables and expres-
sions. This is in contrast to a system like MACSYMA which is
designed to handle sets of equations where each equation involves
most of the variables, that is, the resulting coefficient matrix will
be dense rather than sparse. This expectation leads one to use
more powerful algebraic techniques like solving systems of equa-
tions, which are polynomial in complexity, rather than using the
techniques described above which are mostly linear in the number
of equations.

There are symbolic algebra algorithms which make use of the
structure of the domain to achieve performance comparable to
the Quantity Lattice. However, these algorithms are not actually
used in MACSYMA because it is designed to solve systems of
equations in general. For example, the types of domains handled
by the Quantity Lattice are amenable to solution by setting up
the equations in band matrix format and representing the matrix
of equations as a linked list so that inequalities can be easily
inserted into the correct row to preserve the band matrix format.

When one has only a few expressions and inequalities, solving
systems of equations as MACSYMA does is not too expensive.
When there are thousands of expressions and inequalities, as in
our simulation domains, making inferences by symbolically solv-
ing equations becomes computationally infeasible. On the other
hand, there are many inferences which MACSYMA handles that
the Quantity Lattice cannot. For example, the Quantity Lattice
does not .do simplification. Thus, in general, it cannot deduce
that X = (X + Y) - Y. The appropriate strategy is to have
the problem solving system reason about the class of inferences
it needs to make - using the computational efficiency of the
Quantity Lattice for simple “commonsense” inferences and do-
ing the more complex (and computationally inefficient) problems
using a symbolic algebra package.

On the other side of the spectrum from general purpose sym-
bolic algebra systems there are systems which perform some sub
set of the inferences provided by the Quantity Lattice. Like the
Quantity Lattice, they use specialized representations to make
the inference algorithms more computationally efficient.

The temporal reasoning system of [Allen] uses a representa-
tion similar to the one used to store qualitative relationships in
the Quantity Lattice. Although Allen’s system uses time inter-
vals and we use time points, the basic difference is really in the
implementation. Where Allen’s system computes the transitive
closure of the relationships every time an assertion is made, the
Quantity Lattice infers a relationship only upon demand. Al-
though it might seem to be more efficient to compute the clo-
sure, in practice we have found that the closure algorithm infers
many more relationships than are actually needed, and is thus
less efficient overall. For example, in the semiconductor fabri-
cation simulation example presented in Section 3 there are 13Si

quantities and therefore over 1.8 million potential relationships
between quantities. However, during the simulation only 5009
(0.27%) of th ose relationships are actually needed.

In designing problem solvers which use the Quantity Lattice,
we have found it useful to be able to tell the system “1 am inter-
ested in the relationship between A and B - let me know if it
ever changes.” This feature, also used by [Dean], is implemented
with a mechanism which associates demons with relationships in
the Quantity Lattice graph. If the relationship changes, then the
demon is fired.

The main problem with this scheme is that in order to be
complete, the system must explicitly check all relationships which
have demons to see if they have changed whenever any constraint
is added. This would involve one graph search for each such
relation and is clearly not reasonable computationally. A com-
promise position is to check only those relationships which are
reachable by a path length of N or less from the relationship was
added. Although this scheme does not necessarily cover all the
relationships which logically might have changed, surprisingly an
N of only 1 has been found to be sufficient in practice for the
domains -which we have explored. This same scheme has also
been used by the time-map manager of [Dean] which uses an N
of greater than 1.

Several researchers have incorporated some degree of quali-
tative and quantitative numeric reasoning. The DEVISER plan-
ning system [Vere] maintains qualitative temporal relationships
in the form of a plan network, but associated with each plan
node ate numeric intervals which indicate the range of start
and end times for the node. The interpretation of these in-
tervals is identical to that of the Quantity Lattice - the real
value lies somewhere in the interval. DEVISER uses techniques
similar to interval arithmetic and numeric constraint propaga-
tion described in Section 2.2.2 to maintain the constraint that
start time = end time + duration, where duration is a real num-
ber. Inconsistencies in a plan’s schedule are detected if the upper
bound of an interval is constrained to be less than its lower bound.

The Quantity Lattice can perform the same inferences with
two major advantages. First, the duration of a plan step can
be represented as an arbitrary expression, such as “B + 5.” In
DEVISER the duration must be a real number and the temporal
constraints cannot be applied until the duration is known exactly.
Second, the Quantity Lattice integrates qualitative and quanti-
tative knowledge in such a way that new qualitative relationships
can be inferred as more quantitative information is known (see
Section 2.2.2). This integration is lacking in Vere’s temporal rea-
soner. The system of [Allen] represents the quantitative duration
of time intervals, but does not allow durations to be added to-
gether - something which is necessary to achieve at least the
level of performance that Vere’s system reaches.

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 123

A system which approaches the Quantity Lattice in expres-
sive power is the fuzzy spatial reasoner of IDavis]. A similar fuzzy
number representation is used in [Dean], but it only does addi-
tion and subtraction and the intervals are bounded by integers,
not reals. As in the Quantity Lattice, [Davis] represents the value
of expressions using intervals and performs constraint propaga-
tion to narrow the intervals. However, evaluation of arithmetic
expressions is done using a Monte Carlo technique rather than
interval arithmetic. This technique overcomes some of the dis-
advantages of pure interval arithmetic, but it is rather expensive
computationally. The representation of qualitative relationships
is handled by placing one quantity in a local frame of reference
of another quantity. However, it is not clear whether a quan-
tity can be placed in more than one local frame of reference,
that is, whether qualitative partial orders can be represented. In
any event, there seems to be no facility for inferring new qual-
itative relationships as can be done using relational arithmetic
techniques, so the range of inferences performed is still smaller
than the Quantity Lattice.

5 Conclusions

“Commonsense” arithmetic reasoning is an important form of
reasoning. We have presented the Quantity Lattice, a system
which performs many of these commonsense arithmetic infer-
ences. We believe that the Quantity Lattice offers a reasonable
balance between expressive power and computational complexity.

The range of inferences performed by the Quantity Lattice
was carefully chosen by observing the types of arithmetic rea-
soning used in doing the qualitative and quantitative reasoning
tasks needed in the domains of geologic interpretation [Simmons]
and semiconductor fabrication diagnosis [Mohammed]. The algo-
rithms used by the Quantity Lattice are designed for the range
of assertions and queries commonly found in these and similar
real-world domains. The resulting system smoothly integrates
qualitative and quantitative information, ordinal relationships,
and arithmetic expressions. The various types of knowledge con-
strain one another to enable more powerful inferences to be per-
formed.

At the same time, the computational complexity is quite mod-
est. The worst case for each assertion or inference is O(E * R)
while, in practice, the average case is much better as only small
portions of the Quantity Lattice need to be traversed for each
operation. Finally, all the inferences performed by the Quantity
Lattice are recorded along with their justifications which facili-
tate retraction and the generation of explanations.

I would like to thank Randy Davis, Walter Hamscher, Dan
Carnese, Mark Shirley and Jeff Van Baalen for thoughtful sug-
gestions for improving this paper. Thanks to Rich Zippel for his
insights on MACSYMA. I also thank Brian Williams and John
Mohammed for their suggestions gained through using the Quan-
tity Lattice.

References

[Allen]

[Davis]

[Dean]

[Forbus]

[Mohammed]

[Simmons]

[Vere]

[Williams]

Allen, James. “Maintaining Knowledge About
Temporal Intervals,” CACM, vol. 26, no. 11,
1983.

Davis, Ernest. “Representing and Acquiring Ge-
ographic Knowledge,” Yale University Research
Report 292, 1984.

Dean, Thomas. “Temporal Imagery : An Ap
preach to Reasoning about Time for Planning
and Problem Solving,” Yale University Research
Report 433, October 1985.

Forbus, Kenneth. “Qualitative Process Theory,”
AI Journal, vol. 24, 1984.

Mohammed, John; Simmons, Reid. “Qualita-
tive Simulation of Semiconductor Fabrication,”
AAAI-86, Philadelphia, PA.

Simmons, Reid. “Representing and Reasoning
About Change in Geologic Interpretation,” MIT
Al Technical Report 749, December 1983.

Vere, Steven. “Planning in Time : Windows and
Durations for Activities and Goals,” IEEE Trans-
actions on Pattern Analysis and Machine Intefli-
gence, vol. PAMI-5, no. 3, May 1983.

Williams, Brian. “Doing Time : Putting Quali-
tative Reasoning on Firmer Ground,” AAAI-86,
Philadelphia, PA.

124 / SCIENCE

