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Abstract 

“Arithmetic reasoning” can range in complexity from simple 
integer arithmetic to powerful symbolic algebraic reasoning of 
the sort done by MACSYMA. We describe an arithmetic reason- 
ing system of intermediate complexity called the Quantity Lat- 
tice. In a computationally efficient manner the Quantity Lattice 
integrates qualitative and quantitative reasoning, and combines 
inequality reasoning with reasoning about simple arithmetic ex- 
pressions, such as addition or multiplication. The system has 
proven useful in doing simulation and analysis in several domains, 
including geology and semiconductor fabrication, by supporting 
useful forms of reasoning about time and the changes that hap 
pen when processes occur. 

1 Introduction 

“Cogito Ergo Sum” - I think, therefore I add 

“Arithmetic reasoning” denotes a broad class of inferences 
which range in complexity from simple integer arithmetic, such 
as “l+ 1 = 2,” to complex symbolic algebra, such as “sz(2 logz+ 
l)dz = zc2 log z + C.” We have identified a particular class of 
arithmetic reasoning which we believe to be very common in 
tasks such as simulation, planning and diagnosis. This class of 
arithmetic reasoning is intermediate in both expressive power 
and computational efficiency. This paper describes an imple- 
mented system called the Quantity Lattice and details its expres- 
sive power and potential range of applications. We also indicate 
where the Quantity Lattice fits in the spectrum of arithmetic 
reasoning tools. 

Certain classes of arithmetic inferences seem to crop up fre- 
quently in everyday life. Some involve solely qualitative relation- 
ships : 

l A < B and B 5 C. Is A < C? 

l Joe is taller than Amy and Jack is shorter than Amy. Is 
Joe taller than Jack? 

Others involve mixed qualitative and quantitative information : 

a X < 1 and Y = 2. What is the 
Y? 

relationship between X and 

l New York is less than 120 miles away and Washington is 
138 miles away. Which city is closer? 

A large class of simple arithmetic reasoning problems 
qualitative relationships with arithmetic expressions: 

combine 

X 5 1 and Y = 2. What is the relationship between X+X 
and Y? 

I finish class at 3, then eat for at most 1 hour, and after- 
wards study for 2 to 3 hours, but have to be at a meeting 
by 6. Is there enough time to fit in a half hour nap? 

A geologic formation is eroded all the way down to sea level. 
Uplift follows. Is it possible for airborne erosion to affect 
that formation again? 

Two silicon wafers are oxidized at the same rate for the 
same amount of time. They are then etched for the same 
amount of time, but one wafer etches faster than the other. 
Which wafer will be thicker at the end? 

These questions, and many more like them, can all be an- 
swered by reasoning about ordinal relationships (>, <, =, 2, 5 

#) between expressions and by reasoning about the value of 
simple arithmetic expressions (+, *, -, /). To handle cases where 
the values of the numbers are only partially specified, the rea- 
soning must also be able to combine qualitative and quantitative 
information. There are several systems reported in the AI lit- 
erature which handle various subsets of this class of inferences, 
including those which deal with time [Allen,Dean,Vere], space 
[Davis] and actions [Forbus,Simmons]. 

The Quantity Lattice is an arithmetic reasoning system which 
handles a wider class of arithmetic inferences than the systems 
referred to above. The remainder of this paper describes the 
Quantity Lattice and details the inferences it supports, discusses 
why the Quantity Lattice is useful and compares it with other 
arithmetic reasoning systems. 

2 The Quantity Lattice 

The primary significance of the Quantity Lattice’ is that it smooth- 
ly integrates relationships, arithmetic ezpressions, qualitative and 
quantitative information, permitting it to handle a wide range of 
“commonsense” arithmetic inferences. By “integrates” we mean 
that adding one type of knowledge may constrain other types and 
thereby enable additional inferences to be made. For example, if 
we tell the system that “Y = X + 5” it will infer the additional 
qualitative constraint “Y > X,” even though it does not yet know 
anything about the actual values of X or Y. If we now tell the 
system that “X < 2” it will deduce the additional quantitative 
constraint that “Y < 7.” 

The Quantity Lattice has been used for reasoning about time 

‘The name “Quantity Lattice” is historical 
representation is a mathematical lattice. 

and does not imply that the 
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and about the effects of processes [Mohammed,Simmons,Williams] 
In temporal reasoning it has been used to maintain a consistent 
partial order of time points and to answer queries about relation- 
ships between time points and about the durations of intervals. 
Its main application, however, has been in reasoning about the 
effects of processes. Consider, for example, the geologic model 
which states “the height of a formation after uplift equals the 
height before uplift plus the amount of uplift” (from [Simmons!). 
If the only numeric information known is that the amount of up- 
lift is positive, the Quantity Lattice can still infer that the height 
after uplift is strictly greater than the height before uplift. If we 
later tell the system that the height before uplift is at least 100 
and the amount of uplift is at least 50, it can then infer that the 
height after uplift is at least 150. The Quantity Lattice supports 
such inferences in a computationally efficient manner. 

An obvious question is “why implement an arithmetic reason- 
ing system when existing symbolic algebra packages like MAC- 
SYMA can perform the same class of inferences and more?” The 
main answer is efficiency. The Quantity Lattice is designed to 
efficiently handle problems in which there are thousands of vari- 
ables, expressions and inequalities, but where each expression 
contains only a small fraction of the total number of variables. 
The algorithms and data structures used by the Quantity Lattice 
are designed to take advantage of this type of arithmetic problem 
which is often encountered in doing commonsense reasoning such 
as in the geology or semiconductor manufacture domains. 

Another major advantage of the Quantity Lattice is that it 
maintains justifications for all its inferences. This dependency 
information facilitates doing retraction and is used to generate 
explanations of how two quantities are related. The system de- 
scribed in [Mohammed] to diagnose failures in semiconductor fab- 
rication depends in large part on the explanations generated by 
the Quantity Lattice to determine how attributes of the wafer 
relate to parameters of the manufacturing process. 

2 .l Representat ion 

The Quantity Lattice supports reasoning about ordinal relation- 
ships between expressions whose values are real numbers. An 
ordinal relationship is one of >, <, =, 2,s) #. An expression is 
a simple expression, such as “A,” a numeric expression, such as 
“5,” or an arithmetic expression, such as “B + 5.” 

Expressions are represented as nodes in a digraph. The nodes 
are called quantities and the arcs of the graph are called relation- 
ships. An arithmetic expression is simply a quantity with an 
associated formula, a list of its operator and arguments. 

Information is added to the Quantity Lattice by asserting 
or retracting relationships between expressions, such as “A = 
B + 5.” The system constrains the value of an expression by 
reasoning about its position in the graph and, if it is an arithmetic 
expression, by the values of its arguments. It uses the assertions 
to infer relationships between expressions and to infer upper and 
lower numeric bounds on the values of expressions. 

The upper and lower numeric bounds are represented by as- 
sociating a real valued interval with each quantity. The interval 
indicates that the actual value of the expression falls somewhere 
within the interval range. For example, if the only constraint on 
A is that it is positive, A would have the interval (0, oo], denoted 
by A E (O,OO].~ 

‘A parenthesis indicates a half-open interval, a bracket indicates a half- 
closed interval. 

As a simple example, the two equations “A = B t 5” and 
“B > 0” are represented by five quantities : A, B, 5, 0 and 
(B + 5). The quantities A and (B + 5) are linked by an ‘<=” arc 
in the graph and B and 0 are linked by a “2” arc. The quantity 
5 has the interval [5,5] and the quantity 0 has the interval [0, 0). 

2.2 Inferences 

Two types of inferences are performed by the Quantity Lattice : 
(i) determining the relationship between two quantities, 
(ii) constraining the value of an arithmetic expression. 

These types of inferences are carried out by using five different 
reasoning techniques : 

1. 

2. 

3. 

4. 

5. 

Determining relationships using graph search 

Determining relationships using numeric constraint propa- 
gation 

Constraining the value of arithmetic expressions using in- 
terval arithmetic 

Constraining the value of arithmetic expressions using re- 
lational arithmetic 

Constraining the value of arithmetic expressions using con- 
stant elimination arithmetic 

These reasoning techniques are integrated in the sense that infer- 
ences performed by one technique can be used by another to per- 
form further inferences. For example, the relational arithmetic 
technique infers ordinal relationships between an arithmetic ex- 
pression and its arguments. These relationships can be used by 
the graph search technique to find new relationships between 
quantities. 

2.2.1 Graph Search 

There are two ways for the system to determine the relation- 
ship between the quantities A and B - one qualitative and one 
quantitative. The qualitative technique searches the graph of 
quantities using a simple breadth-first search to find a path be- 
tween the quantities. Figure 2 presents a small graph in which 
we are trying to find the relationship between A and B. Each 
quantity is marked by the order in which it is searched and by 
its relationship to A. Relationships are found by using a simple 
transitivity table (see Figure 1). For example, since A = C and 
C 5 E we can infer that A < E by finding the intersection of 
the column marked = and the row marked < in the transitivity 
table. Notice that the search along the bottom branch does not 
proceed past G because its relationship to A is unknown. 

The standard breadth-first search will find any path between 

Figure 1: Transitivity Table for Ordinal Relationships 

+-g++g’;’ 

< < < ?? ?? / < ?? - - 
> 77 77 > > > ?? . . . . 
> 77 . . - 1 ?? > > > ?? 
= < i < > : = #/ 
# ?? : ii ?? I ?? # ?? 1 

?? means that the relationship is unknown. 
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Figure 2: Graph Search of the Quantity Lattice Figure 3: Combining Paths to Constrain the Relationship 

the two quantities. However, in some cases there are multiple itly “knows” the ordering of the reals (e.g. from “A < 1” and 
“B > 2,” infer “A < B”). 

However, this method alone is not sufficient to answer ques- 
tions of the form “if A > 1, B < 0 and A < C what is the 
relationship between B and C?” because we first need to de- 
termine the upper and lower bounds of the intervals of B and 
C. This is done by performing a numeric constraint propagation 
whenever a relationship is asserted between two quantities. This 
propagation ensures that the intervals of all quantities are con- 
sistent with the assertion. For example, if we assert “A < C” 
the system constrains the upper limit of A’s interval to be less 
than the upper limit of C’s interval. Similarly, it constrains the 
lower limit of C’s interval to be greater than A’s lower limit. 
In turn, these constraints propagate to all quantities which are 
<, 5, or = to A and >, 2, or = to C. This constraint propa- 
gation algorithm has the same computational complexity as the 

paths between two quantities with different paths yielding dif- 
ferent relationships. Since we want to find the most constrained 
relationship between the quantities (where <,>, and = are more 
constrained than <,>: and #) we need to modify the search 
slightly to combine the different relationships found via different 
paths. 

For example, Figure 3 presents a graph in which we are try- 
ing to find the relationship between X and Y. The quantities 
are again marked with the order of the search and relationship 
found so far. Notice that W and Y are visited twice, and that 
the second time they are visited the relationship recorded on the 
quantity is the combination of the relationships found via the 
multiple paths. For instance, following the path X, T, W the 
relationship is < but following the path X, U, V, W the rela- 
tionship is 2. The combination of 5 and 2 yields =, which is 
the most constrained relationship between X and W. Thus the 
most constrained relationship between X and Y is also =. In 
general, a quantity is revisited only if the relationships found via 
separate paths combine to yield a more constrained relationship. 

graph search 
Section 2.2.1 

algorithm, for reasons similar to those presented in 

Both the qualitative and quantitative inference techniques 
described above perform consistency checking. When the user 
asserts a relationship between two quantities, the Quantity Lat- 
tice checks to see if the relationship is consistent. This involves 
searching the Quantity Lattice graph to make sure that the in- 
verse relationship cannot be inferred from the relationships al- 
ready present. Thus, asserting a relationship in the Quantity 
Lattice is of complexity O(R). When performing numeric con- 
straint propagation, the system checks to ensure that the upper 
bound of an interval is never less than its lower bound. If an in- 
consistency is found, an exception is raised which the user must 
handle. Typically, this entails finding the justifications underly- 
ing the inconsistency and retracting one of them. 

Although this extension to the standard breadth-first search 
means that some quantities might be visited more than once, 
since any combination of unconstrained relationships yields a 
constrained one, they are visited at most twice. Thus the com- 
plexity of this algorithm is O(R), where R is the number of re- 
lationships (i.e. arcs) in the graph, the same order of complexity 
as that of standard breadth-first search. 

The result of a search is cached by adding a new relationship 
the graph. This relationship is justified by a path between the to 

quantities. There may actually be many equally constraining 
paths, but for efficiency only one is found and recorded as the 
justification. 

2.2.3 Interval Arithmetic 
2.2.2 Numeric Constraint Propagation 

One of the important features of the Quantity Lattice is that 
it combines reasoning about ordinal relationships with reasoning 
about arithmetic expressions. The Quantity Lattice maintains 
constraints between the two types of knowledge in order to pro- 

The other method of determining the relationship between two 
quantities is quantitative. The ordering between two quantities 
can be determined if the intervals associated with the quantities 
do not overlap, except possibly at their endpoints,3 since the 
value of a quantity is constrained to lie within the interval. For 
example, if A E (- 00, 23, B E [2,00) and C E [5, lo] then we can 
infer that A 5 B and A < C, but cannot infer anything about 
the relationship between B and C. In addition, equality can be 
inferred if both intervals are single points and they have the same 
value. 

vide a more expressive system. 
As mentioned, an arithmetic expression such as “B -L 5” is 

represented as a quantity with an associated formula. An arith- 
metic expression can be placed in the Quantity Lattice graph 
like any other quantity by asserting relationships between it and 
other quantities, such as “A = B + 5.” Thus, the value of an 
arithmetic expression may be constrained by the values of other 
quantities as described in the previous section. This quantitative method for determining relationships be- 

tween quantities has two advantages over the graph search tech- 
nique : (i) it is a constant time algorithm, and (ii) it can detect 
relationships not explicit in the graph, since the system implic- 

3The implementation actually allows the intervals to overlap by some c to 
compensate for the approximate nature of computer arithmetic. 

There are three other techniques used by the Quantity Lat- 
tice to constrain the value of an arithmetic expression further. 
One technique is quantitative (interval arithmetic) and the other 
two are qualitative (relutionaf nrithmetic and constraint efimina- 
tion arithmetic). Interval arithmetic computes the value of an 
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[x4 4 + [Yh YU] = [(xl + Yl), (5u-t w)] [d, xu] * [yl, yu] E 
1 

min(sl * yl, 21 * yu, 2u * yl, zu * YU), 

max(sf * yf, xl * yu, zu * yf, 5~ * YU) I 
[& 4 - [Y4 YU] = [(x1 - YU), (211 - Yf)] 

-[x1, xu] s [-ml, -xl] 
if (yf < 0) A (yu > 0) 

min(sf/yf,zf/yu,zu/yf,z~/yu), 
max(zf/yf, x1, yu, zu/yf, ZU, yu) I 

otherwise 

Figure 4: Interval Arithmetic Operators 

arithmetic expression by applying the arithmetic operator of the 
formula to the endpoints of the intervals of its arguments. For 
example, “]3,6) + [-1,5]” yields “[2, ll).” The system main- 
tains the most constrained interval by applying interval arith- 
metic when the arithmetic expression is first constructed and 
whenever the interval of an argument changes. Also, constrain- 
ing the arithmetic expression through interval arithmetic may 
in turn constrain the other quantities related to the arithmetic 
expression via numeric constraint propagation. 

Figure 4 presents some of the operators used by Quantity 
Lattice in doing interval arithmetic.’ Although just five basic 
operations are shown, it is quite easy to add other arithmetic 
operators. In particular, the trigonometric and absolute value 
operatorswere added for the version of the Quantity Lattice used 
in the geologic reasoner of [Simmons]. 

As an example of interval arithmetic, consider the following 
set of constraints : 

l A 2 3, A 5 4, (i.e. A E [3,4]) 

a B 2 1, B 5 4, (i.e. B E [1,4]) 

0 C = 2, (i.e. C E [2,2]) 

. D= (B*C)/(A+ B) 

Using interval arithmetic, the system computes that (B * C) E 

[2,8] and (A + B) E [4,8] constraining D E [0.25,2]. If we now 
assert “B 2 C” numeric constraint propagation will constrain 
B E [2,4] (see Section 2.2.2). The system will then recompute 
the arithmetic expressions, constraining D E [0.5,1.6]. 

Unlike many constraint propagation systems, for efficiency 
reasons constraints in the Quantity Lattice are not bi-directional. 
They have a preferred direction - constraints are propagated 
up to an-arithmetic expression from its arguments. To achieve 
inferences in the other direction, the user must explicitly assert 
constraints for each argument of the arithmetic expression in 
terms of the expression and its other arguments. For example, 
given the expression “(A + B)” one would assert “B = (A+ B) - 
A” and “A = (A + B) - B.” 

‘For presentation purposes, the axioms ignore whether the intervals are 
open or closed. 

2.2.4 Relational Arithmetic 

Interval arithmetic has some serious limitations. First, inter- 

val arithmetic will often compute intervals which are larger t)han 
commonsense dictates. For example, suppose we know that A > 
B, B E [0, 1) and A E (O,l]. Interval arithmetic computes 
that (A - B) E (- 1, l] but we should be able to infer that 

(A - B) E (O,l] since A is greater than B. The problem is 
even clearer when we realize that by using interval arithmetic we 
cannot determine, in general, that A - A is zero. For example, 
if A E [l, 21 then by interval arithmetic (A - A) E [- 1, l] since 
[ 1,2] - [ 1,2] = [ - 1, 11. Only by knowing that both intervals refer 
to the same quantity can we infer that the answer is iO,O]. 

Another limitation is that often interval arithmetic cannot 
increase our knowledge at all. For example, if all we know is that 
“X = Y + 5,” then Y E (-00, co) and by interval arithmetic we 
can only constrain X E (-oo,oo). Using interval arithmetic we 
gain no information about the relationship between X and Y, 
although we know, in fact, that X is greater than Y. 

We have compensated for both these deficiencies in interval 
arithmetic by combining it with an arithmetic technique based 
on ordering relationships. Relational arithmetic maintains con- 
straints on the qualitative relationship of an arithmetic expres- 
sion to its arguments. The relationship depends on the relation- 
ship of the expression or its arguments to the identity value for 
the arithmetic operator of the expression. 

Figure 5 presents axioms encoding this relational arithmetic 
technique. Using these axioms and the examples presented above, 
the system infers that since 5 > 0 then (Y + 5) > Y and there- 
fore X > Y. Similarly, the system infers that since A > B then 
(A - B) > 0. This inference, combined with numeric constraint 
propagation, constrains the lower bound of (A - B) to be greater 
than 0, while interval arithmetic constrains the upper bound to 
be less than or equal to 1. Thus integrating the two techniques 
constrains (A - B) E (0, l] w ic is the smallest consistent in- h h 
terval for this problem. 

The complexity of the relational arithmetic algorithm is O(R). 
The algorithm includes three steps : (i) performing several com- 
parisons of quantities to determine which axioms are applicable, 

Figure 5: Axioms for Relational Arithmetic 

For ref E {<, I, >, >,=,#t) 

x ref 0 =+ (z + y) ref y 

y rel 0 * (x + y) ref x 

2 ref y * (x - y) rel 0 

(x>OAy>O) * ( 2 ref 1 * (z * y) ref y) A (y ref 1 * (x * y) rel x) 
(s>OAy<O) =b- ( x ref 1 3 y rel (z * y)) A (y rel -1 3 (z * y) re/ -z) 
(x<OAy>O) * ( x ref -1 * (x * y) rel -y) A (y ref 1 =k- 2 Tel (z * y)) 
(x<OAy<O) 3 (xref -l=+- y rel (x * y)) A (y rel -1 * --2 rel (z * y)) 

(x > Or\ y > 0) * ((x rel y * (z/y) ref 1)) 
(x > OAy < 0) * (( 2 ref -y =F- -1 ref (z/y))) 
(x < Or\ y > 0) * ((x ref -y * (x/y) rel -1)) 
(2 < 0 A y < 0) =3 ((x rel y 3 1 ref (x/y))) 
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For rel E {<, 5, >, 2, =, #} 
z rel y * (z + Z) rel (y + 2) 

2 rel y =k- (z - 2) rel (y - t) 
z rel y * (z - y) rel (2 - z) 

z > 0 A 2 rel y 3 (z * 2) rel (y * 2) 
z<OAzrely * (y * 2) rel (z * 2) 

z 2 OA 2 rel y * (z/z) rel (y/z) 
5 5 0 A z rel y 3 (y/z) rel (z/z) 

Figure 6: Axioms for Constant Elimination Arithmetic 

(ii) asserting the newly inferred relationship and (iii) per- 
forming a numeric constraint propagation. All of these steps are 
O(R) although if one of the quantities being compared is nu- 
meric the comparisons can be done in constant time, such as in 
the case of the axiom “z rel 0 + (z + y> rel y.” 

2.2.5 Constant Elimination Arithmetic 

All the above techniques are still not powerful enough to infer 
that A > C if A = B + X, C = D + X and B > D. To 
solve this problem, the system must be able to infer that if the 
same amount is added to two expressions then the results are 
related in the same way as the original expressions are. That 
is, A rel B =+ (A + C) rel (B + C). Figure 6 presents axioms 

which enable the system to reason about relationships between 
two arithmetic expressions. 5 We call this constant elimination 
arithmetic because it gives the system the power of a very simple 
algebraic simplifier - one which can eliminate constants from 
expressions. 

Note that these axioms extend the power of the axioms in 
Figure 5 which infer relationships involving only one arithmetic 
expression and one simple expression. In fact, the axioms of 

Figure 5 are only special cases of the ones in Figure 6. For 
example, by substituting Y = 0 we derive X rel 0 3 (X + 
2) rel (0 + 2) h h w ic simplifies to the addition rule in Figure 5. 

However, for efficiency we have chosen to implement the special 
cases of Figure 5 separately. 

Also, for efficiency, we apply the axioms in Figure 6 in a con- 
sequent manner - that is, only for those arithmetic expressions 

actually in the system. Otherwise we could create an explo- 

sion of arithmetic expressions of the form A + q for all quanti- 
ties q in the Quantity Lattice. Finally, we note that an even 
more general form of the axioms in Figure 6 are of the form 
X rel Y =+ (X + 2;) rel (Y + Zj) for any & = Zj. We limit the 
expressive power for the sake of efficiency by insisting that i = j. 

The algorithm for constant elimination arithmetic is O(E * R) 
where E is the number of arithmetic expressions in the sys- 
tem. The term R arises because to determine whether the an- 
tecedent clause of each axiom is true the Quantity Lattice must 
be searched to determine the relationship between two quanti- 
ties. The term E arises because when an expression of the form 
“A op B” is constructed, the appropriate axiom in Figure 6 must 
be applied for each existing expression of the form “A op C” or 
“C op B.” In practice, however, the number of such expressions 

5There 
+ and 

are also permutations of the axioms for the commutative operators 

is usually a rather small percentage of E, and so the average 
complexity is much better than the worst case complexity. 

Although the computational complexity of this technique is 
greater than that of the other four arithmetic reasoning tech- 
niques presented above, we included constant elimination arith- 
metic in the Quantity Lattice because the inferences it supports 
are often needed in the domains we are exploring. For example, 
in the semiconductor fabrication domain [Mohammed] we often 
need to make inferences like “two silicon regions which start out 
the same thickness will end up the same thickness if they are 
oxidized at the same rate for the same amount of time.” 

3 Results 

Combining the five reasoning techniques of(i) graph search, (ii) nu- 
meric constraint propagation, (iii) interval arithmetic, (iv) rela- 
tional arithmetic and (v) constant elimination arithmetic enables 
the Quantity Lattice to perform a large range of “commonsense” 
arithmetic inference in a fairly efficient manner. It can, for in- 
stance, handle all the questions listed in the introduction in O(R) 
time except for the last question which takes O(E * R). 

The Quantity Lattice has been tested in several domains, in- 
cluding geology [Simmons], semiconductor fabrication [Mohammed] 
and reasoning about temporal constraints [Williams]. In both 
the geology and semiconductor fabrication domains the Quantity 
Lattice is used to support qualitative simulation - it maintains 
and reasons about a partial order of time points which repre- 
sent when processes occur and when objects are created and de- 
stroyed, and it helps in reasoning about the changes produced by 
processes. For example, the effect of the geologic process “uplift” 
would be represented by equations stating that the height of a 
formation after the process equals the height before the process 
plus some positive quantity “uplift-amount.” From this infor- 
mation the Quantity Lattice would infer that the new height is 
greater than the old height. 

To measure the performance of the Quantity Lattice, we used 
an example from the semiconductor fabrication domain and sim- 
ulated the fabrication of a pair of resistors using the models of 
IMohammed]. The simulation involved 27 processing steps and 
took 384 seconds of CPU time on a Symbolics 3600. Of this, 112 
seconds or 29’% was used by the Quantity Lattice. The simulator 
asserted 3125 relationships among 1357 quantities, taking an av- 
erage of 0.01 seconds per assertion. It constructed 660 arithmetic 
expressions, of which about one-third were binary additions. 

The simulator queried the Quantity Lattice to determine the 
relationship between quantities over 23,006 times taking an av- 
erage of 0.003 seconds per query. Of this, the vast majority were 
for relationships between time points and most were relation- 
ships that the system already knew or had already inferred and 
cached. In fact, of the 23,507 queries 14,736 were already known 
to the system and were answered taking an average of 0.0605 sec- 
onds per query and 751 were determined quantitatively in con- 
stant time (see Section 2.2.2) taking an average of 0.002 seconds 
per query. The remaining 8020 were determined using graph 
search taking an average of 0.0075 seconds per query. Of the 
8020 graph searches, 1884 new relationships (paths) were found 
between quantities. 

In the geologic domain both a qualitative and quantitative 
simulation are performed [Simmons], The qualitative simulation 
is done using the same simulator as in the semiconductor fab- 
rication domain and the performance of the Quantity Lattice is 
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similar to that described above. For the quantitative simulation, 
much more emphasis is placed on constructing arithmetic expres- 
sions and determining real values for the parameters of processes. 
Thus the numeric constraint propagation and interval arithmetic 
techniques are used more heavily than for the qualitative simu- 
lation. 

Using a 7 step geology simulation example, the quantitative 
simulation constructed 718 arithmetic expressions, more than 
was constructed for the 27 step semiconductor fabrication ex- 
ample, while asserting less than half as many relationships as for 
the semiconductor example. Constructing the arithmetic expres- 
sions consumed 45% of the time spent in the Quantity Lattice, 
as opposed to only 19% for the qualitative simulation. When re- 
lationships were asserted between quantities 51% of the time was 
spent propagating numeric constraints and 29% was spent check- 
ing for consistency. These figures are reversed for the qualitative 
simulation in which 56% of the time was spent doing consistency 
checking with only 26% needed for constraint propagation. 

4 Relation to Other Work 

The Quantity Lattice was designed as a compromise between ex- 
pressive power and computational complexity. Efficiency of op 
eration was gained by taking advantage of the expected structure 
of the problem - many loosely connected variables and expres- 
sions. This is in contrast to a system like MACSYMA which is 
designed to handle sets of equations where each equation involves 
most of the variables, that is, the resulting coefficient matrix will 
be dense rather than sparse. This expectation leads one to use 
more powerful algebraic techniques like solving systems of equa- 
tions, which are polynomial in complexity, rather than using the 
techniques described above which are mostly linear in the number 
of equations. 

There are symbolic algebra algorithms which make use of the 
structure of the domain to achieve performance comparable to 
the Quantity Lattice. However, these algorithms are not actually 
used in MACSYMA because it is designed to solve systems of 
equations in general. For example, the types of domains handled 
by the Quantity Lattice are amenable to solution by setting up 
the equations in band matrix format and representing the matrix 
of equations as a linked list so that inequalities can be easily 
inserted into the correct row to preserve the band matrix format. 

When one has only a few expressions and inequalities, solving 
systems of equations as MACSYMA does is not too expensive. 
When there are thousands of expressions and inequalities, as in 
our simulation domains, making inferences by symbolically solv- 
ing equations becomes computationally infeasible. On the other 
hand, there are many inferences which MACSYMA handles that 
the Quantity Lattice cannot. For example, the Quantity Lattice 
does not .do simplification. Thus, in general, it cannot deduce 
that X = (X + Y) - Y. The appropriate strategy is to have 
the problem solving system reason about the class of inferences 
it needs to make - using the computational efficiency of the 
Quantity Lattice for simple “commonsense” inferences and do- 
ing the more complex (and computationally inefficient) problems 
using a symbolic algebra package. 

On the other side of the spectrum from general purpose sym- 
bolic algebra systems there are systems which perform some sub 
set of the inferences provided by the Quantity Lattice. Like the 
Quantity Lattice, they use specialized representations to make 
the inference algorithms more computationally efficient. 

The temporal reasoning system of [Allen] uses a representa- 
tion similar to the one used to store qualitative relationships in 
the Quantity Lattice. Although Allen’s system uses time inter- 
vals and we use time points, the basic difference is really in the 
implementation. Where Allen’s system computes the transitive 
closure of the relationships every time an assertion is made, the 
Quantity Lattice infers a relationship only upon demand. Al- 
though it might seem to be more efficient to compute the clo- 
sure, in practice we have found that the closure algorithm infers 
many more relationships than are actually needed, and is thus 
less efficient overall. For example, in the semiconductor fabri- 
cation simulation example presented in Section 3 there are 13Si 

quantities and therefore over 1.8 million potential relationships 
between quantities. However, during the simulation only 5009 
(0.27%) of th ose relationships are actually needed. 

In designing problem solvers which use the Quantity Lattice, 
we have found it useful to be able to tell the system “1 am inter- 
ested in the relationship between A and B - let me know if it 
ever changes.” This feature, also used by [Dean], is implemented 
with a mechanism which associates demons with relationships in 
the Quantity Lattice graph. If the relationship changes, then the 
demon is fired. 

The main problem with this scheme is that in order to be 
complete, the system must explicitly check all relationships which 
have demons to see if they have changed whenever any constraint 
is added. This would involve one graph search for each such 
relation and is clearly not reasonable computationally. A com- 
promise position is to check only those relationships which are 
reachable by a path length of N or less from the relationship was 
added. Although this scheme does not necessarily cover all the 
relationships which logically might have changed, surprisingly an 
N of only 1 has been found to be sufficient in practice for the 
domains -which we have explored. This same scheme has also 
been used by the time-map manager of [Dean] which uses an N 
of greater than 1. 

Several researchers have incorporated some degree of quali- 
tative and quantitative numeric reasoning. The DEVISER plan- 
ning system [Vere] maintains qualitative temporal relationships 
in the form of a plan network, but associated with each plan 
node ate numeric intervals which indicate the range of start 
and end times for the node. The interpretation of these in- 
tervals is identical to that of the Quantity Lattice - the real 
value lies somewhere in the interval. DEVISER uses techniques 
similar to interval arithmetic and numeric constraint propaga- 
tion described in Section 2.2.2 to maintain the constraint that 
start time = end time + duration, where duration is a real num- 
ber. Inconsistencies in a plan’s schedule are detected if the upper 
bound of an interval is constrained to be less than its lower bound. 

The Quantity Lattice can perform the same inferences with 
two major advantages. First, the duration of a plan step can 
be represented as an arbitrary expression, such as “B + 5.” In 
DEVISER the duration must be a real number and the temporal 
constraints cannot be applied until the duration is known exactly. 
Second, the Quantity Lattice integrates qualitative and quanti- 
tative knowledge in such a way that new qualitative relationships 
can be inferred as more quantitative information is known (see 
Section 2.2.2). This integration is lacking in Vere’s temporal rea- 
soner. The system of [Allen] represents the quantitative duration 
of time intervals, but does not allow durations to be added to- 
gether - something which is necessary to achieve at least the 
level of performance that Vere’s system reaches. 
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A system which approaches the Quantity Lattice in expres- 
sive power is the fuzzy spatial reasoner of IDavis]. A similar fuzzy 
number representation is used in [Dean], but it only does addi- 
tion and subtraction and the intervals are bounded by integers, 
not reals. As in the Quantity Lattice, [Davis] represents the value 
of expressions using intervals and performs constraint propaga- 
tion to narrow the intervals. However, evaluation of arithmetic 
expressions is done using a Monte Carlo technique rather than 
interval arithmetic. This technique overcomes some of the dis- 
advantages of pure interval arithmetic, but it is rather expensive 
computationally. The representation of qualitative relationships 
is handled by placing one quantity in a local frame of reference 
of another quantity. However, it is not clear whether a quan- 
tity can be placed in more than one local frame of reference, 
that is, whether qualitative partial orders can be represented. In 
any event, there seems to be no facility for inferring new qual- 
itative relationships as can be done using relational arithmetic 
techniques, so the range of inferences performed is still smaller 
than the Quantity Lattice. 

5 Conclusions 

“Commonsense” arithmetic reasoning is an important form of 
reasoning. We have presented the Quantity Lattice, a system 
which performs many of these commonsense arithmetic infer- 
ences. We believe that the Quantity Lattice offers a reasonable 
balance between expressive power and computational complexity. 

The range of inferences performed by the Quantity Lattice 
was carefully chosen by observing the types of arithmetic rea- 
soning used in doing the qualitative and quantitative reasoning 
tasks needed in the domains of geologic interpretation [Simmons] 
and semiconductor fabrication diagnosis [Mohammed]. The algo- 
rithms used by the Quantity Lattice are designed for the range 
of assertions and queries commonly found in these and similar 
real-world domains. The resulting system smoothly integrates 
qualitative and quantitative information, ordinal relationships, 
and arithmetic expressions. The various types of knowledge con- 
strain one another to enable more powerful inferences to be per- 
formed. 

At the same time, the computational complexity is quite mod- 
est. The worst case for each assertion or inference is O(E * R) 
while, in practice, the average case is much better as only small 
portions of the Quantity Lattice need to be traversed for each 
operation. Finally, all the inferences performed by the Quantity 
Lattice are recorded along with their justifications which facili- 
tate retraction and the generation of explanations. 

I would like to thank Randy Davis, Walter Hamscher, Dan 
Carnese, Mark Shirley and Jeff Van Baalen for thoughtful sug- 
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Mohammed for their suggestions gained through using the Quan- 
tity Lattice. 
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