
MULTIPLE FuAULTS 
Johan de Klcer 

Intelligent Systems Laboratory 
XEROX Palo Alto R.esenrch Center 

3333 Coyote Hill Road 

Palo Alto, California 94304 

and 

Brian C. Williams 

M.I.T. Artilicial Intelligence Laboratory 

545 Technology Square 
Cambridge, Massachusetts, 02139 

ABSTRACT 

Diagnostic tasks require determining the differences 

between a model of an artifact nnd the artifact itself The 

differences between the manifested behavior of the artifact 
and th,e predicted behuvior of the model guide the setsrch 

for the diflerences between the artifact and its model. The 

diagnostic procedure presented in this paper is model-based, 
inferring the behavior of the composite device from knourl- 

edge oj the structure and function of the individual compo- 

nents comprising the device. The system (GDE - General 

Dirtgnostic Engine) has been implemented and tested on ex- 
amples in the domain of troubleshooting digital circuits. 

This research makes several novel contributions: First, 

the system diagnoses failures due to multiple faults. Sec- 

ond, j&lure candidates are represented and manipulated in 
terms of minimal sets oj violated assumptions, resulting 

in an eficient diagnostic procedure. Third, the diagnostic 

procedure is incremental, reflecting the iterative nature of 

diagnosis. Finally, a clear separation is drawn between di- 
agnosis und behavior prediction, resulting in a domain (and 
injerence procedure) independent diagnostic procedure. 

1. Introduction 

Engineers and scientists constantly strive to under- 

stand the differences between physical systems and their 
lllodels. Engineers troubleshoot mechanical syst,cms or 

electrical circuits to find broken parts. Scientists succes- 
sively refine a model based on empirical data during the 

process of theory formation. Many everyday common- 

sense reasoning tasks involve finding the differcuce between 
models and reality. 

Diagnostic reasoning requires a means of assigning 

credit or blame to parts of the model based on observed 

behavioral discrepancies observed. If the task is trou- 

bleshooting, t,hen the model is presumed to be correct and 

all model-artifact differences indicate part malfunctions. If 
the task is theory formation, then the artifact is presumed 

to be correct and all model-artifact differences indicate re- 

quired changes in the model. Usually the evidence does 

not admit a unique model-artifact difference. Thus, the 

diagnostic task requires two phases. The first, mentioned 
above, identifies the set of possible model-artifact diifer- 

ences. The second proposes evidence-gathering tests to 
reline the set of possible model-artifact differences until 

they accurately reflect the actual differences. 

This view of diagnosis is very general, encompassing 
troubleshooting mechanical devices and analog and digi- 

tal circuits, debugging programs, and modeling physical 

or biological systems. Our approach to diagnosis is also 

independent of the inference strategy employed to derive 
predictions from observations. 

For troubleshooting circuits, the diagnostic task is to 

determine why a correctly designed piece of cqltipmcnt is 

not functioning as it was intended; the explanation for the 
faulty behavior being that the particular piece of equip- 

ment under consideration is at variance in some way with 

its design (e.g., a set of components is not working cor- 
rectly or a set of connections is broken). To troubleshoot 

a system, a sequence of measurements must be proposed, 

executed and then analyzed to localize this point of vari- 
ance, or fault. For example, consider the circuit in Fig. 1, 

consisting of three multipliers, Ml, Mz, and Ma, and two 

adders, A, and A,. The inputs are A = 3, D -x 2, C =-I 2, 
U = 3, and E I= 3, and the outputs are measured showing 
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that F = 10 and G = 12.’ From these measurements it 

is possible to deduce that at least one of the following sets 

of components is faulty (each set is referred to as a can- 
didate and is designated by [...I): [A,], [M,], [A2,M2], or 

[AJZ, MS]. Furthermore, mea>uring X is likely to produce 

the most useful information in further isolating the faults. 

Intuitively, X is optimal because it is the only measure- 

ment that can differentiate between two highly probable 

singleton candidates: [Al] and [Ml]. 

A r 1 
3 Ml I 

B F 
2 Al 

I - 
C 

2- M2 -I’ 

D - G 
1 A2 - 

Fig. 1: A familiar circuit. 

Earlier work in diagnosis has concentrated primarily 

on diagnosing failures produced by a single faulty com- 

ponent. Wh en one entertains the possibility of multiple 

faults, the space of potential candidates grows exponen- 
tially with the number of faults under consideration. This 

work is aimed specifically at developing an efficient gen- 

eral method for diagnosing failures due to any number of 

simultaneous faults. 
The focus of this paper is the process of analyzing 

the results of measurements to identify potential causes of 

variance (see [3] f or an extensive discussion on the use of 

probabilistic information to guide the measurement pro- 

cess). This paper describes a general framework for di- 

agnosis which, when coupled with a predictive itlference 

component provides a powerful diagnostic procedure for 

dealing with multiple faults. In addition it also demon- 
strates the approach in the domain of digital electronics, 

using propagation as the predictive inference engine. 

2. Model-artifact Differences 

The model of the artifact describes the physical struc- 

ture of the device in terms of its constituents. Each type of 

constituent obeys certain behavioral rules. For csample, a 

simple electrical circuit consists of wires, resistors and so 
forth, where wires obey Xirchoff’s Current Law, resistors 

obey Ohm’s Law, <and so on. In tliaguosis, it is given that 

Ihe behavior of the artifact differs frown its model. It is 

I This 
Systclns. 

cirruit is ;dso 1rwt1 by b3t.h [z] nntl [8] in cxpl:.il!ir!;; thei! 

then the task of the diagnostician to determine what these 

differences are. 

The model for the artifact is a description of its phys- 
ical structure, plus models for each of its constituents. A 

constituent is a very general concept, including compo- 

nents, processes and even steps in a logical inference. In 

addition, each constituent has associated with it a set of 

one or more possible model-artifact differences which es- 

tablishes the grain size of the diagnosis. 
Diagnosis takes (1) the physical structure, (2) models 

for each constituent, (3) a set of possible model-artifact 

differences and (4) a set of measurements, and produces a 

set of candidates, each of which is a set of differences which 
explains the observations. 

Our diagnostic approach is based on characterizing 

model-artifact differences as assumption violations. A con- 
stituent is guaranteed to behave according to its model 

only if none of its associated differences <are manifested, 

i.e., all the constituent’s assumptions hold. If any of these 
assumptions are false, then the artifact deviates from its 

model, thus, the model may no longer apply. An impor- 

tant ramification of this approach ([1,2:3,6,8,11]) is that 
WC need only specify correct models for constituents - 

explicit fault models <are not needed. 

Reasoning about model-artifact differences in terms of 

assumption viol&ons is very general. For example, in elec- 
tronics the assumptions might be the correct functioning 

of each component and the absence of any short circuits; 

in a scientific domain a faulty hypothesis; in a common- 

sense domain an assumption such as persistence, defaults 
or Occam’s Razor. 

3. Detection of Symptoms 

We presume (as is usually the case) that the model- 

artifact differences are not directly observable.2 Instead, 

all assumption violations must be inferred indirectly from 

behavioral observations. In section 8 we present a gen- 
eral inference architecture for this purpose, but for the 

moment we presume an inference procedure which makes 

behavioral predictions from observations and assumptions 
without being concerued about the procedure’s details. 

Intuitively, a symptom is any difference between a pre- 

diction made by the inference procedure and an observa- 

tion. Consider our example circuit. Given the inputs, 

A = 3, B = 2, C = 2, D = 3, and E = 3, by simple 

calculation (i.e., the inference procedure), F = X x 1’ = 

A x C + R x D = 12. However, F is measured to be 10. 

Thus “J’ is observed to be 10, not 12” is a symptom. More 

generally, a symptom 1. .C u,ny inconsistency detected by the 

inference proccdurc, and way occur ber.wecn two prcdic- 

tions (inl’erred from distinct oleasureiuents) as well as n 
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measurement and a prediction (inferred from some other 

measurements). 

4. Conflicts 

The diagnostic procedure is guided by the symptoms. 

Each symptom tells us about one or more assumptions 

that are possibly violated (e.g., components that nmy be 

faulty). Intuitively, a conflict is a set of assumptions sup- 

porting a symptom, and thus leads to an inconsistency. In 
electronics, a conflict might be a set of components which 

cannot all be functioning correctly. Consider our example 
sylllptonl “F is observed to be 10, not 12.” Our calcu- 

lation that E’ = 12 depends on the correct operation of 
Ml, M2 and Al, i.e., if Ml, A42, and A, were correctly 
functioning, then F = 12. Since F is not 12, at least one 

of Ml, M2 and Al is faulted. Thus the set (Mi,M2,Ai) 
(conIlicts are indicated by (...)) is a conflict for the synlp- 

tom. Because the inference is monotonic with the set of 

assumptions, the set (Ml, M’2, Ai, AZ), and any other su- 

perset of (Ml, Mz, Al) are conflicts as well; however, no 
subsets of (Ml, M;!, Al) are necessarily confticts since all 
the components in the conflict were necessary to constrain 

the value at F. 

A measurement might agree with one prediction and 
yet disagree with another, resulting in a symptom. For 
example, starting with the inputs B = 2, C = 2, D = 3, 
and E = 3, <and assuming M2, MS and A2 are correctly 

funct,ioning we calculate G to be 12. However, starting 
with the observation F = 10, the inputs A = 3, C = 2, 
and E = 3, and assuming that Al, AZ, Ml, and MS, (i.e., 

ignoring 1W2) arc correctly functioning we calculate G = 

10. Thus, when G is measured to be 12, even though it 

agrees with the first prediction, it still produces a conflict 

based on the second: (Al, AZ, Ml, MS). 

For complex domains any single symptom can give 
rise to a large set of comlicts, including the set of all com- 

ponents in the circuit. To reduce the combinatorics of 

diagnosis it is essential that the set of conflicts be repre- 
sented and manipulated concisely. If a set of components 

is a conflict, then every superset of that set must also be a 

conflict. Thus the set of conflicts can be represented con- 
cisely by only identifying the minimal conIlicts, where a 

conflict is minimal if it has no proper subset which is also 

a conflict. This observation is central to the performance 

of our diagnostic procedure. The goal of conflict recogni- 
tion is to identify the complete set of minimal conIlicts.3 

‘JJyJ>ically, but not always, each symptom corresponds to a 

single minimal conflict. 

5. Candidates 

A cnndidate is a particular hypothesis for how the ac- 

tual artifact differs from the model. Ultimately, the goal 
of diagnosis is to identify, and refine, the set of candidates 

consistent with the observations thus far. 

A candidate is represented by a set of assumptions 

(indicated by [...I). Every assumption mentioned in the 

set must fail to hold. As every candidate must explain 

every symptom (i.e., its conflicts), each set representing a 

candidate must have a non-empty intersection with every 

conflict. 

For electronics, a candidate is a set of failed compo- 
nents, where (any components not mentioned a.re guaran- 

teed to be working. Before any measurements have been 

taken we know nothing about the circuit. The size of the 

initial candidate space grows exponentially with the num- 

ber of components. Any component could be working or 
faulty, thus the candidate space for Fig. 1 initially consists 
of 2” = 32 candidates. 

[MI.M2.Ml.Al.A2) 

[MI.MZ.MJ.Al) 

[Mull PfMwI &i%All IMU9 [AL421 

Fig. 2 Initial candidate space for circuit example. 

It is essential that candidates be represented concisely 

as well. Notice that, like conflicts, candidates have the 

property that any superset of a candidate must be a can- 

didate as well. Thus the space of all candidates consistent 

with the observations can be represented by the minimal 

candidates. The goal of candidate generation is to idcn- 
tify the complctc set of niinimnl candidates. The space of 

candidates can be vislinlixed in tcrri1s of a slll)sct,-snI)cl.,~ct 

l;~tlicf: (Fig. 2). ‘1‘1 ic tnirliurnl camflitl~~lcs tltcn flcfitie a 

bonritli~ry suc!i t.hat f~vcrytliing fro~il Idie boundary up is a 
vnlifl candidate, ;vhilc: everything below is not. 

Given no measurements every component might be 

working correctly, thus the single minimal candidate is the 

empty set, [], which is the root of the lattice at the bottom 

of Fig. 2. 

To summarize, the set of candidates is constructed in 

two stages: conflict recognition and candidate generation. 

ConIlict rccoguition uses the observations made along with 

a model of t,he device to construct a complete set of min- 
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imal conflicts. Next, candidate generation uses the set of 

minimal conflicts to construct a complete set of minimal 
candidates. Candidate generation is the topic of the next 

section, While conflict recognition is discussed in Section 

7. 

0. Candidate Generation 

Diagnosis is an incremental process; as the amgnos- 

tician takes measurements he continually relines the can- 

didate space and then uses this to guide further measure- 
ments. Within a single diagnostic session the total set of 

candidates must decrease monotonically. This corresponds 

to having the minimal candidates move monotonically up 

through the candidate superset lattice towards the candi- 

date represented by the set of all components. Similarly, 

the total set of conflicts must increase monotonically. This 
corresponds to having the minimal conflicts move mono- 

tonically down through a conflict superset lattice towards 

the conflict represented by the empty set. Candidates care 
generated incrementally, using the new conflict(s) and the 

old candidate(s) to generate the new candidate(s). 

The set of candidates is incrementally modified as fol- 
lows. Whenever a new conflict is discovered, any previous 

minimal candidate which does not explain the new con- 

flict is replaced by one or more superset candidates which 
are minimal based on this new information. This is ac- 

complished by moving up along the lattice from the old 

minimal candidate, recording the first candidate reached 
which explains the new conflict; i.e., when the candidate’s 

intersection with the new conflict is non-empty. When 

moving up past a candidate with more than one parent 
a consistent candidate must be found along each branch. 

Eliminated from those candidates recorded are any which 

are subsumed or duplicated; the remaining candidates are 

added to the set of new candidates. 

Consider our example. Initially there are no conflicts, 
thus the minimal candidate [] (i.e., everything working) 

explains all observations. We have already seen that the 

single symptom “F = 10 not 12” produces one conflict 

(A,, Ml, Mz). This rules out the single minimal candidate 
[I. Thus, its immediate supersets [Ml], [Mz], [MS], [Al], 

and [AZ] are examined. Each of the candidates [MI], [Mz], 

and [A,] explain the new conflict and thus are recorded; 

however, [AZ] and [MS] do not. All of their immediate 

superset candidates except for [AZ, MS] are supersets of 
the three minimal candidates discovered above. [AZ, MS] 

does not explain the new conflict, however, its immedi- 

ate superset candidates are supersets of the three minimal 

candidates and thus are implicitly represented. Therefore, 

the new minimal candidate set consists of [Ml], [Mz], and 

[AI]. 
The second conflict (infcrrcd from observation G == 

1% (4, A2, Ml, MA only eliminates minimal Catldidid! 

[&fz]; the unaffected candidntcs [Ml], aud [ tll] remain min- 

imal. Ijowever, to complete the set of minimal candidates 

we must consider the supersets of [Mz]: [Al, Mz], [A2, n/r,], 

[W, M2], an d [M2, M3]. Each of these candidates explains 

the new conflict, howcvcr, [A,,MzJ and [n/r,, M21 are SU- 

persets of the minimal candidates [Al] ad [MI], respec- 
tjvely. Thus the new minimal candidates are [A2, n/iz], and 

[p/f2, M3], resulting in the Il;inimal candidate set: [Al], 

[Ml], [AZ, Mz], and [Mz, Mz]. 
Candjdate generation has several interesting proper- 

ties: First, the set of minimal candidates may increase or 
decrease in size as a result of a measurement; however, a 

candidate, once eliminated can never reappear. AS mea- 
surements accumulate the sizes of the minimal candidates 

never decrease. Second, if an assumption appears in every 

minimal candidate (and thus every candidate), then that 

assumption is necessarily false. Third, the presupposition 

that there is only a single fault (exploited in all previous 

model-based troubleshooting strategies), is equivalent to 

assuming all candidates are singletons. In this case, the 
set of candidates can be obtained by intersecting all the 

conflicts. 

7. Conflict Recognition Strategy 

The remaining task involves incrementally construct- 
ing the conflicts used by candidate generation. In this sec- 

tion we first present a simple model of conflict recognition. 

This approach is then refined into an efficient strategy. 
A conflict can be identified by selecting a set of as- 

sumptions, referred to as an environment, and testing if 
they are inconsistent with the observations.4 If they are, 
then the inconsistent environment is a conflict. This re- 

quires an inference strategy C(OBS,ENV) which given the 

set of observations OBS made thus far, and the cnviron- 

merit ENV, determines whether the combination is consis- 

tent. In our example, after measuring F = 10, and before 

measuring G = 12, C({F = lo}, {M~,M2,A,}) (leaving 
off the inputs) is false indicating the conflict (Ml, M2, Al). 

This approach is refined as follows: 

Refinement I: Exploiting minimality. To identify the 

set of minimal inconsistent environments (and thus the 

minimal conflicts), we begin our search at the empty en- 
vironment, moving up along its parents. This is sinlilar 

to the search pattern used during candidate generation. 

At each environment we apply C(OBS,ENV) to dcterrnine 

4 An environment should not be confused with n calldidnte. An 
environment is n set of assumptions all of which are assnrned to 
be true (e.g., A41 alld M2 WC CSSII I~~CI  to bc working correctly), a 
cnndidntc is a set of assumptions all of which arc assumed to be 
false (e.g., colllpollents Ml and A42 are liot fuuctionillg correctly). 
A conflict is n, set of ;lssun~~~l.iolls, at least one of which is f&c. 
Intuitivrly an rnvironmtmt is t,bc% set of assulllptions tlmt defijl:? il 
"contc!ut" in a deductive infc~rcrtcc engin(B, in this cnx: t,llc engilM2 
i:; IISCX~ for pdict.iotr and t.ho assurnpt,iom ;IIC ;hout the 1:lck of 
particular n~otlcl-artifact dilfcrctlccs. 
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whether or not ENV is a conflict. Before a new environ- 

ment is explored, all other environments which are a subset 

of the new environment must be explored first. If the envi- 
ronment is inconsistent then it is a minimal conflict and its 

supersets are not explored. If an environment has already 
been explored or is a superset of a conflict then C is not 

run on the environment and its supersets are not explored. 

We presume the inference strategy operates entirely 

by inferring hypothetical predictions (e.g., values for vnri- 

ables in environments given the observations made). Let 

P(OBS,ENV) b e all behavioral predictions which follow 

from the observations OBS given the assumptions ENV. 

For example, P({A = 3,B = 2,C = 2,D = 3}, {Al,Ml, 
Mz}) produces {A = 3, B = 2, C == 2,D = 3,X = 6, Y = 

6, F = 12). 

C can now be implemented in terms of P. If P com- 

putes two distinct values for a quantity (or more simply 
both z and - TC), then ENV is a conflict. 

Refinement 2: Monotonicity of measurements. If in- 

puts are kept constant, measurements are cumulative and 
our knowledge of the circuit’s structure grows monotoni- 

cally. Given a new measurement M, P(OBSU{M}, ENV) 

is always a superset of P(OBS,ENV). Thus if we cache 

the values of every P, when a new measurement is made 

we need only infer the incremental addition to the set of 
predictions. 

Refinement 3: Monotonicity for assumptions. Analo- 

gous to refinement 2, the set of predictions grows monoton- 

ically with the environment. If a set of predictions follow 

from an environment, then the addition of any assump- 
tion to that environment only expands this set. Therefore 

P(OBS,ENV) contains P(OBS,E) for every subset E of 

ENV. This makes the computation of P(OBS,ENV) very 
simple if all its subsets have already been analyzed. 

Refinement 4: Redundant Inferences. P must be run 

on every possible environment. Thus, we need a large set 

of data-bases, and the same rule will be executed over and 

over again on the same antecedents. All of this overlap 
can be avoided by utilizing ideas of Truth Maintenance 

such that every inference is recorded as a dependency and 
no inference is ever performed twice [ 71. 

Refinement 5: Exploiting locality. This is primarily 

an observation of why the previous refinements care suc- 

cessful. The first four refinements allow the strategy to 
ignore (i.e., to the extent of not even generating its name) 

any enviromnent which doesn’t contain some interesting 

inferences absent in every one of its subsets. If every envi- 

ronment contained a new unique inference, then we would 

still be faced with a computation exponential in the num- 

bcr of potential model-artifact differences, However, in 

practice, as the components are weakly connected, the in- 

ferences rules are weakly connected. Our strategy depends 

on this empirical property. For example, in electronics the 

only assumption sets of interest will be sets of components 

which are connected and whose signals interact - typ- 

ically circuits are explicitly designed SO that colllporlent 

interactions are limited. 

8. Inference Procedure Architecture 

To completely exploit the ideas discussed in the pre- 

ceding section we need to moclify and augmcn t, Ihe itn- 

plementation of P. We presume that P meels (or can be 

modified to) the two basic criteria for utilizing truth main- 

tenance: (1) A dependency (i.e., justification) can be con- 

structed for each inference, and (2) belief or disbelief in 

a datum is completely determined by these dependencies. 

In addition, we presume that, during processing, whenever 
more than one inference is simultaneously permissible, that 

the actual order in which these inferences are performed is 

irrelevant and that this order can be ext.ernally controlled 
(i.e., by our architecture). Finally, we presume that the in- 

ference procedure is monotonic. Most Al inference proce- 

dures meet these four general criteria. For example, many 

expert rule-based systems, constraint propagation, demon 
invocation, taxonomic reasoning, qualitative simulations, 

natural deduction systems, and many forms of resolution 

theorem-proving fit this general framework. 

We associate with every prediction, V, the set of envi- 

ronments, ENVS(V), from which it follows (i.e., ENVS(V) 
E {envlV E P(OBS, env)}). We call this set the support- 

ing environments of the prediction. Exploiting the mono- 

tonicity property, it is only necessary to represent the min- 
imal (under subset) supportiug environments. 

Consider our example after the measurements F = 

10 and G = 12. In this case we can calculate X = 6 

in two different ways. First, Y = B x 15) = 6 assuming 

n/r, is functioning correctly. Thus, one of its supporting 
environnlents is {Mz}. Second, Y = G - 2 = G - (C x 

I;-‘) == 6 assl~ming 112 and ,‘l13 nre working. Therefore the 

supporting environments of Y := 6 are {{Mz}{A:!, MS}). 
Any set of assumptions used to derive Y = G is a superset 

of one of these two. 

By exploitin, m dependencies no inference is ever done 

twice. If the supporting environment of a fact changes, 

then the supporting environments of its consequents are 

updated automatically by tracing the dcpcndencies created 

when the rule was first, run. l’his achieves the effect of 

rerunning the rule without incurring any computational 

overhead, 

Wc control the inference IJrixCSS such that whenever 

two inFerenccs are posslhle, the one producing a datum 

in the smaller environment is performed first. A simple 

agenda lJlCChc?~JiSlll srlIfices for this. Whenever a symptom 

is rccoguizcd, the enviroamcnl is marked a conflict and all 

inf::ro~icing stops on lhat or:‘* -iron nlcut. Using this control 

schr~lle facts are ;dwnys dctlucetl in their nlinilual environ- 

IllClJi,, ;Lcllicving oho dcsircd property th,at only minimal 
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conflicts (i.e., inconsistent environments) arc geueratcd. 

In this architecture P can be incomplete (in praclice it 

usually is). The only consequence of incolnplcteness is that 

fewer conflicts will be detected and thus fewer candidates 
will be eliminated than the ideal - no candidate will be 

mistakenly eliminated. 

9. Circuit Diagnosis 

Thus far we have descrihcd a very general diagnos- 

tic strategy for handling multiple faults: whose applica- 
tion to a specific domain depends only on the selection of 

the function P. During the remainder of this paper, WC 

demonstrate the power of this approach, by applying it to 

the problem of circuit diagnosis. 
For our example we make a number of simplifying pre- 

suppositions. First, we assume that the model of a circuit 

is described in terms of a circuit topology plus a behavioral 
description of each of its components. Second, that the 

only type of model-artifact difference considered is whether 

or not a particular component is working correctly. Fi- 
nally, all observations are made in terlns of measurements 

at a component’s terminals. Measurements are expensive, 

thus not every value at every terminal is known. Instead, 

some values must be inferred from other values and the 

component models. Intuitively, symptoms are recognized 
by propagating out locally through components from the 

measurement points, using the component models to de- 
duce new values. The application of each model is based 

on the assumption that its corresponding component is 

working correctly. If two values are deduced for the same 

quantity in different ways, then a coincidence has occurred. 

If the two values differ then the coincidence is a symptom. 
The conflict then consists of every component propagated 

throng11 from the measurement points to the point of coin- 

cidence (i.e., the sympt,om implies that, at least one of the 

components used to deduce the two values is inconsistent,). 

10. Constraint Propagation 

Constraint propagation [12,13] operates on cells, val- 

ues, and constraints. Cells represent state variables such 

as voltages, logic levels, or fluid flows. A constraint stipu- 

lates a condition that the cells must satisfy. For example, 
Ohm’s law, ZI = iR, is represented as a constraint among 

the three cells V, i, and R. Given a set of initial values, 

constraint propagation assigns each cell a value that sat- 

isfies the constraints. The basic inference step is to find 

a constraint that allows it to determine a value for a pre- 

viously unknown cell. For example, if it has discovered 

values v = 2 and i = 1, then it rises the constraint v = iR 

to calculate the value R = 2. In addition, the propa.gnt,or 

records If’s depclltloricy on 21, i and the constraitit 1~ -z ill. 

The newly recorded value ~lrny cnusc other conslrnints to 

trigger and more values to be deduced. Thus, constraints 

may be viewed as a set of conduits along which values can 

be propagated out locally from the inputs to other cells in 

the system. The dependencies recorded trace out a par- 
ticular path through the constraints that the inputs have 

taken. ,i synlptom is manifcstcd when two different values 

are deduced for the same cell (i.e., a logical inconsistency 

is identified). In this event dependencies are used to con- 

struct the conflict. 

Sometimes the constraint propagation process tcrmi- 

nates leaving some constraints unused and some cells unas- 

signed. This usually arises as a consequence of insufficient 
informatiou about device inputs. However, it can also =arise 

as the consequence of logical incompleteness in the propa- 
gator. 

In the circuit domain, the behavior of each component 

is modeled as a set of constraints. For example, in analya- 

ing analog circuits the cells represent circuit voltages and 
currents, the values are numbers, and the constraints are 

mathematical equations. In digital circuits, the cells repre- 

sent logic levels, the values are 0 and t, and the constraints 
are boolean equations. 

Consider the constraint model for the circuit of Fig. 

1. There are ten cells: A, B, C, D, E, X, Y, 2, F, and 

G, five of which are provided the observed values: A = 3, 
B = 2, C = 2, D = 3 and E = 3. There are three 
lnultipliers and two adders each of which is modeled by 

a single constraint: MI : X = A x C, M, : Y = I3 x D, 
MS : 2 = CXE, AI : F = X+Y, and A2 : G = Y+Z. The 

following is a list of cleductions and dependencies that the 
constraint propagator generates (a dependency is indicated 

by (component : antecedents): 

X=6(MI:A=3,C=2) 

Y=6(M2:B=2,D=3) 

Z=6 (M3:C=2,E=3) 

F=12(Al:X=6,Y=6) 

G=12(AZ:Y=6,Z=6) 

A symptom is indicated when two values are detcrnlincd 

for the same cell (e.g., measuring F to be 10 not 12). Each 
symptom leads to new conflict(s) (e.g., in this example the 

symptom indicates a conflict (A,, MI, Mz)), 
This approach has some important properties. First, 

it is not necessary for the starting points of these paths 

to be inputs or outputs of the circuit. A path may begin 

at, any point in the circuit where a measurement has been 

taken. Scconcl, it is not necessary lo make any assumy- 
tions about Ilie direction that sigllnls flow tliroiigh conipo- 

ncnts. Tn most digital circuits a signal can only flow from 

inputs to outputs. For cxa~l~plc, a subtracI.or cannot bc 

constructed by sinlply reversing xi input ,and the output 
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of an adder since it violates the directionality of signal flow. 

However, the directionality of a component’s signal flow is 
irrelevant to our diagnostic technique: a component places 
a constraint between the values of its terminals which can 

be used any way desired. To detect discrepancies, infor- 

mation can flow along a path through a component in any 

direction. For example, although the subtractor does not 
function in reverse, when we observe its outputs we can 

infer what its inputs must have been. 

11. Generalized Constraint Propagation 

Each step of constraint propagation takes a set of an- 

tecedent values and computes a consequent. We have built 

a constraint propagator within our inference architecture 

which explores minimal environments first. This guides 

each step during propagation in an efficient manner to in- 
crementally construct minimal conflicts and candidates for 

multiple faults. 
Consider our example. We ensure that propagations 

in subset environments are performed first, thereby guar- 

anteeing that the resulting supporting environments and 
conflicts arc minimal. We use 15, el, e2, . ..I to represent the 

assertion x with its associated supporting environments. 

Before any measurements or propagations take place, given 

only the inputs, the data base consists of: [A = 3, {}I, 
[B = 2, {}], [[C = 2, {>], [[D = 3, -OD, and UE = 3, On- 
Observe that when propagating values through a compo- 
nent, the assumption for the component is added to the 

dependency, and thus to the supporting environment(s) 

of the propagated value. Propagating A and C through 

Ml we obtain: [[X = 6, {Ml}]. The remaining propa- 

gations produce: [[Y = 6, w2)n, uz = 6, w3n up = 

12, {AI, wafdn, and [G = 12, (A2, M2, it&}]. 
Suppose we measure F to be 10. This adds [IF = 

10, {}I to t,he data base. Analysis proceeds as follows 

(starting with the smaller assumption sets first): [[X = 

4, {Al,M2}~, and [Y = 4, {Al,Ml}j. NOW the symptom 
between [[F = 10, {}I and [TF = 12, {Al, Ml,M2}~ is rec- 

ognized indicating a new minimal conflict: (Al, MI, M2). 
Thns the inference architecture prevents further propaga- 

tion in the environment {Al, Ml, Mz} and its supersets. 

The propagation goes one more step: [G = 10, {Al, AZ, MI, 
MS}]. There are no more inferences to be made. 

Next, suppose we measure G to be 12. Propaga- 

tion gives: [I2 = 6, {A2,M3}], [Y = 6, {&,~I~}], 12 = 
8, (4, A2, MIIII, and [X = 4, {A 1, A2, &}]. The symp- 

tom “G = 12 not 10” produces the conflict (Al,A,, Ml, 
MS). The final data-base state is:5 

A= 3,0 
B= 2,{) 
c= 2,o 

D= 3,0 
E= 390 
F= lO,{} 

G= 12,{} 

X = 4, (AI, j&&G, Ad&) 

ww 

Y I= 4, {Al, M,} 
%{M2}{Az,M3) 

Z = 8, {&,~MI) 

6,{M3}{A2,M2) 
This results in two minimal conflicts: 

(AI, 4, Mdf3) 
Note that at no point during propagation is effort 

wasted in constructing non-minimal conflicts. 

The algorithm discussed in section 6 uses the two min- 
imal conflicts to incrementally construct the set of mini- 

mal candidates. Given new measurements the propaga- 

tion/candidate generation cycle continues until the candi- 
date space has been sufficiently constrained 

12. Connected Research 

Our approach has been completely implemented and 

tested on numerous examples. Our implementation con- 
sists of four basic modules. The first maintains the mini- 

mal supporting environments for each prediction and con- 
structs minimal conflicts. It is based on Assumption-Based 

Truth Maintenance [4]. Tl le second controls the inference 
such that minimal conflicts are discovered first and records 
the dependencies of inferences. It is based on the consumer 

and agenda architectures of [5]. The third is a general con- 

straint language based on the first two modules. The last 
module, the candidate generator, incrementally constructs 

the minimal candidates from the minimal conflicts. 

As all the work within the model-based paradigm, our 

approach presumes measurements and potential model- 

artifact differences are given. In [3] we exploit the frame- 
work of this paper in two ways to generate measurements 

which are information-theoretically optimal. First, the 
data structures constructed by our strategy (e.g., the data 

base state of Section 11) make it easy to consider and eval- 

uate hypothetical measurements. Second, as we construct 

all minimal environments, conflicts, and candidates, it is 

relatively straight forward to compare potential measure- 
ments (using probabilistic information of component fail- 

ure rates). 

The work presented here represents <another step to- 

wards Ihe goal of automatecl diagnosis, nevcrthcless there 

remains much to be done. Plans for the future include: 

1) incorpornling the predictive cnginc cliscussed in [14] in 

order to diagnosis systcn~s with time-varying signals and 
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state, and 2) controlling the set of model-artifact differ- 

ences being considered. 

13. Related Work 

This research fits within the model-based debugging 

paradigm: [1,2,3,6,8, 9,111. However, unlike [1,2,6,8, 91, we 
propose a general method of diagnostic reasoning which is 

effic.ient, incremental, handles multiple faults, and is easily 

extended to include measurement strategies. Reiter (111 

has been exploring these ideas independently and provides 

a formal account of many of our “intuitive” techniques of 

conIlict recognition and candidate generation. 
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