From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

REASONING ABOUT
MULTIPLE FAULTS

Johan de Kleer

Intelligent Systems Laboratory
XEROX Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

and
Brian C. Williams
M.LT. Artificial Intelligence Laboratory

545 Technology Square
Cambridge, Massachusetts, 02139

ABSTRACT

Diagnostic tasks require determining the differences
between a model of an artifact and the artifact itself. The
differences between the manifested behavior of the artifact
and the predicted behavior of the model guide the search
for the differences between the artifact and its model. The
diagnostic procedure presented in this paper is model-based,
inferring the behavior of the composite device from knowl-
cdge of the structure and function of the individual compo-
nents comprising the device. The system (GDE — General
Diagnostic Engine) has been tmplemented and tested on ez-
amples in the domain of troubleshooting digital circuils.

This research makes several novel contribulions: First,
the system diagnoses failures due to multiple faults. Sec-
ond, failure candidates are represented and manipulated in
terms of minimal sets of violated assumptions, resulting
i an efficient diagnostic procedure. Third, the diagnostic
procedure ts incremental, reflecting the iterative nature of
diagnosis. Finally, a clear separation is drawn between di-
agnosis und behavior prediction, resulting in a domain (and
inference procedure) independent diagnostic procedure.

1. Introduction

Ingineers and scientists constantly strive to under-
stand the differences between physical systems and their
models. Engineers troubleshoot mechanical systems or
electrical circuits to find broken parts. Scientists succes-
sively refine a model based on empirical data during the
process of theory formation. Many everyday common-
sense reasoning tasks involve finding the difference between
models and reality.

132 / SCIENCE

Diagnostic reasoning requires a means of assigning
credit or blame to parts of the model based on observed
If the task is trou-
bleshooting, then the model is presumed to be correct and

behavioral discrepancies observed.

all model-artifact differences indicate part malfunctions. If
the task is theory formation, then the artifact is presumed
to be correct and all model-artifact differences indicate re-
quired changes in the model. Usually the evidence does
not admit a unique model-artifact difference. Thus, the
diagnostic task requires two phases. The first, mentioned
above, identifies the set of possible model-artifact ditfer-
ences. The second proposes evidence-gathering tests to
refine the set of possible model-artifact differences until
they accurately reflect the actual differences.

This view of diagnosis is very general, encompassing
troubleshooting mechanical devices and analog and digi-
tal circuits, debugging programs, and modeling physical
or biological systems. Qur approach to diagnosis is also
independent of the inference strategy employed to derive
predictions from observations.

For troubleshooting circuits, the diagnostic task is to
determine why a correctly designed piece of equipment is
not functioning as it was intended; the explanation for the
faulty behavior being that the particular piece of equip-
ment under consideration is at variance in some way with
its design (c.g., a set of components is not working cor-
rectly or a set of connections is broken). To troubleshoot
a system, a sequence of measurements must be proposed,
executed and then analyzed to localize this point of vari-
ance, or fault. For example, consider the circuit in Fig. 1,
consisting of three multipliers, M;, M3, and M3, and two
adders, A; and A;. The inputs are A =3, B =2, C =2,
D = 3, and E == 3, and the outputs are measured showing

that F = 10 and G = 12.' From these measurements it
is possible to deduce that at least one of the following sets
of components is faulty (each set is referred to as a can-
didate and is designated by [...]): [4,], [M], [A2, M2], or
[Ma, M;]. Furthermore, measuring X is likely to produce
the most useful information in further isolating the faults.
Intuitively, X is optimal because it is the only measure-
ment that can differentiate between two highly probable
singleton candidates: [A;] and [M,].

A
3 M1 X
' F
C
2 — M2 Y
G
3 .IB—_I—_ AZ —
E M3 z
3

Fig. 1: A familiar circuit.

Earlier work in diagnosis has concentrated primarily
on diagnosing failures produced by a single faulty com-
ponent. When one entertains the possibility of multiple
faults, the space of potential candidates grows exponen-
tially with the number of faults under consideration. This
work is aimed specifically at developing an efficient gen-
eral method for diagnosing failures due to any number of
simultaneous faults.

The focus of this paper is the process of analyzing
the results of measurements to identify potential causes of
variance (see [3] for an extensive discussion on the use of
probabilistic information to guide the measnurement pro-
cess). This paper describes a general framework for di-
agnosis which, when coupled with a predictive inference
component provides a powerful diagnostic procedure for
dealing with multiple faults. In addition it also demon-
strates the approach in the domain of digital electronics,
using propagation as the predictive inference engine.

2. Model-artifact Differences

The model of the artifact describes the physical struc-
ture of the device in terms of its constituents. Each type of
constituent obeys certain behavioral rules. For example, a
simple electrical circuit consists of wires, resistors and so
forth, where wires obey Kirchofl’s Current Law, resistors
obey Ohm’s Law, and so on. In diagnosis, it is given that
the bchavior of the artifact differs from its model. Tt is

L This cireuit is also used by both [2] and [8] in expleining their
syatemns.

then the task of the diagnostician to determine what these
differences are.

The model for the artifact is a description of its phys-
ical structure, plus models for each of its constituents. A
constituent is a very general concept, including compo-
nents, processes and even steps in a logical inference. In
addition, each constituent has associated with it a set of
one or more possible model-artifact differences which es-
tablishes the grain size of the diagnosis.

Diagnosis takes (1) the physical structure, (2) models
for each constituent, (3) a set of possible model-artifact
differences and (4) a set of measurements, and produces a
set of candidates, each of which is a set of differences which
explains the observations.

Our diagnostic approach is based on characterizing
model-artifact differences as assumption violations. A con-
stituent is guaranteed to behave according to its model
only if none of its associated differences are manifested,
i.e., all the constituent’s assumptions hold. If any of these
assumptions are false, then the artifact deviates from its
model, thus, the model may no longer apply. An impor-
tant ramification of this approach ([1,2,3,6,8,11]) is that
we need only specify correct models for constituents —
explicit fault models are not needed.

Reasoning about model-artifact differences in terms of
assumption violations is very general. For example, in elec-
tronics the assumptions might be the correct functioning
of each component and the absence of any short circuits;
in a scientific domain a faulty hypothesis; in a common-
sense domain an assumption such as persistence, defaults
or Occam’s Razor.

3. Detection of Symptoms

We presume (as is usually the case) that the model-
artifact differences are not directly observable.? Instead,
all assumption violations must be inferred indirectly from
behavioral observations. In section 8 we present a gen-
eral inference architecture for this purpose, but for the
moment we presume an inference procedure which makes
behavioral predictions from observations and assumptions
without being concerned about the procedure’s details.

Intuitively, a symptom is any difference between a pre-
diction inade by the inference procedure and an observa-
tion. Consider our example circuit. Given the inputs,
A=3 B=2C =2,D =3, and E = 3, by simple
calculation (i.e., the inference procedure), F = X xY =
Ax C + B x D = 12. However, F' is measured to be 10.
Thus “F is observed to be 10, not 12” is a symptom. More
gencrally, a symptom is any inconsistency detected by the
inference procedure, and may occur beiween two predic-

tions (inferred from distinct measurements) as well as a

2 Tlu practice the disguostician can sometimes dircctly observe a
malfunctioning component by looking for a crack or burn mark.

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 133

measurcment and a prediction (inferred from some other
measurements).

4. Conflicts

The diagnostic procedure is guided by the symptoms.
Each symptom tells us about one or more assumptions
that are possibly violated (e.g., components that may be
faulty). Intuitively, a conflict is a sct of assumptions sup-
porting a symptom, and thus leads to an inconsistency. In
electronics, a conflict might be a set of components which
cannot all be functioning correctly. Consider our example
symptom “F is observed to be 10, not 12.” Qur calcu-
lation that F' = 12 depends on the correct operation of
M, Mz and Ay, ie., if My, M,, and A; were correctly
functioning, then F' = 12. Since F is not 12, at least one
of My, M> and A, is faulted. Thus the set (M, Ma, Ay)
(conflicts are indicated by {...}) is a conflict for the symp-
tom. Because the inference is monotonic with the set of
assumptions, the set (M), M2, 4,, A>), and any other su-
perset of (M;, M;, A,) are conflicts as well; however, no
subsets of (M, M;, A;) are necessarily conflicts since all
the components in the conflict were necessary to constrain
the value at F.

A measurement might agree with one prediction and
yet disagree with another, resulting in a symptom. For
example, starting with the inputs B = 2, C = 2, D = 3,
and E = 3, and assuming Mz, M; and A, are correctly
functioning we calculate G to be 12. Ilowever, starting
with the observation F' = 10, the inputs A = 3, C = 2,
and F = 3, and assuming that A}, Ay, M, and M;, (i-e.,
ignoring Mj) are correctly functioning we calculate G =
10. Thus, when G is measured to be 12, even though it
agrees with the first prediction, it still produces a conflict
based on the second: (A, Ay, My, M3).

For complex domains any single symptom can give
rise to a large set of conflicts, including the set of all com-
ponents in the circuit. To reduce the combinatorics of
diagnosis it is essential that the set of conflicts be repre-
sented and manipulated concisely. If a set of components
is a conflict, then every superset of that set must also be a
conflict. Thus the set of conflicts can be represented con-
cisely by only identifying the minimal conflicts, where a
conflict is minimal if it has no proper subset which is also
a conflict. This observation is central to the performance
of our diagnostic procedure. The goal of conflict recogni-
tion is to identify the complete set of minimal conflicts.®
Typically, but not always, each symptom corresponds to a
single minimal conflict.

3 Representing the conflict space in terms of minimal conflicts
is analogous to the idea of version spaces for representing plausible
Lypothesix in single concept learning ([10]).

134 / SCIENCE

5. Candidates

A candidate is a particular hypothesis for how the ac-
tual artifact differs from the model. Ultimately, the goal
of diagnosis is to identify, and refine, the set of candidates
consistent with the observations thus far.

A candidate is represented by a set of assumptions
(indicated by [...]).
set must fail to hold. As every candidate must explain
every symptom (i.e., its conflicts), each set representing a

Every assumption mentioned in the

candidate must have a non-empty intersection with every
conflict.

For electronics, a candidate is a set of failed compo-
nents, where any components not mentioned are guaran-
teed to be working. Before any measurements have been
taken we know nothing about the circuit. The size of the
initial candidate space grows exponentially with the num-
ber of components. Any component could be working or
faulty, thus the candidate space for Fig. 1 initially consists
of 2° = 32 candidates.

[MLM2MIALAZ)

T

[MLM2.MI.AL] MLM2MIAZ) MLM2A1A2) [M1.MIALA2) [M2M3ALA2|

(MLM2] MLM3} [MLAL] M2M)) [MLA2] [M2Al] [M2A2] M3AL] [M3AZ} [ALAZ}

™M1 ™2] ™3] Al (A2
]

Fig. 2 Initial candidate space for circuit example.

It is essential that candidates be represented concisely
as well. Notice that, like conflicts, candidates have the
property that any superset of a candidate must be a can-
didate as well. Thus the space of all candidates consistent
with the observations can be represented by the minimal
candidates. The goal of candidate generation is to iden-
tify the complete set of minimal candidates. The space of
candidates can be visualized in terms of a subsct-superset
lattice (Fig. 2).
boundary such that everything from the boundary up is a

valid candidate, while everything below is not.
Given no measurements every component might be

working correctly, thus the single minimal candidate is the
empty set, [], which is the root of the lattice at the bottom
of Fig. 2.

To summiarize, the set of candidates is constructed in
two stages: conflict recognition and candidate generation.
Conflict recognition uscs the observations made along with
a model of the device to construct a complete set of min-

The minimal candidates then define a

imal conflicts. Next, candidate generation uses the set of
minimal conflicts to construct a complete set of minimal
candidates. Candidate generation is the topic of the next
section, While conflict recognition is discussed in Section
7.

6. Candidate Generation

Diagnosis is an incremental process; as the aiagnos-
tician takes measurements he continually relines the can-
didate space and then uses this to guide further measure-
ments. Within a single diagnostic session the total set of
candidates must decrease monotonically. This corresponds
to having the minimal candidates move monotonically up
through the candidate superset lattice towards the candi-
date represented by the set of all components. Similarly,
the total set of conflicts must increase monotonically. This
corresponds to having the minimal conflicts move mono-
tonically down through a conflict superset lattice towards
the conflict represented by the empty set. Candidates are
generated incrementally, using the new conflict(s) and the
old candidate(s) to generate the new candidate(s).

The set of candidates is incrementally modified as fol-
lows. Whenever a new conflict is discovered, any previous
minimal candidate which does not explain the new con-
flict is replaced by one or more superset candidates which
are minimal based on this new information. This is ac-
complished by moving up along the lattice from the old
minimal candidate, recording the first candidate reached
which explains the new conflict; i.e., when the candidate’s
intersection with the new conflict is non-empty. When
moving up past a candidate with more than one parent
a consistent candidate must be found along each branch.
Eliminated from those candidates recorded are any which
are subsumed or duplicated; the remaining candidates are
added to the set of new candidates.

Consider our example. Initially there are no conflicts,
thus the minimal candidate [] (i.e., everything working)
explains all observations. We have already seen that the
single symptom “F = 10 not 12” produces one conflict
(A1, M|, M3). This rules out the single minimal candidate
[]- Thus, its immediate supersets [M,], [M3], [M3], [A4],
and [A;] are examined. Each of the candidates [M{], [M2],
and [A;] explain the new conflict and thus are recorded;
however, [A2] and [M3] do not. All of their immediate
superset candidates except for [Aa, M3] are supersets of
the three minimal candidates discovered above. [As, Mj]
does not explain the new conflict, however, its immedi-
ate superset candidates are supersets of the threec minimal
candidates and thus are implicitly represented. Therefore,
the new minimal candidate set consists of [M|], [M>], and
[4,].

The second conflict (inferred from observation G =
12), (A}, A2, M|, M3), only eliminates minimal candidate

[M,]; the unaffected candidates [M,], and [A,] remain min-
imal. However, to complete the sct of minimal candidates
we must consider the supersets of [Ma]: A1, M), [Az, Ma],
[M;, M5), and (M2, M3]. Each of these candidates explains
the new conflict, however, [A;, Ma] and [M}, M>] are su-
persets of the minimal candidates [A;] and [M,], respec-
tively. Thus the new minimal candidates are [A2, M), and
[Ma, M3), resulting in the minimal candidate set: [A],
[Mll, [AQ,MQ], and [M;,Mg]

Candidate generation has several interesting proper-
ties: First, the set of minimal candidates may increase or
decrease in size as a result of a measurement; however, a
candidate, once eliminated can never reappear. As mea-
surements accumulate the sizes of the minimal candidates
never decrease. Second, if an assumption appears in every
minimal candidate (and thus every candidate), then that
assumption is necessarily false. Third, the presupposition
that there is only a single fault (exploited in all previous
model-based troubleshooting strategies), is equivalent to
assuming all candidates are singletons. In this case, the
set of candidates can be obtained by intersecting all the

conflicts.

7. Conflict Recognition Strategy

The remaining task involves incrementally construct-
ing the conflicts used by candidate generation. In this sec-
tion we first present a simple model of conflict recognition.
This approach is then refined into an efficient strategy.

A conflict can be identified by selecting a set of as-
sumptions, referred to as an environment, and testing if
they are inconsistent with the observations. If they are,
then the inconsistent environment is a conflict. This re-
quires an inference strategy C(OBS,ENV) which given the
set of observations OBS made thus far, and the environ-
ment ENV, determines whether the combination is consis-
tent. In our example, after measuring F = 10, and before
measuring G = 12, C({F = 10}, {M1, M3, A;}) (leaving
off the inputs) is false indicating the conflict (My, M3, A1).
This approach is refined as follows:

Refinement 1: Ezploiting minimality. To identify the
set of minimal inconsistent environments (and thus the
minimal conflicts), we begin our search at the empty en-
vironment, moving up along its parents. This is similar
to the search pattern used during candidate generation.
At each environment we apply C(OBS,ENV) to determine

4 An environment should not be confused with a candidate. An
environment is a set of assumptions all of which are assumed to
be true (e.g., My and Ms are assumed to be working correctly), a
candidate is a sct of assumptions all of which are assnmed to be
false (e.g., componenis My and My are not functioning correctly).
A conflict is a set of assumptions, at least one of which is false.
Intuitively an enviromment is the set of assumptions that define a
“context” in a deductive inference engine, in this case the engine
is used for prediction and the assumptions are about the lack of
particular model-artifact differences.

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 135

whether or not ENV is a conflict. Before a new environ-
ment is explored, all other environments which are a subset
of the new environment must be explored first. If the envi-
ronment is inconsistent then it is a minimal conflict and its
supersets are not explored. If an environment has already
been explored or is a superset of a conflict then C is not
run on the environment and its supersets are not explored.

We presume the inference strategy operates entirely
by inferring hypothetical predictions (e.g., values for vari-
ables in environments given the observations made). Let
P(OBS,ENV) be all behavioral predictions which follow
from the observations OBS given the assumptions ENV.
For example, P({A = 3,B = 2,C = 2,D = 3}, {A;,M,,
M,}) produces {A=3,B=2,C=2,D=3X=6Y =
6,F = 12}.

C can now be implemented in terms of P. If P com-
putes two distinct values for a quantity (or more simply
both z and ~ z), then ENV is a conflict.

Refinement 2: Monotonicity of measurements. If in-
puts are kept constant, measurements are cumulative and
our knowledge of the circuit’s structure grows monotoni-
cally. Given a new measurement M, P(OBSU{M}, ENV)
is always a superset of P(OBS,ENV). Thus if we cache
the values of every P, when a new measurement is made
we need only infer the incremental addition to the set of
predictions.

Refinement 8: Monotonicity for assumptions. Analo-
gous to refinement 2, the set of predictions grows monoton-
ically with the environment. If a set of predictions follow
from an environment, then the addition of any assump-
tion to that environment only expands this set. Therefore
P(OBS,ENV) contains P(OBS,E) for every subset E of
ENV. This makes the computation of P(OBS,ENV) very
simple if all its subsets have already been analyzed.

Refinement J: Redundant Inferences. P must be run
on every possible environment. Thus, we need a large set
of data-bases, and the same rule will be executed over and
over again on the same antecedents. All of this overlap
can be avoided by utilizing ideas of Truth Maintenance
such that every inference is recorded as a dependency and
no inference is ever performed twice [7].

Refinement 5: Ezxpioiting locality. This is primarily
an observation of why the previous refinements are suc-
cessful. The first four refinements allow the strategy to
ignore (i.e., to the extent of not even generating its name)
any environment which doesn’t contain some interesting
inferences absent in every one of its subsets. If every envi-
ronment contained a new unique inference, then we would
still be faced with a computation exponential in the nnm-
ber of potential model-artifact differences. However, in
practice, as the components are weakly connected, the in-
ferences rules are weakly connected. Our strategy depends
on this empirical property. Tor example, in electronics the
only assumption sets of interest will be sets of components

136 / SCIENCE

which are connected and whose signals interact — typ-
ically circuits are explicitly designed so that component

interactions are limited.

8. Inference Procedure Architecture

To completely exploit the ideas discussed in the pre-
ceding scction we nced to modify and augment the im-
plementation of P. We presume that P meets (or can be
modified to) the two basic criteria for utilizing truth main-
tenance: (1) A dependency (i.e., justification) can be con-
structed for each inference, and (2) belief or disbelief in
a datum is completely determined by these dependencies.
In addition, we presume that, during processing, whenever
more than one infercnce is simultaneously permissible, that
the actual order in which these inferences are performed is
irrelevant and that this order can be externally controlled
(i-e., by our architecture). Finally, we presume that the in-
ference procedure is monotonic. Most Al inference proce-
dures meet these four general criteria. For example, many
expert rule-based systems, constraint propagation, demon
invocation, taxonomic reasoning, qualitative simulations,
natural deduction systems, and many forms of resolution
theorem-proving fit this general framework.

We associate with every prediction, V', the set of envi-
ronments, ENVS(V), from which it follows (i.e., ENVS(V)
= {env|V € P(OBS, env)}). We call this set the support-
ing environments of the prediction. Exploiting the mono-
tonicity property, it is only necessary to represent the min-
imal (under subset) supporting environments.

Consider our example after the measurcments F' =
10 and G = 12.
in two different ways. First, ¥ = B x D = 6 assuming
M, is functioning correctly. Thus, one of its supporting
environments is {Mz}. Second, Y =G —~Z =G - (C x
E) == 6 assuming A; and M3 are working. Therefore the
supporting environments of ¥ == 6 are {{M2}{A2, M3}}.
Any set of assumptions used to derive Y = 6 is a superset

In this case we can calculate X = 6

of one of these two.

By exploiting dependencies no inference is ever done
twice. If the supporting environment of a fact changes,
then the supporting environments of its consequents are
updated antomatically by tracing the dcpendencies created
when the rule was first run. This achicves the effect of
rerunning the rule without incurring any computational
overhead.

We control the inference process such that whenever
two inferences are possible, the one producing a datum
in the smaller environment is performed first. A simple
agenda mechanism sulfices for this. Whenever a symptom
is recognized, the environment is marked a conflict and all
inferencing stops on that environment. Using this control
scheme facts are always deduced iu their minimal environ-

ment, achieving the desired property that only minimal

conflicts (i.e., inconsistent environments) are geuerated.

In this architecture P can be incomplete (in practice it
usually is). The only consequence of incompleteness is that
fewer conflicts will be detected and thus fewer candidates
will be eliminated than the ideal — no candidate will be
mistakenly eliminated.

9. Circuit Diagnosis

Thus far we have described a very general diagnos-
tic strategy for handling multiple fanlts, whose applica-
tion to a specific domain depends only on the selection of
the function P. During the remainder of this paper, we
demonstrate the power of this approach, by applying it to
the problem of circuit diagnosis.

For our example we make a number of simplifying pre-
suppositions. First, we assume that the model of a circuit
is described in terms of a circuit topology plus a behavioral
description of each of its components. Second, that the
only type of model-artifact difference considered is whether
or not a particular component is working correctly. Fi-
nally, all observations are made in terms of measurements
at a component’s terminals. Measurements are expensive,
thus not every value at every terminal is known. Instead,
some values must be inferred from other values and the
component models. Intuitively, symptoms are recognized
by propagating out locally through components from the
measurement points, using the component models to de-
duce new values. The application of each model is based
on the assumption that its corresponding component is
working correctly. If two values are deduced for the same
quantity in different ways, then a coincidence has occurred.
If the two values differ then the coincidence is a symptom.
The conflict then consists of every component propagated
through from the measurement points to the point of coin-
cidence (i.e., the symptom implies that at least one of the
components uscd to deduce the two values is inconsistent).

10. Constraint Propagation

Constraint propagation [12,13] operates on cells, val-
ues, and constraints. Cells represent state variables such
as voltages, logic levels, or fluid flows. A constraint stipu-
lates a condition that the cells must satisfy. For example,
Ohm’s law, v = <R, is represented as a constraint among
the three cells v, ¢, and R. Given a set of initial values,
constraint propagation assigns each cell a value that sat-
isfies the constraints. The basic inference step is to find
a constraint that allows it to determine a value for a pre-
viously unknown cell. For example, if it has discovered
values v = 2 and 2 = 1, then it uses the constraint v = <R
to calculate the value R = 2. In addition, the propagator
records I2's dependency on v, 7 and the constraint v =1 R.
The newly recorded value may cause other constraints to

trigger and more values to be deduced. Thus, constraints
may be viewed as a set of conduits along which values can
be propagated out locally from the inputs to other cells in
the system. The dependencies recorded trace out a par-
ticular path through the constraints that the inputs have
taken. A symptom is manifested when two different values
are deduced for the same cell (i.e., a logical inconsistency
is identified). In this event dependencies are used to con-
struct the conflict.

Sometimes the constraint propagation process termi-
nates leaving some constraints unused and some cells unas-
signed. This usually arises as a consequence of insufficient
information about device inputs. However, it can also arise
as the consequence of logical incompleteness in the propa-
gator.

In the circuit domain, the behavior of each component
is modeled as a set of constraints. For example, in analyz-
ing analog circuits the cells represent circuit voltages and
currents, the values are numbers, and the constraints are
mathematical equations. In digital circuits, the cells repre-
sent logic levels, the values are 0 and 1, and the constraints
are boolean equations.

Consider the constraint model for the circuit of Fig.
1. There are ten cells: A, B,C, D, E, X,Y, Z, F, and
G, five of which are provided the observed values: A = 3,
B =2 C=2 D =3and E = 3. There are three
multipliers and two adders each of which is modeled by
a single constraint: M, : X = AxC, My :Y = B x D,
M;:Z=CxE,A:F=X+Y,and A, : G =Y +Z. The
following is a list of deductions and dependencies that the
constraint propagator generates (a dependency is indicated
by (component : antecedents):

X=6(M;:A=3C=2)
Y =6(M;:B=2,D=3)
Z=6(M;:C=2E=3)
F=12(A,:X =6,Y = 6)

G=12 (Ay:Y =6,Z = 6)

A symptom is indicated when two values are determined
for the same cell (e.g., measuring F to be 10 not 12). Each
symptom leads to new conflict(s) (e.g., in this example the
symptom indicates a conflict (A, M, M>3)).

This approach has some iinportant properties. First,
it is not necessary for the starting points of these paths
to be inputs or outputs of the circuit. A path may begin
at any point in the circuit where a measurement has been
taken. Seccond, it is not necessary to make any assump-
tions about the direction that signals flow through compo-
nents. In most digital circuits a signal can only flow from
inputs to outputs. For example, a subtractor cannot be
constructed by simply reversing an input and the output

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 137

of an adder since it violates the directionality of signal flow.
However, the directionality of a componcent’s signal flow is
irrelevant to our diagnostic technique: a component places
a constraint between the values of its terminals which can
be used any way desired. To detect discrepancies, infor-
mation can flow along a path through a component in any
direction. For example, although the subtractor does not
function in reverse, when we observe its outputs we can
infer what its inputs must have been.

11. Generalized Constraint Propagation

Kach step of constraint propagation takes a set of an-
tecedent values and computes a consequent. We have built
a constraint propagator within our inference architecture
which explores minimal environments first. This guides
each step during propagation in an efficient manner to in-
crementally construct minimal conflicts and candidates for
multiple faults.

Consider our example. We ensure that propagations
in subset environments are performed first, thereby gunar-
anteeing that the resulting supporting environments and
conflicts are minimal. We use [z, ey, €2, ...] to represent the
assertion z with its associated supporting environments.
Before any measurements or propagations take place, given
only the inputs, the data base consists of: [A = 3, {31
[B = 2,{}1, [¢ = 2,{}], [D = 3,{}], and (B = 3,{}1
Observe that when propagating values through a compo-
nent, the assumption for the component is added to the
dependency, and thus to the supporting environment(s)
of the propagated value. Propagating A and C through
M, we obtain: [X = 6,{M;}]. The remaining propa-
gations produce: [Y = 6,{M,}], [Z = 6,{M3}], F =
12, {Al, MI,MQ}]], and HG = 12, {AQ, 1‘/[2, Mg}ﬂ

Suppose we measure I to be 10. This adds [F =
10,{}] to the data base. Analysis proceeds as follows
(starting with the smaller assumption sets first): [X =
4,{A1, Mp}], and [Y = 4,{A;,M,}]. Now the symptom
between [F = 10, {}] and [F = 12, {4}, M1, M2}] is rec-
ognized indicating a new minimal conflict: (Ay, M, My).
Thus the inference architecture prevents further propaga-
tion in the environment {A;, M1, M3} and its supersets.
The propagation goes one more step: [G = 10,{A}, Az, M)y,
M;}]. There are no more inferences to be made.

Next, suppose we measure G to be 12. Propaga-
tion gives: [Z = 6,{A, Ms}], [Y = 6, {4z, M2}], [Z =
8,{Ay, A2, M}], and [X = 4, {Ay, Az, M3}]. The symp-
tom “G = 12 not 10” produces the conflict (A;, Az, My,
M3). The final data-base state is:5

A= 3,{}
B= 2,{}
c= 2{}

5 TThe justifications are not shown but arc the sane as those in
section 10.

138 / SCIENCE

D= 3,{}
= 3,{}
= 10,{}
G= 12,{}
= 4, {Al,A’[Q}{Al,AQ,Mg}
6, {Ml}
Y = 4,{A1,M1}
6, {M2}{Az, M3}
Z= 8,{A,As, M}
6, {M3}{ A2, M2}

This results in two minimal conflicts:

(A1, My, M3)
(Ala A'Z) Mly M3)

Note that at no point during propagation is effort
wasted in constructing non-minimal conflicts.

The algorithm discussed in section 6 uses the two min-
imal conflicts to incrementally construct the set of mini-
mal candidates. Given new measurements the propaga-
tion/candidate generation cycle continues until the candi-
date space has been sufficiently constrained

12. Connected Research

Our approach has been completely implemented and
tested on numerous examples. Our implementation con-
sists of four basic modules. The first maintains the mini-
mal supporting environments for each prediction and con-
structs minimal conflicts. It is based on Assumption-Based
Truth Maintenance [4]. The second controls the inference
such that minimal conflicts are discovered first and records
the dependencies of inferences. It is based on the consumer
and agenda architectures of [5]. The third is a general con-
straint language based on the first two modules. The last
module, the candidate gencrator, incrementally constructs
the minimal candidates from the minimal conflicts.

As all the work within the model-based paradigm, our
approach presumes measurements and potential model-
artifact differences are given. In [3] we exploit the frame-
work of this paper in two ways to generate measurements
First, the
data structures constructed by our strategy (e.g., the data

which are information-theoretically optimal.

base state of Section 11) make it easy to consider and eval-
uate hypothetical measurements. Second, as we construct
all minimal environments, conflicts, and candidates, it is
relatively straight forward to compare potential measure-
ments (using probabilistic information of component fail-
ure rates).

The work presented here represents another step to-
wards the goal of automated diagnosis, nevertheless there
remains much to be done. Plans for the future include:
1) incorporating the predictive engine discussed in [14] in
order to diagnosis systcms with time-varying signals and

state, and 2) controlling the set of model-artifact differ-
ences being considered.

13. Related Work

This research fits within the model-based debugging
paradigm: [1,2,3,6,8, 9,11]. However, unlike [1,2,6,8, 9], we
propose a general method of diagnostic reasoning which is
efficient, incremental, handles multiple faults, and is easily
extended to include measurement strategies. Reiter [11]
has been exploring these ideas independently and provides
a formal account of many of our “intuitive” techniques of
conflict recognition and candidate generation.

ACKNOWLEDGMENTS

Daniel G. Bobrow, Randy Davis, Kenneth Forbus,
Matthew Ginsberg, Frank Halasz, Walter Hamscher, Tad
Hogg, Ramesh Patil, provided useful insights. We espe-
cially thank Ray Reiter for his clear perspective and many
productive interactions.

BIBLIOGRAPHY

1. Brown, J.S., Burton, R. R. and de Kleer, J., Peda-
gogical, natural language and knowledge engineering
techniques in SOPHIE I, II and III, in: D. Sleeman
and J.S. Brown (Eds.), Intelligent Tutoring Systems,
(Academic Press, New York, 1982) 227-282.

2. Davis, R., Shrobe, H., Hamscher, W., Wieckert, K.,
Shirley, M. and Polit, S., Diagnosis based on descrip-
tion of structure and function, in: Proceedings of the
National Conference on Artificial Intelligence, Pitts-
burgh, PA (August, 1982) 137-142.

3. de Kleer, J. and Williams, B.C., Diagnosing multiple
faults, Artificial Intelligence (1986) forthcoming.

4. de Kleer, J., An assumption-based truth maintenance
system, Artificial Intelligence 28 (1986) 127-162.

5. de Kleer, J., Problem solving with the ATMS, Artifi-
cial Intelligence 28 (1986) 197-224.

6. de Kleer, J., Local methods of localizing faults in
electronic circuits, Artificial Intelligence Laboratory,
AIM-394, Cambridge: M.I.T., 1976.

7. Doyle, J., A truth maintenance system, Artificial In-
telligence 24 (1979).

8. Genesereth, M.RR., The use of design descriptions in
automated diagnosis, Artificial Intelligence 24 (1984),
411-436.

9. Hamscher, W., and Davis, R., Diagnosing circuits with
state: an inherently underconstrained problem, in:
Proceedings of the National Confercnce on Artificial
Intelligence, Austin, TX (August, 1984) 142-147.

10.

11.

12.

13.

14.

Mitchell, T., Version spaces: An approach to concept
learning, Computer Science Department, STAN-CS-
78-711, Palo Alto: Standford University, 1978.
Reiter, R., A theory of diagnosis from first principles,
Artificial Intelligence, forthcomming. Also: Depart-
ment of Computer Science Technical Report 187/86,
(University of Toronto, Toronto, 1985).

Steele, G.L., The definition and implementation of a
computer programming language based on constraints,
Al Technical Report 595, MIT, Cambridge, MA, 1979.
Sussman, G.J. and Steele, G.L., CONSTRAINTS: A
language for expressing almost-hierarchical descrip-
tions, Artificial Intelligence 14 (1980) 1-39.
Williams, B.C., “Doing Time: Putting Qualitative
Reasoning on Firmer Ground,” Proceedings of the Na-
tional Conference on Artificial Intelligence, Philadel-
phia, Penn., (August, 1984).

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 139

