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ABSTRACT 

In “expert systems” and other applications of logic pro- 
gramming, the issue arises of whether to use rules for for- 
ward or backward inference, i.e. whether deduction should 
be driven by the facts available to the program or the ques- 
tions that are put to it. Often some mixture of the two 
is cheaper than using either mode exclusively. We show 
that, under two restrictive assumptions, optimal choices of 
directions for the rules can be made in time polynomial in 
the number of rules in a recursion-free logic program. If 
we abandon either of these restrictions, the optimal choice 
is NP-complete. A broad range of cost measures can be 
used, and can be combined with bounds on some element 
of the total cost. 

I INTRODUCTION 

In logic programming, decisions about which inference 
direction to use, based on rough estimates of the compu- 
tational costs of each direction, are frequently taken by 
users, We would like to automate the choice between for- 
ward and backward inference, at least with respect to the 
cost of computation. Other optimisations, such as rule or- 
dering and ordering of terms within rules, will be ignored, 
as will other considerations that could affect the choice 
of inference direction. The conflicts between forward and 
backward computation can be outlined as follows: solving 
a goal backwards may be much cheaper than doing the 
corresponding forwards deduction, because more variable 
bindings are available to constrain the computation. Or it 
may be more expensive, because several rules are applied, 
only one of which has enough facts to solve the goal. A 
fact that has been deduced forward and stored can be re- 
used many times, or it may never be used at all. We will 
show how to attach numerical estimates to these factors 
and optimise the trade-offs. 

A. Statement of problem 

We consider a system whose inputs are a set F of facts 
(ground atomic formulae), a set R of rules (sentences hav- 
ing implicational force), and a set G of goals (which may 
be conjunctions). Rules and goals may contain variables, 
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which are assumed to be universally quantified if in rules 
and existentially quantified if in goals. No function sym- 
bols appear in R or G. The purpose of the system is to 
solve each goal from G using the facts F and the rules R, 
and, in the case of goals containing variables, to find all the 
sets of variable bindings which make the goal true. The 
deductive mechanism used for both forward and backward 
inference will be a restricted form of resolution, and the 
members of F, R, and G are assumed to be in conjunctive 
normal form. We impose the restriction that clauses in R 
be Horn clauses, i.e. have exactly one positive literal. This 
literal is the consequent of the rule, the others being its 
antecedents. 

The problem we consider is that of choosing an optimal 
subset Rf of R to be used forwards. Optimality is defined 
with respect to the sum of the times taken by all the deduc- 
tions. For a program whose database of deduced clauses 
was kept from one run to the next, the daily cost of renting 
disk space would have to be added to the cost of the CPU 
cycles consumed per day. The set of facts for which stor- 
age costs are incurred can be changed, as discussed below. 
Bounds may be imposed on the space available for stor- 
ing facts, or on the time taken by forwards inference or 
backwards inference or both. 

B. Notation 

We define a directed graph, called the rule graph, whose 
nodes are the members of R and which has an arc from 
a rule r to a rule s iff r’s consequent is unifiable with 
one of s’s antecedents. We say that s is a successor of r, 
and r a predecessor of s. The rule graph will be required 
to be acyclic, since the work we have done to date does 
not include techniques for estimating the costs of using 
recursive rules. We may add F and G to the rule graph, in 
the obvious places: a fact from F is the predecessor of those 
rules whose antecedents unify with it, and a goal from G is 
the successor of those rules whose consequents unify with 
it. We do not represent individual members of F and G 
in the rule graph, but sets of facts or goals that match 
some pattern; these patterns, rather than the individual 
facts or goals, are used to construct arcs in the rule graph. 
In Figure 1, we have put the facts at the bottom and the 
goals at the top. 

For a node r in the rule graph, representing a rule from 
R, let ef(r) be the cost of using it forwards, and eb(r) 
the cost of using it backwards, assuming in each case that 
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Figure 1: A fairly tangled rule graph 

its antecedent facts are available in the database. Below 
we describe how to estimate these costs. We also define 
an indicator variable z)(r) for each r, with a value of 1 to 
denote using the rule forwards, and 0 for backwards. A 
complete set of values of v(r) for all rules 7‘ will be called 
a strategy. 

Et(r) always depends on the structure of R and on the 
numbers of facts in that part of F from which T’S inputs are 
obtained, and eb(r) can depend both on these and on that 
part of G from which subgoals that invoke T are obtained. 
Moreover, eb(r) will depend on whether any of T’S succes- 
sors are used forwards. We can eliminate this dependence 
by simply insisting that all successors of a backwards rule 
be used backwards themselves, or equivalently, that RI is 
closed under the operation of taking predecessors. We shall 
call this coherence, i.e. a coherent strategy will be one in 
which no rule is used forwards unless all its predecessors 
are. Some deductive systems do in fact enforce coherence, 
and others have a bias towards it. 

II THE OPTIMAL COHERENT 

Namely, the total cost of a strategy (represented as a set 
of values for the V(Z)) is 

c 4+v(x> + (1 - G9)44 
x 

and the coherence constraint turns into inequalities v(y) 2 
V( 2) for each predecessor y of x. If this expression for the 
cost is minimised subject to these inequalities, the resulting 
values of the variables V(X) give the optimal solution to the 
original problem. 

This integer program is in fact a linear program, and 
hence solvable in time polynomial in the number of con- 
straints, which is polynomial in the total number of literals 
in R. This is important, since integer programming in gen- 
eral is NP-complete. To see that we really have a linear 
program here, we must prove that if the above constraints 
were augmented by the inequalities 0 < V(X) 5 1 for all x 
and the whole system solved as a linear program, the so- 
lution obtained would in fact give integer values to all the 
V(X). This is done by showing that a solution in fractional 
values would not be a vertex of the simplex defined by the 
constraints. It then follows that if the Simplex Algorithm 
is applied to the above equations and these constraints, 
it will find a solution in integers, which will be the solu- 
tion to the integer program, corresponding to the optimal 
strategy. 

[4] has considered a similar problem, different from this 
one mainly in the imposition of an upper bound on the 
total amount of storage available for the facts deduced (it 
is hard to tell whether he requires his strategies to be co- 
herent). Such a bound can be added to this problem very 
simply, for if e,(x) is the estimated amount of space taken 
up by the facts deduced by rule x, and A is the total space 
available, we just add the inequality 

STRATEGY to the linear program. The same would apply to a time 
bound or to a bound on any expression linear in the V(X), 

In this paper we examine only the case where all strate- 
when combined with any cost function linear in the u(i). 

gies are required to be coherent. If additionally no rules Roussopoulos also expects that (translating into our ter- 

generate duplicate answers (the same answer deduced from minology) the only facts stored permanently are those that 

different sets of facts), then the optimal set R, can be are inputs to some backwards rule. Until now we have 

found by any linear programming method. The optimisa- lumped space costs with time costs, thus assuming that 

tion problem is NP-complete if there are such rules. By every fact is stored. We can change this by re-defining the 

treating them separately from others, we can find the op- cost of a strategy as 

timal set RJ in time bounded by a polynomial in the to- 
tal number of rules times an exponential in the number 

c v(X)e&) + (1 - +&b(x) + ++%(x> 
X 

of “bad” rules (and much more quickly than this in most 
cases). 

A. No Duplicate Answers 

where e,(x) is the estimated cost of storing the facts de- 
duced by rule x. The new variable V’(X) is made to be 
1 if x is a forward rule with a backward rule among its 
successors, and 0 otherwise, by the constraints 

Under the two restrictions mentioned above (coherence 
of strategy and no duplicate answers), the cost estimates for all successors y of x. If x has no successors except goals 
q(X) and eb(x) can be made to have only F, R, and G then V’(Z) is made identical to V(X). The rule graph must 
as implicit arguments. In particular, they do not depend also be extended to include nodes for the facts in F, each 
on the directions of rules other than x. Then the problem of which has zero values for et(z) and eb(z) and 1 for V(X). 
of finding the set of rules to be used forwards in a least These changes roughly double the numbers of variables and 
total cost strategy is just an integer programming problem. constraints in the linear programming problem. 
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B. Duplicate Answers Present III THE DEDUCTIVE 
Some rules can generate duplicate answers to a goal, METHOD 

corresponding to different values of some variable which 
appears in the rule’s antecedents but not in its consequent. In order to describe the estimation of the computational 

For example, given the rule costs of using rules, we must specify precisely the version 
of resolution which we assume to be used for deductions. 

if facts A(l, 2), B(2,3), A(l, 4), and B(4,3) were available, 
then C( 1,3) could be deduced twice, once with y = 2 and 
once with y = 4. If the rule’s conclusions are being stored 
in the database, the duplicates will disappear, but if the 
rule is being used in backwards inference and its conclu- 
sions forgotten as soon as they are used, then duplicates 
will not even be detected. 

If some rule ri has a predecessor r2 which generates du- 
plicates, the number of inputs supplied to rr will depend on 
whether r2 is used forwards or backwards, and this clearly 
affects the cost of using ~1 backwards. The cost of using 
other predecessors of rl can also be affected by this, be- 
cause the number of clauses resolving against their positive 
literal can change. So if rs is such a rule, the cost of us- 
ing rs backwards will depend on Z)(Q). Only the backward 
costs can be affected, for a rule used forwards in a coherent 
strategy receives no duplicates from its predecessors. This 
makes it impossible to express the cost of r3 as a linear 
function of I and v(r2), since the value of v(r2) affects 
it only when v(rs) = 0; terms containing the product of 
the two indicator variables would be required to express 
this. Thus the linear program cannot be used. 

In fact, the task of optimally choosing the u(z) under 
these conditions is NP-complete [6], so that it cannot be 
solved by linear programming unless P=NP. But this is not 
as discouraging as it may seem to be. Considerable care 
was required to construct the logic program used in the 
proof, and we anticipate that most programs encountered 
in practice would not display the features that make it 
necessary to explore many strategies. We therefore expect 
that a heuristic-guided A* search could solve most such 
optimisation problems quite fast. 

The appropriate heuristic for this search is a lower bound 
on the cost of any strategy containing a given partial strut- 
egy (a set of values for some of the V(Z)). Such a lower 
bound can be obtained by assuming that all duplicate an- 
swers are magically eliminated. This allows us to make 
estimates of the costs of using all rules in each direction, 
which will certainly be no higher than the true costs. Feed- 
ing these estimates, and the values for those V(X) that are 
included in the partial strategy, into a linear programming 
algorithm, we get a cost which cannot be higher than that 
of any complete strategy that extends the partial strategy. 
As soon as the rules which generate the most duplicates 
(relative to their number of unique answers) are in the par- 
tial strategy, the lower bound will be fairly accurate, so the 
search will be well focussed towards good strategies if these 
rules are among the first ones added. And once a partial 
strategy includes directions for all rules that can generate 
duplicates, the optimal complete strategy containing it is 
returned immediately by the linear program. 

Binary resolution is sound and complete but inefficient. 
We impose on it the restriction that the complementary lit- 
erals which are resolved away must each be the first in their 
respective clauses. This is similar to lock resolution [l]. 
Thus the number of possible resolutions on a given clause 
set is substantially reduced, but in general completeness is 
sacrificed. With some more effort it can be restored. 

The implementation that we shall consider includes a 
stack or agenda of clauses to be resolved against. To use a 
clause, we add it to the agenda. We then repeatedly pop 
the top clause off the agenda, store it in the database per- 
haps, resolve it against all possible clauses in the database, 
and add the resolvents to the agenda. The literals from the 
clause that was found in the database come before those 
from the clause taken off the agenda (this causes subgoals 
to be solved before work on their parent goal is resumed), 
and the order of literals within each parent clause is car- 
ried over unchanged. When the agenda is empty, we have 
deduced all the consequences of the new clause. 

When the clauses entered by the user are all Horn, and 
the non-unit clauses have their positive literal at one end or 
the other, this kind of resolution begins to look very much 
like traditional forward or backward chaining. Consider a 
rule A(x, y) & B(y, z) + C(z, z), which can be written in 
two ways: 

With the first of these, facts like A(1,2) and B(2,3) will 
resolve, in that order, giving C(l, 3), which is just what 
would emerge from forward inference. The second form of 
the rule can resolve with a goal like C(V, w) to give a clause 
lA(v, y)lB(y, w), which is just a conjunction of subgoals 
whose answers would give the answer to the goal, and this 
looks like a backward chaining step. 

For forward inference to be complete, either the facts 
must be presented in the same order as that in which the 
negative literals of the rule appear (in the above example, 
the rule could not resolve with B(2,3) unless A( 1,2) had 
already been taken off the agenda) or else all facts, includ- 
ing those deduced by forwards rules, must be kept in the 
database for as long as there is any rule that might wish 
to resolve against them. If B(2,3) was in fact taken off the 
agenda first, it would have to be stored until A( 1,2) came 
along and generated -Q3(2, z)C( 1, z), which would then re- 
solve against it. In general it would also be necessary to 
store the non-unit resolvents. An alternative to this would 
be to have several versions of a forward rule, namely one 
beginning with each input literal. The version that began 
with the literal corresponding to the last of a set of facts 
to be presented would resolve against this fact and then 
against all the others, if they had been stored; there would 
be no need to keep intermediate resolvents. This would 
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lead to extra deductive cost due to abortive use of versions 
of a rule when not enough facts were there for it to succeed. 

IV ESTIMATING COSTS OF 
DEDUCTION 

We estimate the costs of running our form of resolution 
on a set of rules, facts, and goals by means of a simulation, 
in which we represent each set of similar clauses that will 
arise during the computation by a clause, called the set’s 
pattern, and a number, namely the expected number of 
instances of that pattern that will be generated. The sets 
F and G are represented this way, since we do not expect 
to know exactly what facts or goals will be in them. If 
we regard a clause in R as having itself as pattern and 
the number 1.0, then we see that the basic step needed for 
estimating costs is to simulate resolutions between pairs of 
such clause sets and estimate their costs. 

The simulator accepts the sets of patterns from F, R, 
and G as input, and obtains descriptions (in terms of pat- 
tern and set size) of all the sets of clauses that will be 
generated. It has an agenda like the one used for the reso- 
lution, so that the effects of putting clauses on the agenda 
in different orders can be simulated. We can combine the 
output of the simulator with knowledge about how long 
each elementary operation (unification, substitution, and 
so on) will take, to arrive at actual time estimates. It is 
then necessary to decompose the simulated cost into a sum 
of rule costs. 

A. The Number of Resolvents 

Here we describe how to estimate the number of resol- 
vents generated at each node in the rule graph, given esti- 
mates for the numbers of propositions matching each pat- 
tern in F and G. We also need to know, for each variable 
in any clause of R, the size of the domain of values over 
which that variable will range. This is important for two 
reasons. First, some of the equations involved (which have 
been omitted for space reasons) are couched in terms of 
the probability of a typical instance of some clause pat- 
tern being generated, so that in order to derive a cost esti- 
mate, we need to know the number of potential instances 
of this pattern. Domain sizes also affect the probability 
that two variables will have been bound to different val- 
ues, which in turn affects the chance that a unification will 
be successful; however, this probability may be known in- 
dependently. Note that “domain” here refers to the set 
of values expected to be encountered during a particular 
run of the program, rather than to a set of theoretically 
possible values. 

1. Simulated unification 

It is useful to distinguish the set of variables in a pat- 
tern which will have had constants substituted for them 
at the time when unification is attempted. We call these 
“bound variables” of the pattern, meaning that the sim- 
ulation must know that they will be bound at run- time 

to constants whose values are not known yet. The other 
variables in the pattern will be referred to as its “free vari- 
ables”, or “variables” if there is no ambiguity. Now clearly 
the pattern of a set of resolvents will be just the result 
of resolving the patterns of the two parent sets. How- 
ever, when a pattern that has bound variables is unified 
with another pattern, this represents some unifications at 
run-time in which constants will have been substituted for 
these bound variables, and the unification may fail if two 
unequal constants have appeared. So, when the simulator 
is unifying two patterns, it must take special note of their 
bound variables. 

In the absence of specific information, we can estimate 
the probability of successful unification between a bound 
variable and a constant or another bound variable by as- 
suming that all values in the domain of the bound vari- 
able are equally likely to occur. This is called the equal 
frequency assumption: no value appears more often than 
another of the same type. The probability of a unification 
succeeding is then the reciprocal of the number of possible 
values in the domain. 

If the distribution of actual constants in the facts and 
goals does not conform to the equal frequency assump- 
tion, the estimated numbers of resolvents may be arbitrar- 
ily badly wrong. Two safety mechanisms are possible for 
this. The first is to specify that some value is going to 
be over- or under-represented relative to the average; this 
could be done for several values. The second is to allow 
the user to give the probability of successful unification di- 
rectly. For example, in a Computer Science Department 
where all the students have ages between 12 and 50, the 
probability of a random student being the same age (in 
years) as another may actually be 0.2 or so. The simulator 
can simply use this value instead of subtracting 12 from 50 
and taking the reciprocal. 

2. Estimating set sizes 

The estimated number of clauses in the set of resolvents 
is the probability of successful unification times the num- 
ber of attempted unifications (which is just the product 
of the estimated numbers of clauses for the parent sets). 
In general, two literals being unified by the simulator may 
contain several pairs of constants or bound variables that 
must be equal for unification to succeed. We make an ur- 
gument independence assumption, under which the event 
of one pair being equal is independent of other pairs, so 
the probabilities can be multiplied. 

However, some of the bound variables in the parent pat- 
terns may not correspond to anything in the resolvent pat- 
tern. It may happen that some pairs of parent clauses will 
differ only in the binding of such a variable, so that du- 
plicates of some instances of the resolvent can occur, as 
was indicated above. If th e resolvents are stored in the 
database, these duplicates will presumably be detected and 
eliminated, reducing the number of clauses that are avail- 
able to subsequent resolutions. The appropriate changes 
to the estimated set sizes have been given in [5]. 

Given directions for each rule in R, and the patterns and 
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estimated sizes for sets of terms in F and G, we can now 
iteratively obtain descriptions of all the sets of resolvents 
generated. This approach is clearly not adequate for deal- 
ing with recursive rules in R, which correspond to cycles 
in the rule graph. Techniques for dealing with recursive 
rules are being investigated by many researchers [3,2,7]. 

B. Breaking down the costs 

Since a clause pattern can be derived via a sequence of 
resolutions involving several rules from R, we need some 
way of assigning the costs associated with a set of clauses 
to one and only one rule, or perhaps to a goal, so that the 
total cost of a strategy is equal to the sum of costs over all 
the rules and goals, and so that the cost numbers for each 
direction of each rule accurately reflect the consequences of 
using that rule in that direction. We make this assignment 
by considering the first literal of the clause set’s pattern, 
which must have been obtained by a.pplying some number 
(possibly zero) of substitutions to a literal of a rule or goal 
from R or G. We charge the costs associated with the set 
against this rule or goal. 

Minor adjustments must be made to this even in the 
coherent case, since the number of database lookup op- 
erations done by a rule depends on which, if any, of its 
predecessors are used forwards. It turns out to be possible 
to remove this variability in the cost of a rule by assuming 
that it looks up all its inputs in the database, and then ad- 
justing the costs of backward rules to reflect the fact that 
their answers do not get looked up and so do not contribute 
to lookup costs. In the incoherent case, it is impossible to 
define the cost of using the rule backwards independently 
of the rest of the strategy it is used in. 

V CONCLUSIONS 

We have shown how a certain optimisation on logic pro- 
grams can be performed cheaply under a fairly commonly 
encountered set of conditions. It is difficult to quantify 
the benefits available from this optimisation, since prob- 
lems can easily be conceived which would take arbitrarily 
long to solve if only one of forward and backward inference 
were used, but are soluble in modest amounts of time by 
an appropriate combination of the two. Human program- 
mers, confronted with such problems, will usually make 
sensible choices; the claimed advantages for this procedure 
are that it gives the precisely optimal strategy, and that it 
can easily be tailored to the performance of any inference 
engine by adjusting the calculations of ej(z) and es(z). 

Note that although the cost estimation methods fail on 
recursive sets of rules, the optimisation algorithms do not. 
If estimates ef and eb were available for such rules, the 
coherence condition requires that any set of mutually re- 
cursive rules be used in the same direction as each other, so 
for the purposes of optimisa.tion they could be treated like 
one rule, and the linear pr0gra.m or the search algorithm 
could be used. 

The problem of finding the optimal incoherent strategy, 
under the assumptions used here, is discussed in [6]. The 
obvious next extension to this work will be the study of 
how to optimise the ordering of negative literals within 
clauses together with the directions in which the clauses are 
used. Another important direction for future research will 
be the investigation of “adaptive” or “mixed” methods, 
which use information gathered at run-time to change or 
control a generic strategy devised at compile-time. 
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