
CHOOSING DIRECTIONS FOR RULES
Richard Treitel and Michael R. Genesereth*

Logic Group, Knowledge Sytems Laboratory,
Computer Science Dept., Stanford University

ABSTRACT

In “expert systems” and other applications of logic pro-
gramming, the issue arises of whether to use rules for for-
ward or backward inference, i.e. whether deduction should
be driven by the facts available to the program or the ques-
tions that are put to it. Often some mixture of the two
is cheaper than using either mode exclusively. We show
that, under two restrictive assumptions, optimal choices of
directions for the rules can be made in time polynomial in
the number of rules in a recursion-free logic program. If
we abandon either of these restrictions, the optimal choice
is NP-complete. A broad range of cost measures can be
used, and can be combined with bounds on some element
of the total cost.

I INTRODUCTION

In logic programming, decisions about which inference
direction to use, based on rough estimates of the compu-
tational costs of each direction, are frequently taken by
users, We would like to automate the choice between for-
ward and backward inference, at least with respect to the
cost of computation. Other optimisations, such as rule or-
dering and ordering of terms within rules, will be ignored,
as will other considerations that could affect the choice
of inference direction. The conflicts between forward and
backward computation can be outlined as follows: solving
a goal backwards may be much cheaper than doing the
corresponding forwards deduction, because more variable
bindings are available to constrain the computation. Or it
may be more expensive, because several rules are applied,
only one of which has enough facts to solve the goal. A
fact that has been deduced forward and stored can be re-
used many times, or it may never be used at all. We will
show how to attach numerical estimates to these factors
and optimise the trade-offs.

A. Statement of problem

We consider a system whose inputs are a set F of facts
(ground atomic formulae), a set R of rules (sentences hav-
ing implicational force), and a set G of goals (which may
be conjunctions). Rules and goals may contain variables,

*This work was supported by the Office of Naval Research, the
National Institute of Health, and Martin-Marietta under contracts
N00014-81-K-0004, NIH 5P41 RR 00785, and GH3-116803

which are assumed to be universally quantified if in rules
and existentially quantified if in goals. No function sym-
bols appear in R or G. The purpose of the system is to
solve each goal from G using the facts F and the rules R,
and, in the case of goals containing variables, to find all the
sets of variable bindings which make the goal true. The
deductive mechanism used for both forward and backward
inference will be a restricted form of resolution, and the
members of F, R, and G are assumed to be in conjunctive
normal form. We impose the restriction that clauses in R
be Horn clauses, i.e. have exactly one positive literal. This
literal is the consequent of the rule, the others being its
antecedents.

The problem we consider is that of choosing an optimal
subset Rf of R to be used forwards. Optimality is defined
with respect to the sum of the times taken by all the deduc-
tions. For a program whose database of deduced clauses
was kept from one run to the next, the daily cost of renting
disk space would have to be added to the cost of the CPU
cycles consumed per day. The set of facts for which stor-
age costs are incurred can be changed, as discussed below.
Bounds may be imposed on the space available for stor-
ing facts, or on the time taken by forwards inference or
backwards inference or both.

B. Notation

We define a directed graph, called the rule graph, whose
nodes are the members of R and which has an arc from
a rule r to a rule s iff r’s consequent is unifiable with
one of s’s antecedents. We say that s is a successor of r,
and r a predecessor of s. The rule graph will be required
to be acyclic, since the work we have done to date does
not include techniques for estimating the costs of using
recursive rules. We may add F and G to the rule graph, in
the obvious places: a fact from F is the predecessor of those
rules whose antecedents unify with it, and a goal from G is
the successor of those rules whose consequents unify with
it. We do not represent individual members of F and G
in the rule graph, but sets of facts or goals that match
some pattern; these patterns, rather than the individual
facts or goals, are used to construct arcs in the rule graph.
In Figure 1, we have put the facts at the bottom and the
goals at the top.

For a node r in the rule graph, representing a rule from
R, let ef(r) be the cost of using it forwards, and eb(r)
the cost of using it backwards, assuming in each case that

Search: AUTOMATED REASONING / 153

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

Figure 1: A fairly tangled rule graph

its antecedent facts are available in the database. Below
we describe how to estimate these costs. We also define
an indicator variable z)(r) for each r, with a value of 1 to
denote using the rule forwards, and 0 for backwards. A
complete set of values of v(r) for all rules 7‘ will be called
a strategy.

Et(r) always depends on the structure of R and on the
numbers of facts in that part of F from which T’S inputs are
obtained, and eb(r) can depend both on these and on that
part of G from which subgoals that invoke T are obtained.
Moreover, eb(r) will depend on whether any of T’S succes-
sors are used forwards. We can eliminate this dependence
by simply insisting that all successors of a backwards rule
be used backwards themselves, or equivalently, that RI is
closed under the operation of taking predecessors. We shall
call this coherence, i.e. a coherent strategy will be one in
which no rule is used forwards unless all its predecessors
are. Some deductive systems do in fact enforce coherence,
and others have a bias towards it.

II THE OPTIMAL COHERENT

Namely, the total cost of a strategy (represented as a set
of values for the V(Z)) is

c 4+v(x> + (1 - G9)44
x

and the coherence constraint turns into inequalities v(y) 2
V(2) for each predecessor y of x. If this expression for the
cost is minimised subject to these inequalities, the resulting
values of the variables V(X) give the optimal solution to the
original problem.

This integer program is in fact a linear program, and
hence solvable in time polynomial in the number of con-
straints, which is polynomial in the total number of literals
in R. This is important, since integer programming in gen-
eral is NP-complete. To see that we really have a linear
program here, we must prove that if the above constraints
were augmented by the inequalities 0 < V(X) 5 1 for all x
and the whole system solved as a linear program, the so-
lution obtained would in fact give integer values to all the
V(X). This is done by showing that a solution in fractional
values would not be a vertex of the simplex defined by the
constraints. It then follows that if the Simplex Algorithm
is applied to the above equations and these constraints,
it will find a solution in integers, which will be the solu-
tion to the integer program, corresponding to the optimal
strategy.

[4] has considered a similar problem, different from this
one mainly in the imposition of an upper bound on the
total amount of storage available for the facts deduced (it
is hard to tell whether he requires his strategies to be co-
herent). Such a bound can be added to this problem very
simply, for if e,(x) is the estimated amount of space taken
up by the facts deduced by rule x, and A is the total space
available, we just add the inequality

STRATEGY to the linear program. The same would apply to a time
bound or to a bound on any expression linear in the V(X),

In this paper we examine only the case where all strate-
when combined with any cost function linear in the u(i).

gies are required to be coherent. If additionally no rules Roussopoulos also expects that (translating into our ter-

generate duplicate answers (the same answer deduced from minology) the only facts stored permanently are those that

different sets of facts), then the optimal set R, can be are inputs to some backwards rule. Until now we have

found by any linear programming method. The optimisa- lumped space costs with time costs, thus assuming that

tion problem is NP-complete if there are such rules. By every fact is stored. We can change this by re-defining the

treating them separately from others, we can find the op- cost of a strategy as

timal set RJ in time bounded by a polynomial in the to-
tal number of rules times an exponential in the number

c v(X)e&) + (1 - +&b(x) + ++%(x>
X

of “bad” rules (and much more quickly than this in most
cases).

A. No Duplicate Answers

where e,(x) is the estimated cost of storing the facts de-
duced by rule x. The new variable V’(X) is made to be
1 if x is a forward rule with a backward rule among its
successors, and 0 otherwise, by the constraints

Under the two restrictions mentioned above (coherence
of strategy and no duplicate answers), the cost estimates for all successors y of x. If x has no successors except goals
q(X) and eb(x) can be made to have only F, R, and G then V’(Z) is made identical to V(X). The rule graph must
as implicit arguments. In particular, they do not depend also be extended to include nodes for the facts in F, each
on the directions of rules other than x. Then the problem of which has zero values for et(z) and eb(z) and 1 for V(X).
of finding the set of rules to be used forwards in a least These changes roughly double the numbers of variables and
total cost strategy is just an integer programming problem. constraints in the linear programming problem.

154 / SCIENCE

B. Duplicate Answers Present III THE DEDUCTIVE
Some rules can generate duplicate answers to a goal, METHOD

corresponding to different values of some variable which
appears in the rule’s antecedents but not in its consequent. In order to describe the estimation of the computational

For example, given the rule costs of using rules, we must specify precisely the version
of resolution which we assume to be used for deductions.

if facts A(l, 2), B(2,3), A(l, 4), and B(4,3) were available,
then C(1,3) could be deduced twice, once with y = 2 and
once with y = 4. If the rule’s conclusions are being stored
in the database, the duplicates will disappear, but if the
rule is being used in backwards inference and its conclu-
sions forgotten as soon as they are used, then duplicates
will not even be detected.

If some rule ri has a predecessor r2 which generates du-
plicates, the number of inputs supplied to rr will depend on
whether r2 is used forwards or backwards, and this clearly
affects the cost of using ~1 backwards. The cost of using
other predecessors of rl can also be affected by this, be-
cause the number of clauses resolving against their positive
literal can change. So if rs is such a rule, the cost of us-
ing rs backwards will depend on Z)(Q). Only the backward
costs can be affected, for a rule used forwards in a coherent
strategy receives no duplicates from its predecessors. This
makes it impossible to express the cost of r3 as a linear
function of I and v(r2), since the value of v(r2) affects
it only when v(rs) = 0; terms containing the product of
the two indicator variables would be required to express
this. Thus the linear program cannot be used.

In fact, the task of optimally choosing the u(z) under
these conditions is NP-complete [6], so that it cannot be
solved by linear programming unless P=NP. But this is not
as discouraging as it may seem to be. Considerable care
was required to construct the logic program used in the
proof, and we anticipate that most programs encountered
in practice would not display the features that make it
necessary to explore many strategies. We therefore expect
that a heuristic-guided A* search could solve most such
optimisation problems quite fast.

The appropriate heuristic for this search is a lower bound
on the cost of any strategy containing a given partial strut-
egy (a set of values for some of the V(Z)). Such a lower
bound can be obtained by assuming that all duplicate an-
swers are magically eliminated. This allows us to make
estimates of the costs of using all rules in each direction,
which will certainly be no higher than the true costs. Feed-
ing these estimates, and the values for those V(X) that are
included in the partial strategy, into a linear programming
algorithm, we get a cost which cannot be higher than that
of any complete strategy that extends the partial strategy.
As soon as the rules which generate the most duplicates
(relative to their number of unique answers) are in the par-
tial strategy, the lower bound will be fairly accurate, so the
search will be well focussed towards good strategies if these
rules are among the first ones added. And once a partial
strategy includes directions for all rules that can generate
duplicates, the optimal complete strategy containing it is
returned immediately by the linear program.

Binary resolution is sound and complete but inefficient.
We impose on it the restriction that the complementary lit-
erals which are resolved away must each be the first in their
respective clauses. This is similar to lock resolution [l].
Thus the number of possible resolutions on a given clause
set is substantially reduced, but in general completeness is
sacrificed. With some more effort it can be restored.

The implementation that we shall consider includes a
stack or agenda of clauses to be resolved against. To use a
clause, we add it to the agenda. We then repeatedly pop
the top clause off the agenda, store it in the database per-
haps, resolve it against all possible clauses in the database,
and add the resolvents to the agenda. The literals from the
clause that was found in the database come before those
from the clause taken off the agenda (this causes subgoals
to be solved before work on their parent goal is resumed),
and the order of literals within each parent clause is car-
ried over unchanged. When the agenda is empty, we have
deduced all the consequences of the new clause.

When the clauses entered by the user are all Horn, and
the non-unit clauses have their positive literal at one end or
the other, this kind of resolution begins to look very much
like traditional forward or backward chaining. Consider a
rule A(x, y) & B(y, z) + C(z, z), which can be written in
two ways:

With the first of these, facts like A(1,2) and B(2,3) will
resolve, in that order, giving C(l, 3), which is just what
would emerge from forward inference. The second form of
the rule can resolve with a goal like C(V, w) to give a clause
lA(v, y)lB(y, w), which is just a conjunction of subgoals
whose answers would give the answer to the goal, and this
looks like a backward chaining step.

For forward inference to be complete, either the facts
must be presented in the same order as that in which the
negative literals of the rule appear (in the above example,
the rule could not resolve with B(2,3) unless A(1,2) had
already been taken off the agenda) or else all facts, includ-
ing those deduced by forwards rules, must be kept in the
database for as long as there is any rule that might wish
to resolve against them. If B(2,3) was in fact taken off the
agenda first, it would have to be stored until A(1,2) came
along and generated -Q3(2, z)C(1, z), which would then re-
solve against it. In general it would also be necessary to
store the non-unit resolvents. An alternative to this would
be to have several versions of a forward rule, namely one
beginning with each input literal. The version that began
with the literal corresponding to the last of a set of facts
to be presented would resolve against this fact and then
against all the others, if they had been stored; there would
be no need to keep intermediate resolvents. This would

Search: AUTOMATED REASONING / 155

lead to extra deductive cost due to abortive use of versions
of a rule when not enough facts were there for it to succeed.

IV ESTIMATING COSTS OF
DEDUCTION

We estimate the costs of running our form of resolution
on a set of rules, facts, and goals by means of a simulation,
in which we represent each set of similar clauses that will
arise during the computation by a clause, called the set’s
pattern, and a number, namely the expected number of
instances of that pattern that will be generated. The sets
F and G are represented this way, since we do not expect
to know exactly what facts or goals will be in them. If
we regard a clause in R as having itself as pattern and
the number 1.0, then we see that the basic step needed for
estimating costs is to simulate resolutions between pairs of
such clause sets and estimate their costs.

The simulator accepts the sets of patterns from F, R,
and G as input, and obtains descriptions (in terms of pat-
tern and set size) of all the sets of clauses that will be
generated. It has an agenda like the one used for the reso-
lution, so that the effects of putting clauses on the agenda
in different orders can be simulated. We can combine the
output of the simulator with knowledge about how long
each elementary operation (unification, substitution, and
so on) will take, to arrive at actual time estimates. It is
then necessary to decompose the simulated cost into a sum
of rule costs.

A. The Number of Resolvents

Here we describe how to estimate the number of resol-
vents generated at each node in the rule graph, given esti-
mates for the numbers of propositions matching each pat-
tern in F and G. We also need to know, for each variable
in any clause of R, the size of the domain of values over
which that variable will range. This is important for two
reasons. First, some of the equations involved (which have
been omitted for space reasons) are couched in terms of
the probability of a typical instance of some clause pat-
tern being generated, so that in order to derive a cost esti-
mate, we need to know the number of potential instances
of this pattern. Domain sizes also affect the probability
that two variables will have been bound to different val-
ues, which in turn affects the chance that a unification will
be successful; however, this probability may be known in-
dependently. Note that “domain” here refers to the set
of values expected to be encountered during a particular
run of the program, rather than to a set of theoretically
possible values.

1. Simulated unification

It is useful to distinguish the set of variables in a pat-
tern which will have had constants substituted for them
at the time when unification is attempted. We call these
“bound variables” of the pattern, meaning that the sim-
ulation must know that they will be bound at run- time

to constants whose values are not known yet. The other
variables in the pattern will be referred to as its “free vari-
ables”, or “variables” if there is no ambiguity. Now clearly
the pattern of a set of resolvents will be just the result
of resolving the patterns of the two parent sets. How-
ever, when a pattern that has bound variables is unified
with another pattern, this represents some unifications at
run-time in which constants will have been substituted for
these bound variables, and the unification may fail if two
unequal constants have appeared. So, when the simulator
is unifying two patterns, it must take special note of their
bound variables.

In the absence of specific information, we can estimate
the probability of successful unification between a bound
variable and a constant or another bound variable by as-
suming that all values in the domain of the bound vari-
able are equally likely to occur. This is called the equal
frequency assumption: no value appears more often than
another of the same type. The probability of a unification
succeeding is then the reciprocal of the number of possible
values in the domain.

If the distribution of actual constants in the facts and
goals does not conform to the equal frequency assump-
tion, the estimated numbers of resolvents may be arbitrar-
ily badly wrong. Two safety mechanisms are possible for
this. The first is to specify that some value is going to
be over- or under-represented relative to the average; this
could be done for several values. The second is to allow
the user to give the probability of successful unification di-
rectly. For example, in a Computer Science Department
where all the students have ages between 12 and 50, the
probability of a random student being the same age (in
years) as another may actually be 0.2 or so. The simulator
can simply use this value instead of subtracting 12 from 50
and taking the reciprocal.

2. Estimating set sizes

The estimated number of clauses in the set of resolvents
is the probability of successful unification times the num-
ber of attempted unifications (which is just the product
of the estimated numbers of clauses for the parent sets).
In general, two literals being unified by the simulator may
contain several pairs of constants or bound variables that
must be equal for unification to succeed. We make an ur-
gument independence assumption, under which the event
of one pair being equal is independent of other pairs, so
the probabilities can be multiplied.

However, some of the bound variables in the parent pat-
terns may not correspond to anything in the resolvent pat-
tern. It may happen that some pairs of parent clauses will
differ only in the binding of such a variable, so that du-
plicates of some instances of the resolvent can occur, as
was indicated above. If th e resolvents are stored in the
database, these duplicates will presumably be detected and
eliminated, reducing the number of clauses that are avail-
able to subsequent resolutions. The appropriate changes
to the estimated set sizes have been given in [5].

Given directions for each rule in R, and the patterns and

156 / SCIENCE

estimated sizes for sets of terms in F and G, we can now
iteratively obtain descriptions of all the sets of resolvents
generated. This approach is clearly not adequate for deal-
ing with recursive rules in R, which correspond to cycles
in the rule graph. Techniques for dealing with recursive
rules are being investigated by many researchers [3,2,7].

B. Breaking down the costs

Since a clause pattern can be derived via a sequence of
resolutions involving several rules from R, we need some
way of assigning the costs associated with a set of clauses
to one and only one rule, or perhaps to a goal, so that the
total cost of a strategy is equal to the sum of costs over all
the rules and goals, and so that the cost numbers for each
direction of each rule accurately reflect the consequences of
using that rule in that direction. We make this assignment
by considering the first literal of the clause set’s pattern,
which must have been obtained by a.pplying some number
(possibly zero) of substitutions to a literal of a rule or goal
from R or G. We charge the costs associated with the set
against this rule or goal.

Minor adjustments must be made to this even in the
coherent case, since the number of database lookup op-
erations done by a rule depends on which, if any, of its
predecessors are used forwards. It turns out to be possible
to remove this variability in the cost of a rule by assuming
that it looks up all its inputs in the database, and then ad-
justing the costs of backward rules to reflect the fact that
their answers do not get looked up and so do not contribute
to lookup costs. In the incoherent case, it is impossible to
define the cost of using the rule backwards independently
of the rest of the strategy it is used in.

V CONCLUSIONS

We have shown how a certain optimisation on logic pro-
grams can be performed cheaply under a fairly commonly
encountered set of conditions. It is difficult to quantify
the benefits available from this optimisation, since prob-
lems can easily be conceived which would take arbitrarily
long to solve if only one of forward and backward inference
were used, but are soluble in modest amounts of time by
an appropriate combination of the two. Human program-
mers, confronted with such problems, will usually make
sensible choices; the claimed advantages for this procedure
are that it gives the precisely optimal strategy, and that it
can easily be tailored to the performance of any inference
engine by adjusting the calculations of ej(z) and es(z).

Note that although the cost estimation methods fail on
recursive sets of rules, the optimisation algorithms do not.
If estimates ef and eb were available for such rules, the
coherence condition requires that any set of mutually re-
cursive rules be used in the same direction as each other, so
for the purposes of optimisa.tion they could be treated like
one rule, and the linear pr0gra.m or the search algorithm
could be used.

The problem of finding the optimal incoherent strategy,
under the assumptions used here, is discussed in [6]. The
obvious next extension to this work will be the study of
how to optimise the ordering of negative literals within
clauses together with the directions in which the clauses are
used. Another important direction for future research will
be the investigation of “adaptive” or “mixed” methods,
which use information gathered at run-time to change or
control a generic strategy devised at compile-time.

PI

PI

PI

WI

PI

161

PI

REFERENCES

Robert S. Boyer. Locking: A Restriction of Resolu-
tion. PhD thesis, University of Texas at Austin, Au-
gust 1971.
L.J. Henschen and S.A. Naqvi. Compiling queries in
recursive first order databases. Journal of the ACM,
31(1):47-85, January 1984.
D. P. McKay and S. Shapiro. Using active connec-
tion graphs for reasoning with recursive rules. In Pro-
ceedings of the Seventh IJCAI, pages 368-374, August
1981.
Nicholas Roussopoulos. Indexing views in a relational
database. ACM Transactions on Database Systems,
7(2):258-290, June 1982.
D. E. Smith. Controlling Inference. PhD thesis, Stan-
ford University, July 1985.
R.J. Treitel. Sequentialising Logic Programs. PhD the-
sis, Stanford University, 1986.
Jeffrey D. Ullman. Implementation of Logical Query
Languages for Databases. Technical Report STAN-CS-
84-1000, Stanford University, May 1984.

Search: AUTOMATED REASONING / 157

