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ABSTRACT function is a function which estimates what resulting value 

Two-person, perfect information, constant sum games 
have been studied in Artificial Intelligence. This paper opens 
up the issue of playing n-person games and proposes a pro- 
cedure for constant sum or non-constant sum games. It is 
proved that a procedure, max”, locates an equilibrium point 
given the entire game tree. The minimax procedure for 2- 
person games using look ahead finds a saddle point of 
approximations, while maxn finds an equilibrium point of 
the values of the evaluation function for n-person games 
using look ahead. Maz” is further analyzed with respect to 
some pruning schemes. 

I INTRODUCTION 

Game playing is one of the first areas studied in 
Artificial Intelligence (AI) [Ric83]. Most of the work has 
been done with games that are 2-person, finite, constant sum 
(and therefore non-cooperative), perfect information and 
without a random process involved. For example, chess and 
checkers involve two neoole. have a finite number of stra- 
tegies available to each’ player, pay the same total amount at 
the end of the game, each player knows the other player’s 
moves, and there is no chance involved. The most famous 
game programs are the chess players such as the Cray-Blitz, 
Chaos and Belle [Ne184]. This paper addresses n-person 
games, that is, games with more than two players, and 
describes a method of computer play for non-cooperative, 
non-constant sum games, and for cooperative games given a 
coalition structure. The approach has been to bring game 
theoretic results into the more pragmatic AI domain. 

the game should have when given a terminal node of a par- 
tial game tree. Then by the look ahead procedure, values are 
backed up from the terminal nodes to each node of the tree 
according to the minimaz searching method [Ric83]: 
(1) at the program’s move, the node gets the maximum 

value of its children, 
(2) at the opponent’s move, the node gets the minimum 

value of its children. 
The value that is backed up to the root node is the value of 
the game, and the move taken should be to a node that has 
that value as its backed up value. If the whole tree is avail- 
able to be analyzed, there is a theorem from game theory 
called the minimaz theorem [LuR57] that applies. It is for 
Z-person zero sum games. Zero sum means that the payoff 
values for each player add up to zero for any payoff vector. 
The theorem says there is a strategy that exists for each 
player that will guarantee that one gets at most v while the 
other loses at most v and the value of the game is v. This 
set of strategies, one for each player, is called a saddle point. 

For example, in the game of 2-2 Nim, initially there are 
2 piles of 2 tokens. Players A and B alternate turns. Each 
player selects a pile and removes any number of tokens from 
that pile, taking at least one. The loser is the one who takes 
the last token. 

Jqll Ill-1 

II BACKGROUND 

Trees are often used as models of decision making in AI 
and in game theory. From the rules or definition of a game, 
the game tree representation can be specified for an n-person 
game by a tree where [Jon80]: 

(1) the root node represents the initial state of the 

(2) 

(3) 

game, 
a node is a state of the with the player 
whose move it is attached to it, 
transitions represent possible moves a player 

An1 Aal 

Figure 1. 2-2 Nim 
. . 

(4 
make to the next possible states, 
outcomes are the payoff assignments associated 
with each terminal node, which are n-tuples where 
the ith entry is paid to player i. 

Because most games of interest have combinatorially explo- 
sive game trees, AI programs tend to analyze partial game 
trees in order to determine a best move. An evaluation 

The terminal node value of 1 corresponds to the vector (1,O) 
and -1 corresponds to (0,l). S ince this is a 2-person zero sum 
game, the outcomes can be represented by one number. The 
value of 2-2 Nim is -1 which means that no matter what A 
does, B can always make a move that will lead to a win for 
B. 
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A technique from AI called alpha-beta pruning [Ric83] 
reduces the number of nodes that have to be visited when 
calculating the minimax values. For example, in the above 
game tree orderin , when doing a depth first search and 
backing up to B ] II , frl the left most child needs to be 
evaluated to get a -1 and then it is not necessary to look any 
further since this is the best that B can do. If a game tree 
has depth d and branching factor b, then in the best case of 
this pruning procedure, 2bd/ 2 nodes are evaluated rather 
than the complete b d nodes [Win77]. 

III N-PERSON GAMES’ 

Considering games with more than two players, one 
value will no longer suffice in representing the outcome. A 
vector is required for both constant and non-constant sum 
games. A constant sum game is one where the sum of the 
entries in an outcome vector is the same value for any termi- 
nal node. It no longer makes sense to evaluate the game 
based on any one player’s payoff values. 

Game theory solutions to non-cooperative games are 
usually a set of strategies for each player that are in some 
sense optimal, where the player can expect the best outcome 
given the constraints of the game and assuming the other 
players are attempting to maximize their own payoffs. A 
solution for an n-person, perfect information game is a vec- 
tor which consists of a strategy for each player, 

tslr * - * J Sn)* A strategy defines for the player what move 
to make for any possible game state for the player. Call the 
set of possible strategies for player i, Pi, and the payoff to 
player i, Vi. Vi is a real valued function on a set of stra- 
tegies, one for each player. The set 

{Pl, * * - YPn;UIJ * * * J un} is called the normal form of a 
game [Jon80]. 
{PI, * * - ,Pn;U1, * * . ,L$ 

equilibrium point for 
is a strategy n- tuple 

(Sl, - * * ,s,), such that for all i=l,..., n and si,si’ EP,, 
U&l, . . . ,s;’ , . . . , Sn)< U;(s1, . . . , s;, . . . , s,). 

The si’s are called equilibrium strategies. For example, in 
the game represented by, 

Pl P2 

a1 

r 

(-4,-4) (h-9) 
1 

a2 
1 

Pv) (-1,-l) 
J 

1: Theorem 
A finite n-person non-cooperative game which has 
perfect information possesses an equilibrium point in 
pure strategies (proof in [Jon80], page 63). 

A pure strategy is a single (Y; or pi, as we have seen so far. 
The theorem just states the existence of an equilibrium 
point, not how to find one. 

IV MAXN 

If we have rational players who are trying to maximize 
their own payoffs, the backed up values should be the max- 
imum for each player at each player’s turn. We call this 
procedure Max n. The maxn procedure, maxn(node), is 
recursively defined as follows: 

(1) For a terminal node, 
maxn(node) = payoff vector for node 

(2) Given node is a move for player i, and 

(V lJ? ’ ’ -, 

maxn( jth 
V~j) is 

child of node), then 
maxn(node) = (vf , . . . , vi), 
which is the vector where vi’=maxvij . 

i 
Calling the procedure with the root node finds the maxn 
value for the game and determines a strategy for each 
player, including a move for the first player. This procedure 
can be used with a look ahead where a terminal node in the 
definition above becomes a terminal node in the look ahead. 
For example, given the payoff vectors on the bottom row, by 
the procedure, A should take the move represented here by 
the right child: 

(3,3,3) (2,2,5) (2,5,2) (0,4,4) (5,2,2) (4,i),4) (4,4,0) (l,i,l) 

Figure 3. maxn example 

Figure 2. 2X2 game 
Note that this procedure does not require that there be an 

where player A’s strategies are the LY,’ s and B’s are the 
pi’ s, and (a,b) means pay a to the first player and b to the 
second player, (or,&) which corresponds to (-4,-4) is an 
equilibrium point. The equilibrium point has the property 
that no player can improve his or her expected payoff by 
changing his or her own choice of strategy if the other stra- 
tegies are held fixed. A saddle point is an equilibrium point, 
while an equilibrium point may not be a saddle point. 

These non-cooperative games with perfect information 
are always solvable in this sense according to the following 
theorem. 

order in the moves of the 
example, B could follow C. 

players going down the tree. For 

The next theorem shows that maxn finds an equili- 
brium point. There may be more than one equilibrium 
point. When a tie occurs in the back up, each possible 
choice will lead to an equilibrium point, so it does not 
matter which move is selected. 
Theorem 2: 

Given an n-person, non-cooperative, perfect information 
game {PI ,..., P,;U, ,... U,}, in tree form, maxn finds an 
equilibrium point for the game. 
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Proof: 
Backing up values in the tree by applying the maxn pro- 
cedure, with some tie breaker, determines a strategy for 
each player which gives a strategy set S=(S~,...,S,), siEPi, 
i=l,...,n. So, at each node for each player i, the strategy 
si gives the arc or move choice which maximizes the 
backed up value of Ui of the children nodes. In order to 
have an equilibrium point, we need to show that for all i, 

uiCs ly...ySiy...,Sn)> Ui(Sly...ySi’ ,...,Sn), for all Si' EPi* 
Suppose that there is some sJ’ EP,, s,’ #s, where this is 
not true. That is, 

uj(s l,m*e,Sj f*se,Sn)< UJ (Sl,em*,S~ ’ ,.**,S,J. 
The strategy set S’= {sr, . . . , sj’ , . . . , sn} differs from 
S={q, . . . , SJ, . . . f sn} in the tree only at the nodes 
where it is j’s turn. As we work from the terminal nodes 
up the tree on the path defined by maxn, Sj’ must change 
this path or the payoff would be the same. Let us con- 
sider the place where sj and sj’ first differ: 

, j 

Csj) 

A 

('j' ) 

V V’ 

Figure 4. where the strategies differ 

where v=(vr, . . . ,vn) and v’=(vr’, . . . ,v,‘) are the 
maxn backed up values which are the payoffs for the stra- 

ten sets S and S’, respectively, and 
Vi=Ui(SIJ e * e ~Siy a e a rSn)y 

Vi’=Ui(S1, . . . , Si’ , . . . , Sn). From our assumption 
vi < vj’ but by the maxn procedure vi 2vj’ . This con- 
tradiction proves the theorem. •I 

An equilibrium point exists according to theorem 1, and it is 
the best a player can do if the opponents are rational, which 
means taking the maximum of the utilities available to 
them. This procedure seems a likely candidate for playing n- 
person, non-cooperative, perfect information games in the AI 
domain, that is, games to be played intelligently by a com- 
puter. Just as the minimax procedure with an evaluation 
function approximates a saddle point in two person, perfect 
information games, if we use maxn with a good evaluation 
function, we can approximate an equilibrium point. Actu- 
ally we would be finding an equilibrium point of the approxi- 
mations given by the heuristic function. It is also possibie to 

check each point and analyze it to see if it might be an 
equilibrium point. Maz” gives a quick result on which to 
base a move choice. 

An estimated payoff calculation for a node does not 
need to be for the whole vector. The value needed immedi- 
ately is the estimated payoff for the entry of the player of 
the parent node in order to make a comparison to decide 
which value to back up. We will consider types of possible 
pruning related to this. 

V SHALLOW PRUNING 

Since in searching for the maxn value a maximum is 
always sought after, pruning of subtrees as in alpha-beta 

is not 
entries 

possible. However, some pruning of individual 
within the vector is possible if the entries are 

payoff 
calcu- 

lated separately. A simple pruning would be to calculate the 
entire vector only for the best child of the terminal nodes. 
Only one entry from the other payoff vectors is needed. 
First, evaluate the payoff entry for the parent node in each 
of the children and find the maximum entry. Then back up 
the entire vector of that child. If a game tree has a constant 
branching factor b and we look ahead m levels, which would 
usually be a multiple of n, then the number of evaluations is 
nbm, without any pruning. With this simple shallow prun- 
ing, rather than evaluating all nbm numbers, only one vector 
entry value for each b” terminal plus the rest of the vector 
for the best child of each of the b”-’ parents is calculated. 
Thus, the number of evaluations is b” +(n-l)b”-’ = 
b m-1( b tn-1). The percentage of entries evaluated is: 

b”+nb”-l-b”-’ = 1+ 1 1 

nbm n b nb’ 
Note that this does not depend on the number of levels 
being searched. 

A further improvement on this is to calculate a value 
only when it is needed for the next comparison. Instead of 
only for terminal nodes as in the simple shallow pruning, do 
this for all levels of nodes. Each time a child’s values are 
backed up, the next value to the left in the vector of payoffs 
needs to be calculated. That is, the payoff for the player a 
level above needs to be calculated from the terminal node 
from which the backed up value came. Call this shallow 
pruning for n-person games. The number of evaluations out 
of nbm done with this type of pruning is: 

bm+bm-l+ . . . +b”-(n-1) 

= b”+ - - - +b+l _ (bm-n+b”-(“+‘)+. . . +b+l) 

b m+l -1 bm-“+l-l 
=-e 

b-l b-l 

b m+l-bm-n+l 
= 

b-l 
The following procedure returns the entry payoff of the 
maxn vector and determines the strategy for the player of 
node as a side effect. The maxn algorithm with shallow 
pruning is: 

pmaxn( node); /* returns maxn value */ 
BEGIN 
IF node is terminal in the look ahead 
THEN evaluate and return the parent’s payoff 
ELSE 

BEGIN 
FOR each child of node 
DO BEGIN 

v := pmaxn(child) 
IF v is the best value of the children 
THEN back up the value and child pointer 
END 

calculate the value for the grandparent of 
the best child and back it up also 

RETURN v 
END 

END 
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The algorithm is illustrated in the example in the next sec- 
tion. 

The number of comparisons done of payoff values with 
any of these searches is the same. At the lowest level where 
the terminal nodes are, for each of the b”-’ sets of children, 
there are b-l comparisons made, and b-l for each of the 
brne2 groups of b nodes above, and so on, to the final b-l 
comparisons at the root node. So, the number of total com- 
parisons is: 

bm-l(b-l)+bm-z(b-l)+ . . . +b(b-1)+(6-l) 

= s (b-1) 
= bm-l 

VI EXAMPLE 

As an example of shallow pruning, see figure 5 for the 
first three moves of the 2-2-2 Nim game for three players. 

(l/2,1/2,0) \ 

\ c /#/-7q W/2,1~2) 

(0.1 ,O) 
.L, 

(1 fJ.0) 
l *. 

*EVALUATEDIN 
SHALLOW PRUNING 

Figure 5. three person 2-2-2 Nim with 
three levels of look ahead 

The game is played just like the other Nim games. Players 
alternate turns taking one or more pieces from any one 
group. The goal can be varied to give a different evaluation 
and strategy for playing. The goal in this case is to have the 
player before you take the last piece. The player who 
achieves the goal gets 1 unit of reward and the other two get 
nothing. The evaluation function used for the look ahead 
estimate is the percentage of the possible number of moves 
left in 

the game which leads to a win for the player. To calculate 
that, first find the minimum number of moves left in the 
game which is equal to the number of groups, say a for 
example. Th en find the maximum number of moves left, 
which is equal to the total number of pieces left, b for exam- 
ple. The possible number of moves in the game ranges from 
a to b, or the possibilities are a, a+l, a+2, . . . , b-l, b. The 
estimated payoff in the look ahead player for A is the 
number of these that are divisible by 3 ( = 0 mod 3), 
divided by I{a,a+l, . . . ,b-l,b}( = b-a+l. The estimated 
payoff for B is the percentage of the numbers that are equal 
to 1 mod 3, and for C it is equal to 2 mod 3. 

For example, with one group of one piece and one 
group of two pieces we have a=2 and b=3. The estimated 
payoffs for A, B, and C are l/2, O/2=0, l/2, respectively. 
In the example given, an exhaustive search would require 39 
evaluations while the shallow pruning requires 24 evalua- 
tions, or 62% of an exhaustive search. The back up pro- 
cedure suggests that A should take the lower child in the 
representation for its first move. Ties are handled by backing 
up the average of the payoffs for each player, which is a pos- 
sible variation with which to play. Note that when this is 
done, more evaluations may be needed than the stated for- 
mula suggests. 

VII DEEP PRUNING 

The pruning described here could be correlated to a 
deep cutoff which was made distinct from a shallow cutoff by 
Pearl [Pea84]. A deep cutoff uses information from great 
grandparent nodes. When a value is backed up, the entry 
for the player of the grandparent node must also be sent for 
the comparison at the next level up. A deep pruning pro- 
cedure for n-person games is: 

evaluate the far left, lowest level children 
for the last player’s payoff, 

find the best of the components, 
evaluate the best vector, 

(~1, - - a , vn), and 
back it up one level 
IF at the root node 
THEN return the vector 
ELSE BEGIN 

back the vector up one level to player i 
FOR each unvisited terminal node below 
DO BEGIN 

IF v, < the payoff to player i 
at the terminal node 

THEN back up the best vector 
by shallow pruning 

END 
REPEAT (2) with the backed up node 
END 

Applying deep pruning to the example used for shallow 
pruning requires seven more evaluations than the shallow 
pruning. Th e game tree in figure 3 requires 16 evaluations in 
simple shallow, 14 in shallow and 19 in deep pruning. Fig- 
ure 6 is an example which benefits from deep pruning. The 
second set of payoffs shows which entries are evaluated. 
There are 10 evaluations with deep pruning verses 14 with 
shallow. 
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(5,4,1) (2,2,2) (5,1,2) (2,0,3) (1,573) (0,374) (LW PM) 
(-,-,I) (2,2,2) (-A-) (-,o,-) (W Kh-) (L-7-) (on) 

Figure 6. deep pruning 

The best case, shown above, would evaluate bm +n -1 values 
in the general n-person game tree with constant branching 
factor b, m levels of look ahead, and n players. This is 
better than the case for shallow pruning. Deep pruning 
would be very useful if some predictable order of terminal 
nodes were available. 

In the worst case, at each check going down the tree, 
the comparison would call for a different vector value to be 
backed up. In that case, below each of the 6”-’ nodes in the 
level next to the bottom, the number of evaluations required 
is: 

n values for the vector + 
b-l values to find the best child + 
b-l values of the deep pruning check which would 

fail on the last node checked in the worst case. 

Adding this up for the 6 m-1 nodes, and subtracting (b-l) 
since the first set of children is only evaluated to find the 
best child and not a deep pruning check, we get: 

6”++2(6-1)1-(6-l) = 
26”+(n-2)b”‘-l-6+1 = 
(6”+nbm-‘-6 “-I)+( b”--6 m-1-6 +1). 

This last expression is the number of evaluations in simple 
shallow pruning plus (b”-6”-l-6+1) = (6”-l-1)(6-1). 

VIII COOPERATIVE GAMES 

A cooperative game is one in which communication and 
coalition formation is allowed between players. A coalition 
is a subset of the n players such that a binding agreement 
exists between the players. The coalition can be treated as 
one player with a strategy which is collectively determined. 
When it is a player’s turn who is in the coalition, it is the 
coalition’s move. A coalition structure on an n-person game 
{PI, . . . , P,;CJ,, . . . , U,} is a partition of {l,..., n}. Call 
the partition S={S,, . . . , S, }, where 

si = {Qilt * - - 7 Qiz,lT ~,j~O~..-4h 

S; nSj =r$ for all i #j, and 
SlU * * - USm = {I,...+} 

We can now use max” for cooperative games by the follow- 
ing theorem. 
Theorem 3: 

For any coalition structure {S,, . , . , S, }, S, = 
{ ql, . . . , qz,}, on a cooperative n-person game 

{PI, . . . , P, ; U,, . . . , u* }, maxn finds an equilibrium 

point for the m-person non-cooperative game 

W,, . . . JLY1,. . . , &,I where 

R,=Pqlx - - . xP,*, and Wj(71, . . . ,7m) = 
1 

5 qs1, - . - , s,), r&-L+%. 
j=l 

Proof: 

APPlY theorem 2 to the non-cooperative game 

-CR,, . . . JL;W,, - -. , W,}. In the tree form, it is Ri ‘S 
turn whenever it is a player’s turn who is in the coalition 
Ri . 

Assuming a coalition structure has been determined 
and will remain constant for a cooperative game, maxn can 
be applied to the resulting non-cooperative game with a 
meaningful result. Maz’ can be used in determining a move 
for a computer in n-person games under these conditions. 

IX CONCLUSIONS 

As an answer to how should a computer play n-person, 
non-cooperative games, maxn with pruning is a satisfactory 
approach given a good evaluation function. In the best case 
situation, deep pruning does the least number of evaluations, 
but in the worst case for deep pruning, it does worse than 
even the simple shallow pruning. Shallow pruning does fewer 
evaluations than simple shallow pruning, however, more 
traveling by pointers in the tree is required. For cooperative 
games with a given coalition structure, max” will find an 
equilibrium point as a possible solution of the game and 
determine a strategy for a coalition. Using this approach, 
we are looking at the question of what are the best coalitions 
to be formed. The max” algorithm might also be applied to 
imperfect information games or games with chance involved. 
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