From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

AN ALGORITHMIC SOLUTION OF N-PERSON GAMES

Carol A. Luckhardt and Keki B. Irani

Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan 48104

ABSTRACT

Two-person, perfect information, constant sum games
have been studied in Artificial Intelligence. This paper opens
up the issue of playing n-person games and proposes a pro-
cedure for constant sum or non-constant sum games. It is
proved that a procedure, max”, locates an equilibrium point
given the entire game tree. The minimax procedure for 2-
person games using look ahead finds a saddle point of
approximations, while max" finds an equilibrium point of
the values of the evaluation function for n-person games
using look ahead. Maz" is further analyzed with respect to
some pruning schemes.

I INTRODUCTION

Game playing is one of the first areas studied in
Artificial Intelligence {AI) [Ric83]. Most of the work has
been done with games that are 2-person, finite, constant sum
(and therefore non-cooperative), perfect information and
without a random process involved. For example, chess and
checkers involve two people, have a finite number of stra-
tegies available to each player, pay the same total amount at
the end of the game, each player knows the other player’s
moves, and there is no chance involved. The most famous
game programs are the chess players such as the Cray-Blitz,
Chaos and Belle [Nel84]. This paper addresses n-person
games, that is, games with more than two players, and
describes a method of computer play for non-cooperative,
non-constant sum games, and for cooperative games given a
coalition structure. The approach has been to bring game
theoretic results into the more pragmatic Al domain.

II BACKGROUND

Trees are often used as models of decision making in Al
and in game theory. From the rules or definition of a game,
the game tree representation can be specified for an n-person
game by a tree where [Jon80j:

(1) the root node represents the initial state of the

game,
(2) a node is a state of the game with the player

whose move it is attached to it,
(3) transitions represent possible moves a player can

make to the next possible states,
(4) outcomes are the payoff assignments associated

with each terminal node, which are n-tuples where
the :** entry is paid to player i.
Because most games of interest have combinatorially explo-
sive game trees, Al programs tend to analyze partial game
trees in order to determine a best move. An evaluation
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function is a function which estimates what resulting value
the game should have when given a terminal node of a par-
tial game tree. Then by the look ahead procedure, values are
backed up from the terminal nodes to each node of the tree
according to the minimaz searching method [Ric83]:

(1) at the program’s move, the node gets the maximum
value of its children,

(2) at the opponent’s move, the node gets the minimum
value of its children.

The value that is backed up to the root node is the value of
the game, and the move taken should be to a node that has
that value as its backed up value. If the whole tree is avail-
able to be analyzed, there is a theorem from game theory
called the minimaz theorem [LuR57] that applies. It is for
2-person zero sum games. Zero sum means that the payoff
values for each player add up to zero for any payoff vector.
The theorem says there is a strategy that exists for each
player that will guarantee that one gets at most v while the
other loses at most v and the value of the game is v. This
set of strategies, one for each player, is called a saddle point.

For example, in the game of 2-2 Nim, initially there are
2 piles of 2 tokens. Players A and B alternate turns. Each
player selects a pile and removes any number of tokens from
that pile, taking at least one. The loser is the one who takes
the last token.

Figure 1. 2-2 Nim

The terminal node value of 1 corresponds to the vector (1,0)
and -1 corresponds to (0,1). Since this is a 2-person zero sum
game, the outcomes can be represented by one number. The
value of 2-2 Nim is -1 which means that no matter what A

does, B can always make a move that will lead to a win for
B.



A technique from Al called alpha-beta pruning [Ric83]
reduces the number of nodes that have to be visited when
calculating the minimax values. For example, in the above
game tree ordering, when doing a depth first search and
backing up to B , the left most child needs to be
evaluated to get a -1 and then it is not necessary to look any
further since this is the best that B can do. If a game tree
has depth d and branching factor b, then in the best case of
this pruning procedure, 26%2 nodes are evaluated rather
than the complete ¢ nodes [Win77].

I N-PERSON GAMES

Considering games with more than two players, one
value will no longer suffice in representing the outcome. A
vector is required for both constant and non-constant sum
games. A constant sum game is one where the sum of the
entries in an outcome vector is the same value for any termi-
nal node. It no longer makes sense to evaluate the game
based on any one player’s payoff values.

Game theory solutions to non-cooperative games are
usually a set of strategies for each player that are in some
sense optimal, where the player can expect the best outcome
given the constraints of the game and assuming the other
players are attempting to maximize their own payoffs. A
solution for an n-person, perfect information game is a vec-
tor which consists of a strategy for each player,
(81, - . . ,8,). A strategy defines for the player what move
to make for any possible game state for the player. Call the
set of possible strategies for player i, P;, and the payoff to
player i, U;. U, is a real valued function on a set of stra-

tegies, one for each player. The set
{Py, ..., P,;Uy, ..., U} is called the normal form of a
game [Jong0]. An equilibrium point for
{Py - -,P;Uy, - ,U} is a  strategy  n-tuple
(81, * * * 185), such that for all i=1,...,n and s;,s;,' €P;,

Ulsy, - o588 oo o1 8)<Ui(S1y -+ 2585y - <+ 5 8s)-

The s;’'s are called equtltbrium strategies. For example, in
the game represented by,

B B,
ar | (4-4) (1,-9)
oy (-9,1) (-1,-1)

Figure 2. 2X2 game

where player A’s strategies are the «,’s and B’s are the
B;' s, and (a,b) means pay a to the first player and b to the
second player, (a;,3;) which corresponds to (-4,-4) is an
equilibrium point. The equilibrium point has the property
that no player can improve his or her expected payoff by
changing his or her own choice of strategy if the other stra-
tegies are held fixed. A saddle point is an equilibrium point,
while an equilibrium point may not be a saddle point.

These non-cooperative games with perfect information
are always solvable in this sense according to the following
theorem.

Theorem 1:
A finite n-person non-cooperative game which has
perfect information possesses an equilibrium point in
pure strategies (proof in [Jon80], page 63).
A pure strategy is a single a; or (;, as we have seen so far.
The theorem just states the existence of an equilibrium
point, not how to find one.

IV MAXY

If we have rational players who are trying to maximize
their own payoffs, the backed up values should be the max-
imum for each player at each player’s turn. We call this
procedure Maz". The max™ procedure, maxn(node}, is
recursively defined as follows:

(1) For a terminal node,
maxn(node) = payoff vector for node
(2) Given node is a move for player i, and

(vh,... M)is
maxn(j* child of node) then
maxn(node) = (v;, ..., v,),

which is the vector where v; =maxv;;.
i

Calling the procedure with the root node finds the max"
value for the game and determines a strategy for each
player, including a move for the first player. This procedure
can be used with a look ahead where a terminal node in the
definition above becomes a terminal node in the look ahead.
For example, given the payoff vectors on the bottom row, by
the procedure, A should take the move represented here by
the right child:

(1,1,1)

m

B (0,4,4) (1,1,1)

Nx second ent%\

C (2,2,5) C(0,4,4) C(40,4) C(1,1,1)

ax\third en]/y\ /\
/

(3,3,3) (2,2,5) (2,5,2) (0,4,4) (5,2,2) (4,0,4) (4,4,0) (1,1,1)

Figure 3. max"™ example

Note that this procedure does not require that there be an
order in the moves of the players going down the tree. For
example, B could follow C.

The next theorem shows that max" finds an equili-
brium point. There may be more than one equilibrium
point. When a tie occurs in the back up, each possible
choice will lead to an equilibrium point, so it does not
matter which move is selected.

Theorem 2:
Given an n-person, non-cooperative, perfect information
game {P,,...P,;Uy,...U,}, in tree form, max" finds an
equilibrium point for the game.
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Proof:
Backing up values in the tree by applying the max™ pro-
cedure, with some tie breaker, determines a strategy for
each player which gives a strategy set S=(s;,...,s,), 5;€P;,
i=1,...,n. So, at each node for each player i, the strategy
s; gives the arc or move choice which maximizes the
backed up value of U; of the children nodes. In order to
have an equilibrium point, we need to show that for all i,

Ui (8100185 yeeerSn ) 2 Ui (S 1y00y 8| yonny8y ), Tor all 5" €P;.
Suppose that there is some s;' €P;, s;' 7%s; where this is
not true. That is,

U (S1500e18 3000980 ) < U (81500587 1oer8n )

The strategy set S'= {s1,...,s;’'

i
, 5.} in the tree on

3~

s, } differs from
a re o o
S—S1 - oy Sjs e a
where it is j’s turn. As we work from the terminal nodes
up the tree on the path defined by max", sJ-’ must change
this path or the payoff would be the same. Let us con-
sider the place where s; and s;' first differ:

1

(s;) /\(Sj' )
v v!
Figure 4. where the strategies differ

where v=(vy, ...,v,) and v/ =(v,', ..., v,") are the
max” backed up values which are the payoffs for the stra-

tegy sets S and S’ respectively, and
v,«:Ui(sl, EENER- PR .,S"),
v'=Ui(sy,.--,8",...,8,). From our assumption

v; <v;' but by the max" procedure v; 2>v;'. This con-
tradiction proves the theorem. O

An equilibrium point exists according to theorem 1, and it is
the best a player can do if the opponents are rational, which
means taking the maximum of the utilities available to
them. This procedure seems a likely candidate for playing n-
person, non-cooperative, perfect information games in the Al
domain, that is, games to be played intelligently by a com-
puter. Just as the minimax procedure with an evaluation
function approximates a saddle point in two person, perfect
information games, if we use max” with a good evaluation
function, we can approximate an equilibrium point. Actu-
ally we would be finding an equilibrium point of the approxi-
mations given by the heuristic function. It is also possible to
check each point and analyze it to see if it might be an
equilibrium point. Maz" gives a quick result on which to
base a move choice.

An estimated payoff calculation for a node does not
need to be for the whole vector. The value needed immedi-
ately is the estimated payoff for the entry of the player of
the parent node in order to make a comparison to decide
which value to back up. We will consider types of possible
pruning related to this.

V SHALLOW PRUNING

Since in searching for the max" value a maximum is
always sought after, pruning of subtrees as in alpha-beta
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is not possible. However, some pruning of individual payoff
entries within the vector is possible if the entries are calcu-
lated separately. A simple pruning would be to calculate the
entire vector only for the best child of the terminal nodes.
Only one entry from the other payoff vectors is needed.
First, evaluate the payoff entry for the parent node in each
of the children and find the maximum entry. Then back up
the entire vector of that child. If a game tree has a constant
branching factor b and we look ahead m levels, which would
usually be a muitiple of n, then the number of evaluations is
nbd™, without any pruning. With this simple shallow prun-
ing, rather than evaluating all nb™ numbers, only one vector
entry value for each 6™ terminal plus the rest of the vector
for the best child of each of the b™! parents is calculated.
Thus, the number of evaluations is 8™ +(n-1)b""' =

5™ Yb+n-1). The percentage of entries evaluated is:
b™pnb™p™ 1 1 1
nb™ n b nb’
Note that this does not depend on the number of levels

being searched.

A further improvement on this is to caicuiate a vaiue
only when it is needed for the next comparison. Instead of
only for terminal nodes as in the simple shallow pruning, do
this for all levels of nodes. Each time a child’s values are
backed up, the next value to the left in the vector of payoffs
needs to be calculated. That is, the payoff for the player a
level above needs to be calculated from the terminal node
from which the backed up value came. Call this shallow
pruning for n-person games. The number of evaluations out
of nb™ done with this type of pruning is:

bm+bm—1+ .. +bm-(n-1]
=b"4 bl - (B )

bm+1~1 i pm-n +1_1
b-1 b-1

bm+1_bm—n+1

b-1
The following procedure returns the entry payoff of the
max® vector and determines the strategy for the player of
node as a side effect. The max” algorithm with shallow
pruning is:

pmaxn(node); /* returns maxn value */
BEGIN
IF node is terminal in the look ahead
THEN evaluate and return the parent’s payoff
ELSE
BEGIN
FOR each child of node
DO BEGIN
v ;= pmaxn(child)
IF v is the best value of the children
THEN back up the value and child pointer
END
calculate the value for the grandparent of
the best child and back it up also
RETURN v
END
END



The algorithm is illustrated in the example in the next sec-
tion.

The number of comparisons done of payoff values with
any of these searches is the same. At the lowest level where
the terminal nodes are, for each of the 6™! sets of children,
there are b-1 comparisons made, and b-1 for each of the
5™% groups of b nodes above, and so on, to the final b-1
comparisons at the root node. So, the number of total com-

parisons is:
BN (b-1)+b™F(b—L)+ - + - +b(b-1)+(b-1)
b™-1

=H"-1

VI EXAMPLE

As an example of shallow pruning, see figure 5 for the
first three moves of the 2-2-2 Nim game for three players.
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Figure 5. three person 2-2-2 Nim with
three levels of look ahead

0,1/2,1
1/2,172,0) (a /-2 {2)

(172,172,0)

(1/2,1/2,0)

The game is played just like the other Nim games. Players
alternate turns taking one or more pieces from any one
group. The goal can be varied to give a different evaluation
and strategy for playing. The goal in this case is to have the
player before you take the last piece. The player who
achieves the goal gets 1 unit of reward and the other two get
nothing. The evaluation function used for the look ahead
estimate is the percentage of the possible number of moves
left in

the game which leads to a win for the player. To calculate
that, first find the minimum number of moves left in the
game which is equal to the number of groups, say a for
example. Then find the maximum number of moves left,
which is equal to the total number of pieces left, b for exam-
ple. The possible number of moves in the game ranges from
a to b, or the possibilities are a, a+1, a+2, ... , b-1, b. The
estimated payoff in the look ahead pilayer for A is the
number of these that are divisible by 3 { = 0 mod 3),
divided by [{a,a+1, ... ,b-1,b}| = b-a+1. The estimated
payoff for B is the percentage of the numbers that are equal
to 1 mod 3, and for C it is equal to 2 mod 3.

For example, with one group of one piece and one
group of two pieces we have a=2 and b=3. The estimated
payoffs for A, B, and C are 1/2, 0/2=0, 1/2, respectively.
In the example given, an exhaustive search would require 39
evaluations while the shallow pruning requires 24 evalua-
tions, or 62% of an exhaustive search. The back up pro-
cedure suggests that A should take the lower child in the
representation for its first move. Ties are handled by backing
up the average of the payoffs for each player, which is a pos-
sible variation with which to play. Note that when this is
done, more evaluations may be needed than the stated for-
mula suggests.

VII DEEP PRUNING

The pruning described here could be correlated to a
deep cutoff which was made distinct from a shallow cutoff by
Pearl [Pea84]. A deep cutoff uses information from great
grandparent nodes. When a value is backed up, the entry
for the player of the grandparent node must also be sent for
the comparison at the next level up. A deep pruning pro-
cedure for n-person games is:

(1) evaluate the far left, lowest level children
for the last player’s payoff,
find the best of the components,
evaluate the best vector,
(vyy -, v,), and
back it up one level
(2) IF at the root node
THEN return the vector
ELSE BEGIN
back the vector up one level to player i
FOR each unvisited terminal node below
DO BEGIN
IF v; < the payoff to player i
at the terminal node
THEN back up the best vector
by shallow pruning
END
REPEAT (2) with the backed up node
END

Applying deep pruning to the example used for shallow
pruning requires seven more evaluations than the shallow
pruning. The game tree in figure 3 requires 16 evaluations in
simple shallow, 14 in shallow and 19 in deep pruning. Fig-
ure 6 is an example which benefits from deep pruning. The
second set of payoffs shows which entries are evaluated.
There are 10 evaluations with deep pruning verses 14 with
shallow.
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Figure 6. deep pruning

The best case, shown above, would evaluate b™+n-1 values
in the general n-person game tree with constant branching
factor b, m levels of look ahead, and n players. This is
better than the case for shallow pruning. Deep pruning
would be very useful if some predictable order of terminal
nodes were available.

In the worst case, at each check going down the tree,
the comparison would call for a different vector value to be
backed up. In that case, below each of the 5™ nodes in the
level next to the bottom, the number of evaluations required
is:

n values for the vector +

b-1 values to find the best child +

b-1 values of the deep pruning check which would
fail on the last node checked in the worst case.

Adding this up for the 5™ nodes, and subtracting (b-1)
since the first set of children is only evaluated to find the
best child and not a deep pruning check, we get:

b™ i n+2(b-1)]-(b-1) =

26™ H{(n-2)b™ b +1 =

(6™ +nb™ p™ 1 (b™ ™ b +1).
This last expression is the number of evaluations in simple
shallow pruning plus (b™-b™"1-b+1) = (6™ 1-1)(b-1).

VIII COOPERATIVE GAMES

A cooperative game is one in which communication and
coalition formation is allowed between players. A coalition
is a subset of the n players such that a binding agreement
exists between the players. The coalition can be treated as
one player with a strategy which is collectively determined.
When it is a player’s turn who is in the coalition, it is the
coalition’s move. A coalition structure on an n-person game
{Py,...,P;Uy, ..., U} is a partition of {1,..,n}. Call
the partition S={Sy, . . ., Sp }, where

S = {1 - -+ 9.} 4 €{L,em},

SiMS;=¢ for all i7%7, and

S$iJ - USm = {10}
We can now use max” for cooperative games by the follow-
ing theorem.

Theorem 3:
For any coalition structure {S,...,S,}, S =
{¢1,---59,}, on a cooperative n-person game

{Py, ..., PyiUy ..

., U, }, max" finds an equilibrium
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point for the m-person non-cooperative game

{Ry - ., RiWy, ..., W} where
Ri=P, X - XP,, and Wilry, o oo ytm) =
Y, qu(sl, e Sy R ERy 5, EPy.
=1

Proof:

Apply theorem 2 to the non-cooperative game
{Ry, ..., Rp;Wy, ..., W,}. In the tree form, it is R,’s
turn whenever it is a player’s turn who is in the coalition

R

;-

Assuming a coalition structure has been determined
and will remain constant for a cooperative game, max" can
be applied to the resulting non-cooperative game with a
meaningful result. Maz" can be used in determining a move
for a computer in n-person games under these conditions.

IX CONCLUSIONS

As an answer to how should a computer play n-person,
non-cooperative games, max" with pruning is a satisfactory
approach given a good evaluation function. In the best case
situation, deep pruning does the least number of evaluations,
but in the worst case for deep pruning, it does worse than
even the simple shallow pruning. Shallow pruning does fewer
evaluations than simple shallow pruning, however, more
traveling by pointers in the tree is required. For cooperative
games with a given coalition structure, max™ will find an
equilibrium point as a possible solution of the game and
determine a strategy for a coalition. Using this approach,
we are looking at the question of what are the best coalitions
to be formed. The max" algorithm might also be applied to
imperfect information games or games with chance involved.
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