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ABSTRACT 

When searching game trees, Algorithm SSS* 
examines fewer terminal nodes than the alphabiata 
procedure, but has the disadvantage that the 
storage space required by it is much greater. 
ITERSSS* is a modified version of SSS* that does 
not suffer from this limitation. The memory M 
that is available for use by the OPEN list can be 
fed as a parameter to ITERSSS* at run time. For 
successful operation M must lie above a threshold 
value MO . But MO is small in magnitude and is of 
the same order as the memory requirement of the 
alphabeta procedure. The number of terminal nodes 
of the game tree examined by ITERSSS* is a func- 
tion of M, but is never greater than the number 
of terminals examined by the alphabeta procedure. 
For large enough M, ITERSSS* is identical in 
operation to SSS*. 

1. Introduction : 

The alphabeta procedure is the best known 
of game tree search algorithms. Generally formu- 
lated as a recursive procedure, it is quite fast 
in execution and uses little memory. In the pro- 
cess of computing the minimax value at the root of 
the game tree it makes a left-to-right scan of the 
terminal nodes: it does not examine all the termi- 
nals, but looks only at those that to it appear 
capable of influencing the root value. Detailed 
expositions can be found in Knuth and Moore /-2 7 
and Pearl L-3 7. 

- - 
- 

In 1979, Stockman 14_7 announced a new game 
tree search algorithm called SSS* quite different 
in nature from alphabeta. SSS* does not examine 
terminal nodes of the game tree in a left-to-right 
manner. It views a game tree as a union of its 
constituent solution trees, and at each step dur- 
ing the search, selects for inspection the most 
promising among the contending solution trees. The 
terminal nodes of this solution tree are examined 
in a left-to-right manner; if this not the best 
solution tree in the game tree, then a time comes 
when a more promising solution tree is found and 
that is then taken up for inspection. One node 
from each solution tree is kept in a list called 
OPEN. Nodes in OPEN have associated heuristic 
values, and OPEN is maintained as a priority queue 
with nodes having higher heuristic values at higher 
levels. At each iteration of the algorithm the node 
at the root of the priority queue is selected for 

examination. For a uniform game tree of depth d 
and branching factor b, SSS* requires O(bdi2) 
cells of storage for the OPEN list. In contrast, 
the total storage required by alphabeta is O(d). 

SSS* has an advantage over alphabeta in 
that it examines only a subset of the terminal 
nodes examined by alphabeta. Since the running 
time of a game-tree search algorithm is primarily 
determined by the number of terminal nodes it 
examines, SSS* should run faster than alphabeta. 
According to.Pearl [3, p. 310_7, however, on the 
average alphabeta examines at most three times as 
many terminals as SSS*, and the much greater 
memory and bookkeeping requirements of SSS* tend 
to weigh the scale in favour of alphabeta. 

In this paper we present a modified version 
of SSS* which we call ITERSSS*. The memory M that 
is available for the list OPEN is fed as a para- 
meter to ITERSSS* at execution time, which then 
runs essentially like SSS* but not using more 
memory than M. For a uniform game tree of depth d 
and branching factor b, the minimum allowable 
value of M is MO = p/21 . (b -l)+lwhen 
the root is a MAX node. So long as M is greater 
than this threshold value, ITERSSS* runs smoothly 
and outputs the minimax value at the root of the 
game tree. ITERSSS* examines more terminals than 
SSS* but fewer terminals than alphabeta, the 
number of terminals examined being a function of 
M. When M = b I"d/27 , ITERSSS* is identical in 
operation to SSS*. When M = Mof ITERSSS* examines 
no more terminals than alphabeta, and uses the 
same order of memory as alphabeta. From a pro- 
gramming point of view, ITERSSS* is of the same 
level of complexity as SSS*, and the flexibility 
it provides with regard to use of memory should 
give it an edge over both SSS* and alphabeta. 

In section 2 of this paper we give formu- 
lations of SSS* and ITERSSS*, and in section 3 we 
describe some experimental results. Section 4 
presents a few formal properties of game tree 
search algorithms, and Section 5 summarizes the 
paper and lists some open problems. 

2. Algorithms SSS* and ITERSSS* : 

We assume the root s of the game tree T to 
be a MAX (i.e. OR) node. The sons of s are then 
MIN (i.e. AND) nodes. The game tree T is also 
assumed to have a finite minimax value. A Dewey 
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radix-b code is used for representing the nodes 
in T. We suppose that T is a uniform tree of depth 
d and branching factor b. Then 

i) the root s is represented by the empty 
sequence ; 

ii) the sons of nonterminal node x are repre- 
sented as x-j, 1s j < b. 

The maximum possible length of the Dewey code is d 
digits, and terminal nodes in T have d digit codes. 
The definition can be readily generalized to non- 
uniform trees. The nodes of T get linearly ordered 
by the lexicographic ordering of their Dewey 
codes. We also note that each terminal node x in 
T has a static evaluation score v(x). 

A standard formulation of the alphabeta 
procedure using the minimax approach can be found 
in Knuth r2, p.3003, and this is the version of 
the algorithm used by us in our experimental in- 
vestigations described in the next section. We 
now present SSS*. This algorithm maintains a list 
called OPEN that is initially empty. Each node x 
in T has an associated heuristic value h(x), 
which gives the current value of node x; the node 
x also has another field called STATUS (x), which 
is either LIVE or SOLVED. The function first 
(OPEN) returns a node x having the current maxi- 
mum h-value in OPEN; ties are always resolved in 
favour of lexicographically smaller nodes. The 
procedure is invoked by calling SSS*(s). 

Procedure SSS* (s) 

begin 
- := 1 sl ; h(s) := & ; STATUS (s) := LIVE; OPEN 

repeat ' ' 
X := first (OPEN); 
case : x is terminal and STATUS(x) = LIVE : 

h(x) := min (h(x), v(x));STATUS (x) 
:= SOLVED ; 

: x is a nonterminal MIN node and 
STATUS(x) = LIVE : 

remove x from OPEN: 
insert x.1 in OPEN with h(x.l):=h(x), 

STATUS (x.1) := LIVE: 
: x is a nonterminal MAX node and 

STATUS(x) = LIVE : 
remove x from OPEN: 
insert x.j in OPEN with h(x.j):=h(x), 

STATUS(x.j):=LIVE for l<j<b; 
: x = x' .j is a MIN node and STATUS(x) 

= SOLVED : 
remove all successors of x' from OPEN; 
insert x' in OPEN with h(x'):=h(x), 

STATUS := SOLVED; 
: x = x' .j is a MAX node and x #= s and 

- STATUS(x) = SOLVED : 
remove x from OPEN ; 
if j = b then - 

insert x' -in OPEN with h(x'):=h(x), 
STATUS := SOLVED 

else (* l,< j 6 b *) 
insert x' .j+l in OPEN with 

h(x'.j+l) := h(x), 
STATUS (x'.jtl) := LIVE ; 

until x = s and STATUS (x) = SOLVED ; 

output h(x) ; 
end ; 

Example 2.1 : The game tree T shown in Fig. 1 has 
b = 3, d = 4, and 81 terminal nodes. A terminal 
node x is said to be examined only when its assi- 
aned value v(x) is computed. Alphabeta needs to 
do this for 41 of the terminal nodes, while SSS* 
needs to do this for only 28 of them. 

Algorithm ITERSSS* is very similar to SSS*. 
Here too a list OPEN is maintained, but the size 
of OPEN is constrained by the availability of 
storage. A node in OPEN, in addition to h and 
STATUS fields, also has a TYPE field. The TYPE of 
a node can be either ACTIVE or INACTIVE. The pro- 
cedure is invoked by calling ITERSSS* (s,M) where 
s is the root of the game tree and M the amount of 
storage that OPEN can use. It is assumed that 
M),b- As in SSS*, OPEN is initially empty, and 
ties for selection from OPEN are resolved in 
favour of lexicographically smaller nodes. 

Procedure ITERSSS* (s, M) 

begin 
SPACE := M ; 
OPEN := {s }; STATUS(s):= LIVE: h(s):=ob; 

TYPE(s) := INACTIVE ; 
SPACE := SPACE - 1 ; FLAG := INACTIVE : 

repeat 
X := first (OPEN, FLAG) ; 
case : x is a terminal node and STATUS(x) = 

LIVE : 
h(x) := min(h(x), v(x)); STATUS(X):= 

SOLVED; TYPE(x) := ACTIVE ; 
: x is a nonterminal MIN node and 

STATUS(x) = LIVE : 
remove x from OPEN ; 
insert x.1 in OPEN with h(x.l):= h(x 

STATUS (x.1) := LIVE, 
TYPE (x.1) := FLAG: 

: x is a nonterminal MAX node and 
STATUS (x) = LIVE : 

if SPACE >/b - 1 then - 

)I 

13 begin 
remove x from OPEN ; 
insert x.j in OPEN with h(x.j):= 

h(x), STATUS(x.j):= LIVE, 
TYPE(x.j):=FLAG for 1s j < b; 

SPACE :=SPACE-b+l; 
end 

else 
begin 

TYPE(x) := INACTIVE ; 
FLAG := ACTIVE ; 

end: 
: x Zx'.j is a MAX node and x # s and 

- STATUS (x) = SOLVED : 
remove x from OPEN ; 
if j = b then - 

insert x' in OPEN with h(x'):=h(x), 
STATUS := SOLVED, 
TYPE(x') := ACTIVE 

else (* l< j < b*) 
insert x' .j+l in OPEN with h(x'.j+l) 

:= h(x), 
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STATUS(x'.j + 1) := LIVE, 
TYPE(x'.j + 1) := ACTIVE; 

: x = x' .j is a MIN node and STATUS (x) = 
SOLVED : 

for each node y # x in OPEN such that y is 
a successor of x' do 

if h(y),< h(x) then 
beain 

Y : 
if - 

remove y from OPEN ; 
SPACE := SPACE + 1 ; 

end; 
= inactivesucc (OPEN, X) 
y = null then 
begin 

remove x from OPEN ; 
insert x' OPEN with h(x 
STATUS (x') := SOLVED 
TYPE(x') := ACTIVE ; 

‘1: =h( 

end 
else TYPE(y) := ACTIVE ; 

: x = null : 
FLAG := ACTIVE ; 

Until x = s and STATUS (x) = SOLVED 
output h(x) ; 

end : 

FLAG is an indicator that takes one of two 
values : INACTIVE or ACTIVE. Initially FLAG is 
INACTIVE, and once it becomes ACTIVE it remains 
ACTIVE. A LIVE node in OPEN is either INACTIVE 
or ACTIVE, while a SOLVED node in OPEN is always 
ACTIVE. An INACTIVE node can be thought of as a 
node that cannot be expanded because of lack of 

59023 
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memory space, and it is our intention to confine 
selections from OPEN to ACTIVE nodes only. An 
exception occurs at the beginning of the execu- 
tion of the algorithm when there are no ACTIVE 
nodes at all, and we must expand INACTIVE nodes 
and fill up the available memory. Thereafter only 
ACTIVE nodes get selected from OPEN. The func- 
tion first (OPEN, FLAG) returns that node x from 
OPEN whose current h-value is highest among all 
nodes (if any) in OPEN with TYPE = FLAG, ties 
begin resolved in favour of lexicographically 
smaller nodes as usual. If there is no node in 
OPEN with TYPE= FLAG then null is returned. The 
function inactivesucc (OPEN, x) returns an 
INACTIVE successor z of x' (where x=x'.j) such 
that z is at the greatest depth among all INACTIVE 
successors of x1 in OPEN: if no such z can be 
found it returns null. 

ITERSSS* begins with FLAG set to INACTIVE. 
So long as FLAG = INACTIVE only INACTIVE nodes get 
expanded and ACTIVE nodes, if any/ in OPEN are all 
terminal nodes. Since M_) M the algorithm 
ensures that at least b ter#iAal nodes are brought 
to the ACTIVE condition before storage runs out. 
Once FLAG = ACTIVE, INACTIVE nodes in OPEN do not 
participate in selection and remain in "suspended 
animation" until some nodes get purged from OPEN 
and storage is released. When storage becomes 
available the TYPE of only one node is changed 
from INACTIVE to ACTIVE: this ensures that the 
algorithm never gets "stuck" because of insuffi- 
cient storage. 

LEGEND 
A=TfRHlNAL NOOC VISITED BY ALPHA-BETA 
1 =TERMINAL NDDE VISlTED BY ITERSSS*(M=S) 
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The case statement in ITERSSS* differs from 
that in SSS* in two ways. The expansion of a LIVE 
MAX node x can get held up because of lack of 
storage: if this happens x is made INACTIVE. If 
a SOLVED MIN node x = x'.j is selected from OPEN, 
we cannot immediately throw out x from OPEN and 
assign a SOLVED STATUS to x' since x' can have 
INACTIVE successors in OPEN; one of these succe- 
ssors of x' in OPEN must then have its TYPE 
changed to ACTIVE, and x remains in OPEN until x' 
has no INACTIVE successors in OPEN. 

Example 2.2 : For the uniform game tree T of 
Fig-l, MO= 5. When M is 5 or 6, ITERSSS* examines 
33 terminals, which is much less than that seen 
by alphabeta. When M >/ 7, ITERSSS* examines 28 

than alphabeta , while for large M it examines just 
as many terminals as SSS*. More extensive experi- 
mental investigations are needed with much larger 
numbers of values of M and of sets of terminal 
values, but we do not expect any departures from 
the trend shown in Table 1. 

4. Theoretical Analysis 

How can we characterize the terminal nodes 
of a game tree that get examined by the alphabeta 
procedure or SSS* or ITERSSS* ? We do a theoreti- 
cal analysis to obtain the exact pruning condi- 
tions. We begin with some definitions. 

Definition 4.1 : Let a game tree T be given. 

terminals, exactly as many as are examined by SSS*. 

3. Experimental Observations : 

We conducted some experiments on a VAX 

i) 

U/750 to find out the average number of terminal 
nodes examined by alphabeta, SSS* and ITERSSS*. 
Four (b, d) pairs were chosen. For each pair, ten 
sets of terminal node values were obtained with the 
help of a random number generator. Both alphabeta 
and SSS* were run ten times, once with each set of 
terminal values, and the average number of termi- 
nals examined was computed, the average being 
expressed as a percentage of the total number of 
terminal nodes in the game tree. For each set of 
terminal values, ITERSSS* was run five times for 
five different values of M. The average percentage 
of terminals visited was computed for each value 
of M. The programs were written in PASCAL-Table 1 
gives the results. It can be seen that the average 
number of terminals examined by ITERSSS* decreases 
steadily as M increases; for small.M, ITERSSS* 
examines a slightly smaller number of terminals 

ii) 

iii) 

iv) 

VI 

A subtree T' of T is called a solution 
tree if 
a) the root s of T is in T' ; 
b) for every nonterminal MAX node x in T', 

exactly one son of x in T is in T' ; 
c) for every nonterminal MIN node x in T', 

all sons of x in T are in T'. 

The value v 
is defined rf; 

of the solution tree T' 

VT' = min{v(x)l 
x is a terminal node in T' 

I 
A solution tree TA in T is said to be 
optimal if VT, , vTl for every solution 

tree T' in T.O 
/ 

For any nonterminal node x in T, let tx 
be the minimax value of the subtree 
rooted at x. When x is a terminal node, 
let t = v(x). 
Let vx denote the minimax value of the 
game T ree T, i.e. 

VT= max i f VT' T' is a solution tree in T 

TABLE 1 : Number of terminals examined by alphabeta, SSS* and ITERSSS* 
-------- ------- ------------------------=-------------------------------------------------------------------------------- __--_--------__~------~---~----~~~-~----~~--~~--~~~~~~~~-~~~~-~~-- 
Serial Total number 
No. b d of terminal 

average number of terminals examined (expressed as a percentage 
of the total number of terminals) 

nodes = bd alphabeta sss* Available ITERSSS* 

1 2 15 32768 
storage M 

12.47 8.50 9 12.40 

3 10 59049 10.44 6.44 

5 6 15625 16.51 11.48 

9 5 59049 13.67 10.24 

64 10.36 
128 9.49 
192 9.37 
256 8.50 
11 10.11 
61 8.31 
122 7.75 
183 7.65 
243 6.44 
13 15.49 
32 13.46 
63 12.68 
95 12.60 
125 11.48 
25 13.67 

183 12.34 
365 11.87 
548 11.27 
729 10.24 
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Remark : We note that vT = ts = v 
T;' 

Definition 4.2 : Let a game tree T be given. 

i) Let x and y be two nodes in T. We write 
x + y if the Dewey code for x is strictly 
smaller lexicographically then the Dewey 
code for Y- 

ii) Let x be any node in T. 

Let L(x) ={ z 1 z is a terminal node in T, z + x, 
and there is no solution tree in T to which 
both x and z belong } . 

Z~)tZZ 'ii 
both x and z 

is a terminal node in T, x 4 z, 
no solution tree in T to which 
belong . 

) 
iii) Let T' be a solution tree in T, and let 
node x be in T'. Let left (x, T') = 

= 

i 

00 if there is no terminal node z<T'such 

min'v(z) ' 

that z 4 x 
z is a terminal node in T', 

ZQX ) otherwise 

Now define B(x) = max left (x, T') . 
x E T' { 1 

Note that B(s) = 00 . 
iv) Let T' be a solution tree in T, and let x 

be a node in T that does not belong to T! 
Let Lin (x,T') = -@if 

i 

L(x) r\ T' = + 
min (v(z)1 2 is a terminal 

node and 
z 4 L(x) A T' ) 

otherwise 
Rin (x, T') = -@if 

t 

R(x) n T'= + 
min (v(z) ( z is a terminal 

node and 
z E R(X) n T' -1 

otherwise 
v) We now define 

AL (x) = max 
{ 
Lin (x, T' ) 

1 I 

AR (x) = 
x t$ T' 
max Rin (x, T' ) I 
x 4 T' 1 1 

Again note that AL (s) = AR (s) = - 00 . 

With these definitions we are in a position 
to state some lemmas and theorems. Proofs are 
omitted. Related analyses can be found in Baudet 
ClI and Pearl [3]. 

Lemma 4.1 : Let node x be a successor of node z 
in a game tree T. Then 

AL (x) >/ AL (z) and B(x) < B(z). 
Definition 4.3 : Let the alphabeta procedure be 
run on a game tree T. Let x be a node in T. We 
say that the node x is pruned by alphabeta if no 
call is made to alphabemh x as an argument, 
i.e. if none of the terminal nodes in the subtree 
rooted at x are examined by alphabeta. 

Theorem 4.1 : When the alphabeta procedure is run 
on a game tree T, a node x in T is pruned iff 
AL (x) >/ B(x). 

This is the standard pruning condition for 
alphabeta (see 131). We have just reformulated 
the basic definitions in terms of solution trees. 
Lemma 4.1 would be needed in the proof of Theorem 
4.1. 

Definition 4.4 : Let T be a game tree, and let SSS* 
(or ITERSSS*) be run on T. 

i) Each call to the function "first" is 
regarded as a distinct instant of execution. By 
the kth instant we mean the moment of time imme- 
diately following the kth time "first" returns a 
value. 

ii) A node x in T is examined if at some inst- 
ant during the execution of SSS* (or ITERSSS*), x 
is returned by the function "first" and x is LIVE. 

Lemma 4.2 : At each instant during the execution 
of SSS* on a qame tree T, OPEN contains exactly 
one node from each solution tree in T. 

Theorem 4.2 : Algorithm SSS* when run on any game 
tree T terminates successfully, i.e. it finally 
selects s from OPEN in the SOLVED state. At termi- 
nation, h(s) = vT. 

Theorem 4.3 : Let T be a game tree. When 
run on T, a node x in T is not examined. 
CAL(x) >/ B(x) or AR(X) > 

sss* 
iff 

is 

Remark : Lemma 4.2 clearly does not hold for 
ITERSSS* if we consider only the ACTIVE nodes in 
OPEN. However, Theorem 4.2 is still true. The foll- 
owing modified form of Theorem 4.3 also holds. 

Theorem 4.4 : Let T be a game tree. When ITERSSS* 
is run on T, a node x in T is not examined if 
AL(x) >/ B(x). 

- 

If follows that terminal nodes examined by 
ITERSSS* are also examined by alphabeta. 

5. Conclusion : 

SSS* examines fewer terminals in a game tree 
than alphabeta but takes an inordinate amount of 
storage. An additional overhead is incurred in 
maintaining OPEN as a priority queue. These limi- 
tations of SSS* were noticed by Stockman [4], 
who suggested the use of a hybrid alphabeta-SSS* 
procedure when storage was in limited supply. 
ITERSSS* is not such a hybrid procedure, however: 
it is not related to alphabeta at all and can be 
viewed as a modification of SSS*. Its most desir- 
able feature is that the amount of storage M avail- 
able for OPEN can be supplied to it as a parameter 
at run time. Experiments indicate that it performs 
as per expectations. What would be of great inter- 
est is an average case analysis of the dependence 
on M of the number of terminal nodes examined. 
More extensive experimental studies are also needed 
to find out whether ITERSSS* outperforms alphabeta 
in practical situations. 
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