
MAKING BEST USE OF AVAILABLE MEMORY WHEN SEARCHING GAME TREES

Subir Bhattacharya and Amitava Bagchi

Indian Institute of Management Calcutta
P.O. Box.16757, Calcutta-700027, INDIA

ABSTRACT

When searching game trees, Algorithm SSS*
examines fewer terminal nodes than the alphabiata
procedure, but has the disadvantage that the
storage space required by it is much greater.
ITERSSS* is a modified version of SSS* that does
not suffer from this limitation. The memory M
that is available for use by the OPEN list can be
fed as a parameter to ITERSSS* at run time. For
successful operation M must lie above a threshold
value MO . But MO is small in magnitude and is of
the same order as the memory requirement of the
alphabeta procedure. The number of terminal nodes
of the game tree examined by ITERSSS* is a func-
tion of M, but is never greater than the number
of terminals examined by the alphabeta procedure.
For large enough M, ITERSSS* is identical in
operation to SSS*.

1. Introduction :

The alphabeta procedure is the best known
of game tree search algorithms. Generally formu-
lated as a recursive procedure, it is quite fast
in execution and uses little memory. In the pro-
cess of computing the minimax value at the root of
the game tree it makes a left-to-right scan of the
terminal nodes: it does not examine all the termi-
nals, but looks only at those that to it appear
capable of influencing the root value. Detailed
expositions can be found in Knuth and Moore /-2 7
and Pearl L-3 7.

- -
-

In 1979, Stockman 14_7 announced a new game
tree search algorithm called SSS* quite different
in nature from alphabeta. SSS* does not examine
terminal nodes of the game tree in a left-to-right
manner. It views a game tree as a union of its
constituent solution trees, and at each step dur-
ing the search, selects for inspection the most
promising among the contending solution trees. The
terminal nodes of this solution tree are examined
in a left-to-right manner; if this not the best
solution tree in the game tree, then a time comes
when a more promising solution tree is found and
that is then taken up for inspection. One node
from each solution tree is kept in a list called
OPEN. Nodes in OPEN have associated heuristic
values, and OPEN is maintained as a priority queue
with nodes having higher heuristic values at higher
levels. At each iteration of the algorithm the node
at the root of the priority queue is selected for

examination. For a uniform game tree of depth d
and branching factor b, SSS* requires O(bdi2)
cells of storage for the OPEN list. In contrast,
the total storage required by alphabeta is O(d).

SSS* has an advantage over alphabeta in
that it examines only a subset of the terminal
nodes examined by alphabeta. Since the running
time of a game-tree search algorithm is primarily
determined by the number of terminal nodes it
examines, SSS* should run faster than alphabeta.
According to.Pearl [3, p. 310_7, however, on the
average alphabeta examines at most three times as
many terminals as SSS*, and the much greater
memory and bookkeeping requirements of SSS* tend
to weigh the scale in favour of alphabeta.

In this paper we present a modified version
of SSS* which we call ITERSSS*. The memory M that
is available for the list OPEN is fed as a para-
meter to ITERSSS* at execution time, which then
runs essentially like SSS* but not using more
memory than M. For a uniform game tree of depth d
and branching factor b, the minimum allowable
value of M is MO = p/21 . (b -l)+lwhen
the root is a MAX node. So long as M is greater
than this threshold value, ITERSSS* runs smoothly
and outputs the minimax value at the root of the
game tree. ITERSSS* examines more terminals than
SSS* but fewer terminals than alphabeta, the
number of terminals examined being a function of
M. When M = b I"d/27 , ITERSSS* is identical in
operation to SSS*. When M = Mof ITERSSS* examines
no more terminals than alphabeta, and uses the
same order of memory as alphabeta. From a pro-
gramming point of view, ITERSSS* is of the same
level of complexity as SSS*, and the flexibility
it provides with regard to use of memory should
give it an edge over both SSS* and alphabeta.

In section 2 of this paper we give formu-
lations of SSS* and ITERSSS*, and in section 3 we
describe some experimental results. Section 4
presents a few formal properties of game tree
search algorithms, and Section 5 summarizes the
paper and lists some open problems.

2. Algorithms SSS* and ITERSSS* :

We assume the root s of the game tree T to
be a MAX (i.e. OR) node. The sons of s are then
MIN (i.e. AND) nodes. The game tree T is also
assumed to have a finite minimax value. A Dewey

Search: AUTOMATED REASONING / l(,J

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

radix-b code is used for representing the nodes
in T. We suppose that T is a uniform tree of depth
d and branching factor b. Then

i) the root s is represented by the empty
sequence ;

ii) the sons of nonterminal node x are repre-
sented as x-j, 1s j < b.

The maximum possible length of the Dewey code is d
digits, and terminal nodes in T have d digit codes.
The definition can be readily generalized to non-
uniform trees. The nodes of T get linearly ordered
by the lexicographic ordering of their Dewey
codes. We also note that each terminal node x in
T has a static evaluation score v(x).

A standard formulation of the alphabeta
procedure using the minimax approach can be found
in Knuth r2, p.3003, and this is the version of
the algorithm used by us in our experimental in-
vestigations described in the next section. We
now present SSS*. This algorithm maintains a list
called OPEN that is initially empty. Each node x
in T has an associated heuristic value h(x),
which gives the current value of node x; the node
x also has another field called STATUS (x), which
is either LIVE or SOLVED. The function first
(OPEN) returns a node x having the current maxi-
mum h-value in OPEN; ties are always resolved in
favour of lexicographically smaller nodes. The
procedure is invoked by calling SSS*(s).

Procedure SSS* (s)

begin
- := 1 sl ; h(s) := & ; STATUS (s) := LIVE; OPEN

repeat ' '
X := first (OPEN);
case : x is terminal and STATUS(x) = LIVE :

h(x) := min (h(x), v(x));STATUS (x)
:= SOLVED ;

: x is a nonterminal MIN node and
STATUS(x) = LIVE :

remove x from OPEN:
insert x.1 in OPEN with h(x.l):=h(x),

STATUS (x.1) := LIVE:
: x is a nonterminal MAX node and

STATUS(x) = LIVE :
remove x from OPEN:
insert x.j in OPEN with h(x.j):=h(x),

STATUS(x.j):=LIVE for l<j<b;
: x = x' .j is a MIN node and STATUS(x)

= SOLVED :
remove all successors of x' from OPEN;
insert x' in OPEN with h(x'):=h(x),

STATUS := SOLVED;
: x = x' .j is a MAX node and x #= s and

- STATUS(x) = SOLVED :
remove x from OPEN ;
if j = b then -

insert x' -in OPEN with h(x'):=h(x),
STATUS := SOLVED

else (* l,< j 6 b *)
insert x' .j+l in OPEN with

h(x'.j+l) := h(x),
STATUS (x'.jtl) := LIVE ;

until x = s and STATUS (x) = SOLVED ;

output h(x) ;
end ;

Example 2.1 : The game tree T shown in Fig. 1 has
b = 3, d = 4, and 81 terminal nodes. A terminal
node x is said to be examined only when its assi-
aned value v(x) is computed. Alphabeta needs to
do this for 41 of the terminal nodes, while SSS*
needs to do this for only 28 of them.

Algorithm ITERSSS* is very similar to SSS*.
Here too a list OPEN is maintained, but the size
of OPEN is constrained by the availability of
storage. A node in OPEN, in addition to h and
STATUS fields, also has a TYPE field. The TYPE of
a node can be either ACTIVE or INACTIVE. The pro-
cedure is invoked by calling ITERSSS* (s,M) where
s is the root of the game tree and M the amount of
storage that OPEN can use. It is assumed that
M),b- As in SSS*, OPEN is initially empty, and
ties for selection from OPEN are resolved in
favour of lexicographically smaller nodes.

Procedure ITERSSS* (s, M)

begin
SPACE := M ;
OPEN := {s }; STATUS(s):= LIVE: h(s):=ob;

TYPE(s) := INACTIVE ;
SPACE := SPACE - 1 ; FLAG := INACTIVE :

repeat
X := first (OPEN, FLAG) ;
case : x is a terminal node and STATUS(x) =

LIVE :
h(x) := min(h(x), v(x)); STATUS(X):=

SOLVED; TYPE(x) := ACTIVE ;
: x is a nonterminal MIN node and

STATUS(x) = LIVE :
remove x from OPEN ;
insert x.1 in OPEN with h(x.l):= h(x

STATUS (x.1) := LIVE,
TYPE (x.1) := FLAG:

: x is a nonterminal MAX node and
STATUS (x) = LIVE :

if SPACE >/b - 1 then -

)I

13 begin
remove x from OPEN ;
insert x.j in OPEN with h(x.j):=

h(x), STATUS(x.j):= LIVE,
TYPE(x.j):=FLAG for 1s j < b;

SPACE :=SPACE-b+l;
end

else
begin

TYPE(x) := INACTIVE ;
FLAG := ACTIVE ;

end:
: x Zx'.j is a MAX node and x # s and

- STATUS (x) = SOLVED :
remove x from OPEN ;
if j = b then -

insert x' in OPEN with h(x'):=h(x),
STATUS := SOLVED,
TYPE(x') := ACTIVE

else (* l< j < b*)
insert x' .j+l in OPEN with h(x'.j+l)

:= h(x),

164 / SCIENCE

STATUS(x'.j + 1) := LIVE,
TYPE(x'.j + 1) := ACTIVE;

: x = x' .j is a MIN node and STATUS (x) =
SOLVED :

for each node y # x in OPEN such that y is
a successor of x' do

if h(y),< h(x) then
beain

Y :
if -

remove y from OPEN ;
SPACE := SPACE + 1 ;

end;
= inactivesucc (OPEN, X)
y = null then
begin

remove x from OPEN ;
insert x' OPEN with h(x
STATUS (x') := SOLVED
TYPE(x') := ACTIVE ;

‘1: =h(

end
else TYPE(y) := ACTIVE ;

: x = null :
FLAG := ACTIVE ;

Until x = s and STATUS (x) = SOLVED
output h(x) ;

end :

FLAG is an indicator that takes one of two
values : INACTIVE or ACTIVE. Initially FLAG is
INACTIVE, and once it becomes ACTIVE it remains
ACTIVE. A LIVE node in OPEN is either INACTIVE
or ACTIVE, while a SOLVED node in OPEN is always
ACTIVE. An INACTIVE node can be thought of as a
node that cannot be expanded because of lack of

59023
AAA

memory space, and it is our intention to confine
selections from OPEN to ACTIVE nodes only. An
exception occurs at the beginning of the execu-
tion of the algorithm when there are no ACTIVE
nodes at all, and we must expand INACTIVE nodes
and fill up the available memory. Thereafter only
ACTIVE nodes get selected from OPEN. The func-
tion first (OPEN, FLAG) returns that node x from
OPEN whose current h-value is highest among all
nodes (if any) in OPEN with TYPE = FLAG, ties
begin resolved in favour of lexicographically
smaller nodes as usual. If there is no node in
OPEN with TYPE= FLAG then null is returned. The
function inactivesucc (OPEN, x) returns an
INACTIVE successor z of x' (where x=x'.j) such
that z is at the greatest depth among all INACTIVE
successors of x1 in OPEN: if no such z can be
found it returns null.

ITERSSS* begins with FLAG set to INACTIVE.
So long as FLAG = INACTIVE only INACTIVE nodes get
expanded and ACTIVE nodes, if any/ in OPEN are all
terminal nodes. Since M_) M the algorithm
ensures that at least b ter#iAal nodes are brought
to the ACTIVE condition before storage runs out.
Once FLAG = ACTIVE, INACTIVE nodes in OPEN do not
participate in selection and remain in "suspended
animation" until some nodes get purged from OPEN
and storage is released. When storage becomes
available the TYPE of only one node is changed
from INACTIVE to ACTIVE: this ensures that the
algorithm never gets "stuck" because of insuffi-
cient storage.

LEGEND
A=TfRHlNAL NOOC VISITED BY ALPHA-BETA
1 =TERMINAL NDDE VISlTED BY ITERSSS*(M=S)

187046268620991126433884631Ir1592653589793233279502~8419716939937510582
AAAA AAA AAAAAAAAAAA A AAAAAA AA AAAA
IIII IJI I I Ill11 I III111 II III1
s 5 s 5 sssss s ssssss 5s 555s

1 Fig.

Search: AUTOMATED REASONING / 165

The case statement in ITERSSS* differs from
that in SSS* in two ways. The expansion of a LIVE
MAX node x can get held up because of lack of
storage: if this happens x is made INACTIVE. If
a SOLVED MIN node x = x'.j is selected from OPEN,
we cannot immediately throw out x from OPEN and
assign a SOLVED STATUS to x' since x' can have
INACTIVE successors in OPEN; one of these succe-
ssors of x' in OPEN must then have its TYPE
changed to ACTIVE, and x remains in OPEN until x'
has no INACTIVE successors in OPEN.

Example 2.2 : For the uniform game tree T of
Fig-l, MO= 5. When M is 5 or 6, ITERSSS* examines
33 terminals, which is much less than that seen
by alphabeta. When M >/ 7, ITERSSS* examines 28

than alphabeta , while for large M it examines just
as many terminals as SSS*. More extensive experi-
mental investigations are needed with much larger
numbers of values of M and of sets of terminal
values, but we do not expect any departures from
the trend shown in Table 1.

4. Theoretical Analysis

How can we characterize the terminal nodes
of a game tree that get examined by the alphabeta
procedure or SSS* or ITERSSS* ? We do a theoreti-
cal analysis to obtain the exact pruning condi-
tions. We begin with some definitions.

Definition 4.1 : Let a game tree T be given.

terminals, exactly as many as are examined by SSS*.

3. Experimental Observations :

We conducted some experiments on a VAX

i)

U/750 to find out the average number of terminal
nodes examined by alphabeta, SSS* and ITERSSS*.
Four (b, d) pairs were chosen. For each pair, ten
sets of terminal node values were obtained with the
help of a random number generator. Both alphabeta
and SSS* were run ten times, once with each set of
terminal values, and the average number of termi-
nals examined was computed, the average being
expressed as a percentage of the total number of
terminal nodes in the game tree. For each set of
terminal values, ITERSSS* was run five times for
five different values of M. The average percentage
of terminals visited was computed for each value
of M. The programs were written in PASCAL-Table 1
gives the results. It can be seen that the average
number of terminals examined by ITERSSS* decreases
steadily as M increases; for small.M, ITERSSS*
examines a slightly smaller number of terminals

ii)

iii)

iv)

VI

A subtree T' of T is called a solution
tree if
a) the root s of T is in T' ;
b) for every nonterminal MAX node x in T',

exactly one son of x in T is in T' ;
c) for every nonterminal MIN node x in T',

all sons of x in T are in T'.

The value v
is defined rf;

of the solution tree T'

VT' = min{v(x)l
x is a terminal node in T'

I
A solution tree TA in T is said to be
optimal if VT, , vTl for every solution

tree T' in T.O
/

For any nonterminal node x in T, let tx
be the minimax value of the subtree
rooted at x. When x is a terminal node,
let t = v(x).
Let vx denote the minimax value of the
game T ree T, i.e.

VT= max i f VT' T' is a solution tree in T

TABLE 1 : Number of terminals examined by alphabeta, SSS* and ITERSSS*
-------- ------- ------------------------=-- __--_--------__~------~---~----~~~-~----~~--~~--~~~~~~~~-~~~~-~~--
Serial Total number
No. b d of terminal

average number of terminals examined (expressed as a percentage
of the total number of terminals)

nodes = bd alphabeta sss* Available ITERSSS*

1 2 15 32768
storage M

12.47 8.50 9 12.40

3 10 59049 10.44 6.44

5 6 15625 16.51 11.48

9 5 59049 13.67 10.24

64 10.36
128 9.49
192 9.37
256 8.50
11 10.11
61 8.31
122 7.75
183 7.65
243 6.44
13 15.49
32 13.46
63 12.68
95 12.60
125 11.48
25 13.67

183 12.34
365 11.87
548 11.27
729 10.24

l(,(, / SCIENCE

Remark : We note that vT = ts = v
T;'

Definition 4.2 : Let a game tree T be given.

i) Let x and y be two nodes in T. We write
x + y if the Dewey code for x is strictly
smaller lexicographically then the Dewey
code for Y-

ii) Let x be any node in T.

Let L(x) ={ z 1 z is a terminal node in T, z + x,
and there is no solution tree in T to which
both x and z belong } .

Z~)tZZ 'ii
both x and z

is a terminal node in T, x 4 z,
no solution tree in T to which
belong .

)
iii) Let T' be a solution tree in T, and let
node x be in T'. Let left (x, T') =

=

i

00 if there is no terminal node z<T'such

min'v(z) '

that z 4 x
z is a terminal node in T',

ZQX) otherwise

Now define B(x) = max left (x, T') .
x E T' { 1

Note that B(s) = 00 .
iv) Let T' be a solution tree in T, and let x

be a node in T that does not belong to T!
Let Lin (x,T') = -@if

i

L(x) r\ T' = +
min (v(z)1 2 is a terminal

node and
z 4 L(x) A T')

otherwise
Rin (x, T') = -@if

t

R(x) n T'= +
min (v(z) (z is a terminal

node and
z E R(X) n T' -1

otherwise
v) We now define

AL (x) = max
{
Lin (x, T')

1 I

AR (x) =
x t$ T'
max Rin (x, T') I
x 4 T' 1 1

Again note that AL (s) = AR (s) = - 00 .

With these definitions we are in a position
to state some lemmas and theorems. Proofs are
omitted. Related analyses can be found in Baudet
ClI and Pearl [3].

Lemma 4.1 : Let node x be a successor of node z
in a game tree T. Then

AL (x) >/ AL (z) and B(x) < B(z).
Definition 4.3 : Let the alphabeta procedure be
run on a game tree T. Let x be a node in T. We
say that the node x is pruned by alphabeta if no
call is made to alphabemh x as an argument,
i.e. if none of the terminal nodes in the subtree
rooted at x are examined by alphabeta.

Theorem 4.1 : When the alphabeta procedure is run
on a game tree T, a node x in T is pruned iff
AL (x) >/ B(x).

This is the standard pruning condition for
alphabeta (see 131). We have just reformulated
the basic definitions in terms of solution trees.
Lemma 4.1 would be needed in the proof of Theorem
4.1.

Definition 4.4 : Let T be a game tree, and let SSS*
(or ITERSSS*) be run on T.

i) Each call to the function "first" is
regarded as a distinct instant of execution. By
the kth instant we mean the moment of time imme-
diately following the kth time "first" returns a
value.

ii) A node x in T is examined if at some inst-
ant during the execution of SSS* (or ITERSSS*), x
is returned by the function "first" and x is LIVE.

Lemma 4.2 : At each instant during the execution
of SSS* on a qame tree T, OPEN contains exactly
one node from each solution tree in T.

Theorem 4.2 : Algorithm SSS* when run on any game
tree T terminates successfully, i.e. it finally
selects s from OPEN in the SOLVED state. At termi-
nation, h(s) = vT.

Theorem 4.3 : Let T be a game tree. When
run on T, a node x in T is not examined.
CAL(x) >/ B(x) or AR(X) >

sss*
iff

is

Remark : Lemma 4.2 clearly does not hold for
ITERSSS* if we consider only the ACTIVE nodes in
OPEN. However, Theorem 4.2 is still true. The foll-
owing modified form of Theorem 4.3 also holds.

Theorem 4.4 : Let T be a game tree. When ITERSSS*
is run on T, a node x in T is not examined if
AL(x) >/ B(x).

-

If follows that terminal nodes examined by
ITERSSS* are also examined by alphabeta.

5. Conclusion :

SSS* examines fewer terminals in a game tree
than alphabeta but takes an inordinate amount of
storage. An additional overhead is incurred in
maintaining OPEN as a priority queue. These limi-
tations of SSS* were noticed by Stockman [4],
who suggested the use of a hybrid alphabeta-SSS*
procedure when storage was in limited supply.
ITERSSS* is not such a hybrid procedure, however:
it is not related to alphabeta at all and can be
viewed as a modification of SSS*. Its most desir-
able feature is that the amount of storage M avail-
able for OPEN can be supplied to it as a parameter
at run time. Experiments indicate that it performs
as per expectations. What would be of great inter-
est is an average case analysis of the dependence
on M of the number of terminal nodes examined.
More extensive experimental studies are also needed
to find out whether ITERSSS* outperforms alphabeta
in practical situations.

REFERENCES

(II Baudet, G.M. "On the Branching Factor of the
Alpha-Beta Pruninq Algorithm." Artificial
Intelligence lO(2) (1978) 173-199.

[2] Knuth, D. E. and Moore, R.W. "An Analysis of
Alpha-Beta Prunning," Artificial Intelligence
6(4) (1975) 293-326.

[3] Pearl, J. "Heuristics: Intelligent Search
Strategies for Computer Problem Solving"
Addison-Wesley 1984.

01 Stockman, G. "A Minimax Algorithm Better than
Alpha-Beta?" Artificial Intelligence 12(2)
(1979) 179-196.

Search: AUTOMATED REASONING / 16’

