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ABSTRACT 

The popular use of backtracking as a control strategy for 
theorem proving in PROLOG and in Truth-Maintenance- 
Systems (TMS) led to increased interest in various schemes 
for enhancing the efficiency of backtrack search. Researchers 
have referred to these enhancement schemes by the names 
‘ ‘Intelligent Backtracking’ ’ (in PROLOG), ‘ ‘Dependency- 
directed-backtracking” (in TMS) and others. Those improve- 
ments center on the issue of “jumping-back” to the source of 
the problem in front of dead-end situations. 

This paper examines another issue (much less 
explored) which arises in dead-ends. Specifically, we concen- 
trate on the idea of constraint recording, namely, analyzing 
and storing the reasons for the dead-ends, and using them to 
guide future decisions, so that the same conflicts will not arise 
again. We view constraint recording as a process of learning, 
and examine several possible learning schemes studying the 
tradeoffs between the amount of learning and the improve- 
ment in search efficiency. 

I. INTRODUCTION 

The subject of improving search efficiency has been on the 
agenda of researchers in the area of Constraint-Satisfaction- 
Problems (CSPs) for quite some time [Montanari 1974, 
Mackworth 1977, Mackworth 1984, Gaschnig 1979, Haralick 
1980, Dechter 19851. A recent increase of interest in this sub- 
ject, concentrating on the backtrack search, can be attributed 
to its use as the control strategy in PROLOG [Matwin 1985, 
Bruynooghe 1984, Cox 19841, and in Truth Maintenance Sys- 
tems [Doyle 1979, De-Kleer 1983, Martins 19861. The terms 
“intelligent backtracking”, “selective backtracking”, and 
“dependency-directed backtracking” describe various efforts 
for producing improved dialects of backtrack search in these 
systems. 

The various enhancements to Backtrack suggested for 
both the CSP model and its extensions can be classified as fol- 
lowed: 

1. Look-ahead schemes: affecting the decision of what 
value to assign to the next variable among all the con- 
sistent choices available [Haralick 1980, Dechter 
19851. 

*This work was supported in part by the National Science 
Foundation, Grant #DCR 85-01234 

2. Look-back schemes: affecting the decision of where 
and how to go in case of a a dead-end situation. 
Look-back schemes are centered around two funda- 
mental ideas: 

a. Go-back to source of failure: an attempt is 
made to detect and change previous decisions 
that caused the dead-end without changing 
decisions which are irrelevant to the dead-end. 

b. Constraint recording: the reasons for the 
dead-end are recorded so that the same 
conflicts will not arise again in the continuation 
of the search. 

All recent work in PROLOG and truth-maintenance 
system, and much of the work in the traditional CSP model is 
concerned with look-back schemes, particularly on the go- 
back idea. Examples are Gaschnig’s “Backmark” and 
“Backjump” algorithms for the CSP model [Gaschnig 19791 
and the work on Intelligent-Backtracking for Prolog 
[Bruynooghe 1984, Cox 1984, Matwin 19851. The possibility 
of recording constraints when dead-ends occur is mentioned 
by Bruynooghe [Bruynooghe 19841. In truth-maintenance 
systems both ideas are implemented to a certain extent. How- 
ever, the complexity of PROLOG and of TMS makes it 
difficult to describe (and understand) the various enhance- 
ments proposed for the backtrack search and, more impor- 
tantly, to test them in an effort to assess their merits. The 
general CSP model, on the other hand, is considerably 
simpler, yet it is close enough to share the basic problematic 
search issues involved and, therefore, provides a convenient 
framework for describing and testing such enhancements. 

Constraint-recording in look-back schemes can be 
viewed as a process of learning, as it has some of the proper- 
ties that norrnally characterize learning in problem solving: 

1. The system has a learning module which is indepen- 
dent of the problem-representation scheme and the 
algorithm for solving problem instances represented in 
this scheme. 

2. The learning module works by observing the perfor- 
mance of the algorithm on any given input and record- 
ing some relevant information explicated during the 
search. 

3. The overall performance of the algorithm is improved 
when it is used in conjunction with the learning 
module. 
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4. When the algorithm terminates, the information accu- 
mulated by the learning module is part of a new, more 
knowledgeable, representation of the same problem. 
That is, if the algorithm is executed once again on the 
same input, it will have a better performance. 

Learning has been a central topic in problem solving. 
The task of learning is to record in a useful way some infor- 
mation which is explicated during the search and use it both at 
the same problem instance and across instances of the same 
domain. One of the first applications of this notion involved 
the creation of macro-operators from sequences and sub- 
sequences of atomic operators that have proven useful as solu- 
tions to earlier problem instances from the domain. This idea 
was exploited in STRIPS with MACROPS [Fikes 19711. A 
different approach for learning macros was more recently 
offered by [Korf 19821. Other recent examples of learning in 
problem solving are: the work on analogical problem solving 
[Carbonell 19831, learning heuristic problem-solving stra- 
tegies through experience as described in the program LEX 
[Mitchel 19831 and developing a general problem solver 
(SOAR) that learns about aspects of its behavior using chunk- 
ing [Laird 19841. 

In this paper we examine several learning schemes as 
they apply to solving general CSPs. The use of the CSP 
model allows us to state our approach in a clear and formal 
way, provide a parameterized learning scheme based on the 
time-space trade-offs, and analyze the trade-offs involved 
theoretically. We evaluated this approach experimentally on 
two problems with different levels of difficulty. 

II. THE CSP MODEL AND ITS SEARCH-SPACE 

A constraint satisfaction problem involves a set of n variables 
Xl , . . . . X,, each represented by its domain values, R 1, . . . , R, 
and a set of constraints. A constraint Ci(Xil, * * * ,Xij) is a 
subset of the Cartesian product Ri, x * * * xRij which specifies 
which values of the variables are compatible with each other. 
A solution is an assignment of values to all the variables 
which satisfy all the constraints and the task is to find one or 
all solutions. A constraint is usually represented by the set of 
all tuples permitted by it. A Binary CSP is one in which all 
the constraints are binary, i.e., they involve only pairs of vari- 
ables. A binary CSP can be associated with a constraint- 
graph in which nodes represent variables and arcs connects 
pairs of constrained variables. Consider for instance the CSP 
presented in figure 1 (from [Mackworth 19771 ). Each node 
represent a variable whose values are explicitly indicated, and 
the constraint between connected variables is a strict lexico- 
graphic order along the arrows. 

Xl x2 

Figure 1: An example CSP 

Backtracking works by provisionally assigning con- 
sistent values to a subset of variables and attempting to 
append to it a new instantiation such that the whole set is con- 
sistent. An assignment of values to subset of the variables is 
consistent if it satisfies all the constraints applicable to this 
subset. A constraint is applicable to a set of variables if it is 
defined over a subset of them. 

The order by which variables get instantiated may 
have a profound effect on the efficiency the algorithm 
[Freuder 19821 since each ordering determine a different 
search space with different size. The ordering can be pre- 
determined, or could vary dynamically, in which case the 
search space is a graph whose states are unordered subsets of 
consistently instantiated variables. The methods suggested in 
this paper are not dependent on the particular ordering scheme 
chosen, and we assume, without loss of generality, that the 
ordering is given as part of the problem input. Moreover, in 
Section 5 we generate different instances of a problem, for our 
numerical experiments, by simply changing the ordering of 
the variables of the same problem. 

Another issue that have influence on the size of the 
search space is the CSP’s input representation, i.e. a set of 
variables, their domains and the set of explicit constraints. It 
defines a relation among the variables, consisting of those 
tuples satisfying all the constraints, or the set of all solutions. 
There may be numerous equivalent CSP representations for 
the same set of solutions and some may be better then others 
since they yield a smaller search space. One way of improv- 
ing the representation is by inducing, or propagating con- 
straints [Montanari 1974, Mackworth 19771. For example, 
the constraints C(X,Y) and C(Y,Z) induce a constraint 
C(X,Z) as follows: A pair (x,2) is allowed by C(X,Z) if there 
is at least one value y in the domain of Y such that (x,y) is 
allowed by C(X,Y) and (y,z) is allowed by C(Y,Z). For 
instance, for the problem in figure 1, a constraint between X 1 
and X2 can be induced from the binary constraints C(X 1 ,X3) 
and C(X3,Xz) to yield a constraint C(X 1 ,X2) that disallow 
(among other pairs) the pair (a,a). The definition of induced 
constraints can be extended in a natural way to non-binary 
constraints. 

Several schemes for improving the search efficiency 
by pre-processing the problem’s representation have been pro- 
posed [Montanari 1974, Mackworth 1984, Dechter 19851. 
These pre-processing schemes can be viewed as a mode of 
learning since they result in modified data structure and 
improved performance. However, inducing all possible con- 
straints may involve a procedure which is exponential both in 
time and space [Freuder 19781. 

III. LEARNING WHILE SEARCHING 

The process of learning constraints need not be performed as 
a pre-processing exercise, but can rather be incorporated into 
the backtrack search. An opportunity to learn new constraints 
is presented each time the algorithm encounters a dead-end 
situation, i.e. whenever the current state S = 
(Xl =X1, s a a ,Xi-1 = xi-1 ) cannot be extended by any value 
of the variable Xi. In such a case we say that S is in conflict 
with Xi or, in short, that S is a conflict-set. An obvious con- 
straint that can be induced at that point is one that prohibits 
the set S. Recording this constraint, however, is of no help 
since under the backtrack control strategy this state will never 
reoccur. If, on the other hand, the set S contains one or more 
subsets which are also in conflict with Xi, then recording this 
information in the form of new explicit constraints might 
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prove useful in future search. 

One way of discovering such a subset is by removing 
from S all the instantiations which are irrelevant to Xi. A 
pair consisting of a variable and one of its value (X,x) in S is 
said to be irrelevant to Xi if it is consistent with all values of 
Xi w.r.t the constraints applicable to S. We denote by 
Conf(S,Xi), or Conf-set in short, the conflict-set resulting by 
removing all irrelevant pairs from S. 

The Conf-set may still contain one or more subsets 
which are in conflict with Xi. Some of these subsets are 
Minimal conflict sets [Bruynooghe 19811, that is, they do not 
contain any proper conflict-sets and, so, can be regarded as the 
sets of instantiations that “caused” the conflict. Since a set 
which contains a conflict-set is also in conflict, it is enough to 
explicitly discover all the minimal conflict-sets i.e., the set of 
smallest conflict-sets. 

Consider again the problem in figure 1. Suppose that 
the backtrack algorithm is currently at State 
(X 1 = b ,X2 = b ,X3 = a,Xd = b). This state cannot be 
extended by any value of X5 since none of its values is con- 
sistent with all the previous instantiations. This means, of 
course, that the tuple (Xl = b ,X2 = b ,X3 = a,X4 = b) should 
not have been allowed in this problem. As pointed out above, 
however, there is no point recording this fact as a constraint 
among the four variables involved. A closer look reveals that 
the instantiation X1 = b and X2 = b are both irrelevant in this 
conflict simply because there is no explicit constraint between 
X1 andX5 or betweenX2 andX5. NeitherX3 = a norX4 = b 
can be shown to be irrelevant and, therefore, the Conf-set is 
(X3 = a,X4 = b). This could be recorded by eliminating the 
pair (a,b) from the set of pairs permitted by C (X3,X4). This 
Conf-set is not minimal, however, since the instantiation 
X4 = b is, by itself, in conflict with X5. Therefore, it would 
be sufficient to record this information only, by eliminating 
the value b from the domain of X4. 

Finding the conflict-sets can assist backtrack not only 
in avoiding future dead-ends but also by backjumping to the 
appropriate relevant state rather then to the chronologically 
most recent instantiation. If only the Conf-set is identified the 
algorithm should go back to the most recent variable (i.e. the 
deepest variable) in this set. If the minimal conflict-sets 
mlm2,. . . , ml are identified, and if d&i) is the depth of the 
deepest variable in mi then the algorithm should jump back to 
the shallowest among those deep variables, i.e. to. 

Min {d(ntj)] (1) 

Discovering all minimal conflict-sets amounts to 
acquiring all the possible information out of a dead-end. Yet, 
such deep learning may require considerable amount of 
work. While the number of minimal conflict-sets is less then 
2r, where r is the cardinality of the Conf-set, we can envision 
a worst case where all subsets of Conf(S,Xi) having f ele- 

ments are in conflict with Xi. 
conflict-sets should then satisfy 

The number of Lnimal 

r1 
#m&conflict-sets = L 3 2’ , 

II z 

(2) 

which is still exponential in the size of the Conf-set. If the 
size of this Conf-set is small it may still be reasonable to 
recognize all minimal conflict-sets. 

Most researchers in the area of truth-maintenance- 
systems have adopted the approach that all the constraints 
realized during the search should be recorded (recording no- 
good sets or restriction sets), e.g., [Doyle 1979, De-Kleer 
1983, Martins 19861. However, learning all constraints may 
amount to recording almost all the search space explored. 
Every dead-end contains a new induced constraint. The 
number of dead-ends may be exponential in the worst case, 
i.e., O(P) when n is the number of variables and k is the 
number of values for each variable, which presents both a 
storage problem and a processing problem. It seems reason- 
able, therefore, to restrict the information learned to items 
which can be stored compactly and still have a gc& chance 
for being reused. In the next section we discuss several possi- 
bilities for accomplishing these criteria. 

N. CONTROLLED LEARNING 

Identifying the Conf-set is the first step in the discovery of 
other subsets in conflict and, by itself, it can be considered a 
form of shallow learning. It is easy to show that the Conf-set 
satisfies 

Conf = UT(Xij) , (3) 
xij 

where xi. is the jfh 
subset o f value in the domain of Xi and T(xij) is a 

S which contains all instantiations in S that are not 
consistent with the assignment Xi =x+.. Let C be the set of 
relevant constraints on SU{Xij which‘involve Xi, and let I be 
the size of C. The identification of a specific T-set requires 
testing all these constraints. An algorithm for identifying the 
Conf-set may work by identifying T-sets for all the values of 
Xi and unionize them and its complexity is 0 (k-l) when k is 
the number of values for Xi. 

An approximation of the Conf-set may be obtained by 
removing from the set S only those variables that are not asso- 
ciated with any constraint involving Xi. The resulting conflict 
set, which contains the Conf-set, may be used as a surrogate 
for it. The complexity of this algorithm is just O([) but it may 
fail to delete an irrelevant pair which appears in some con- 
straint but did not participate in any violation. For example, 
in the example CSP the state {Xl = a,Xz =c} is at dead-end 
since it cannot be extended by any value of X3. The approxi- 
mate Conf-set in this case is the whole state since both X 1 and 
X2 have constraints with X3 however a careful look reveals 
that X2 = c is irrelevant to X3 and the real Conf-set is 
VI = al. 

Independently of the depth of learning chosen, one 
may restrict the size of the constraints actually recorded. 
Constraints involving only a small number of variables 
require less storage and have a better chance for being reused 
(to limit the search) than constraints with many variables. For 
example, we may decide to record only conflict-sets consist- 
ing of a single instantiation. this is done by simply eliminat- 
ing the value from the domain of the variable. We will refer 
to this type of learning as first-order learning which amounts 
to making a subset of the arcs arc-consistent [Mackworth 
19771. It does not result in global arc-consistency because it 
only make consistent those arcs that are encountered during 
the search. First-order learning does not increase the storage 
of the problem beyond the size of the input and it prunes the 
search each time the deleted value is a candidate for assign- 
ment. For example, if we deleted a value from a veable at 
depth j we may prune the search in as much as kl-’ other 
states. 
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Second-order learning is performed by recording 
only conflict-sets involving either one or two variables. Since 
not all pairs of variables appear in constraints in the initial 
representation (e.g. when all pair of values are permitted noth- 
ing is written), second-order learn: 

f 5 
nml increase the size of 

the problem. There are at most * binary constraints, 
each having at most k2 pairs of values, the increase in storage 
is still reasonably bounded and may be compensated by sav- 
ing in search. Second-order learning performs partial path- 
consistency [Montanari 19741 since it only adds and modify 
constraints emanating from paths discovered during the 
search. 

When deep learning is used in conjunction with res- 
tricting the level of learning we get deep first-order learning 
(identifying minimal conflict sets of size 1) and deep second- 
order learning (i.e. identifying minimal conflict-sets of sizes 
1 and 2). The complexity of deep first-order learning is 
0 (kd) when r is the size of the Conf-set since each instan- 
tiation is tested against all values of Xi. The omplex’ of 

deep second-order learning can rise to 0( 

I r 

F .k.l) 

since in this case each pair of instantiations shou d be checked 
against each value of Xi. 

In a similar manner we can define and execute higher 
degrees of learning in backtrack. In general, an irh-order 
learning algorithm will record every constraint involving i or 
less variables. Obviously, as i increases storage increases. 
The additional storage required for higher order learning can 
be avoided, however, by further restricting the algorithm to 
only modify existing constraint without creating new ones. 
This approach does not change the structure of the constraint- 
graph associated with the problem, a property which is some- 
times desirable [Dechter 19851. 

V. EXPERIMENTAL EVALUATION 

The backtrack-with-learning algorithm has been tested on two 
classes of problems of different degrees of difficulty. The 
first is the class problem, a data-base type problem adapted* 
from [Bruynooghe 19841. The problem statement is given in 
Appendix 1. 

The second, and more difficult, problem is known as 
the Zebra problem. The problem’s statement is given in 
Appendix 2. It can be represented as a binary CSP by 
defining 25 variables each having five possible values denot- 
ing the identities of the different houses. 

Several instances of each problem have been generated 
by randomly varying the order of variables’ instantiation. As 
explained in Section 2, each ordering results in a different 
search space for the problem and, therefore, can be considered 
as a different instance. 

The mode of learning used in the experiments was 
controlled by two parameters: the depth of learning (i.e., shal- 
low or deep), and the level of learning (i.e., first order or 
second order). This results in four modes of learning: 
shallow-first-order, shallow-second-order, deep-first-order, 
and deep-second-order. The information obtained by the 
learning module was utilized also for backjumping as dis- 
cussed in Section 3. 

*Our problem is an app roximation of the original problem 
where only binary constraints are used. 

Each problem instance was solved by six search stra- 
tegies: naive backtrack, backtrack with backjump (no learn- 
ing), and backtrack with backjump coupled with each of the 
four possible modes of learning. The results for six problem 
instances of the class problem are presented in table 1, and for 
six problem instances of the zebra problem in table 2. The 
following abbreviations are used: NB = naive backtrack, BJ = 
Backjump, SF = Shallow-First-Order, SS = Shallow-Second- 
Order, DF = Deep-First-Order, DS = Deep-Second-order. 

# NB BJ SF SS DF DS 

’ 1 219 219 218 221 218 194 
25 25 25 25 25 22 

(;1243) (44) !if? (44) . 
2 123 123 133 155 

I 12 I 12 I 12 I 12 I 12 I 12 I 
(43) (43) (42) (42) 

3 266 266 266 267 260 125 
24 24 24 24 20 7 

(140) (140) (140) (51) 
4 407 407 406 409 423 509 

42 42 42 42 40 39 

Table 1: The Class Problem 

Table 2: The Zebra Problem 

Each of the problem instances was solved twice by the 
same strategy; the second run using a new representation that 
included alI the constraints recorded in the first run. This was 
done to check the effectiveness of these strategies in finding a 
better problem representation. 
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Each entry in the table records three numbers: the first 
is the number of consistency checks performed by the algo- 
rithm, the second is the number of backtrackings, and the 
Parenthesized number gives the number of consistency checks 
in the second run. 

Our experiments (implemented in LISP on a Symbol- 
its LISP Machine) show that in most cases both performance 
measures improve as we move from shallow learning to deep 
learning and from first-order to second-order. The class prob- 
lem turned out to be very easy, and is solved efficiently even 
by naive backtrack. The effects of backjumping and learning 
are, therefore, minimal except for deep-second-order learning 
where gains are sometimes evident. In some instances there is 
some deterioration due to unnecessary learning. In all these 
cases, the second run gave a backtrack-free performance. 

The zebra problem, on the other hand, is much more 
difficult, and in some cases could not be solved by naive back- 
track in a reasonable amount of time (in these cases the 
number reported are the counts recorded at time the run was 
stopped (*)). The enhanced backtrack schemes show dramatic 
improvements in two stages. First, the introduction of 
backjump by itself improved the performance substantially, 
with only moderate additional improvements due to the intro- 
duction of first-order or shallow second-order learning. 
Second-order-deep learning caused a second leap in perfor- 
mance, with gains over no-learning-backjump by a factor of 5 
to 10. The experimental results for the zebra problem are 
depicted graphically in Figure 2 (for the number of con- 
sistency checks) and in Figure 3 (for the number of bakctrack- 
ings) . 

250,000 - 

200,000 

NB = naive backtrack 
BJ = backjump 
SF = shallow first 
SS = shallow second 
DF = deep first 
DS = deep second 

50,000 
I 
L 
i 

25,000 

. 
NB BJ SF SS DF DS 

STRENGTH OF LEARNING 

Figure 2: Number of Consistency Checks for the 
Zebra Problem 

NB = naive backtrack 

STRENGTH OF LEARNING 

Figure 3: Numebr of Backtrackings for the 
Zebra Problem 

VI. CONCLUSIONS 

Our experiments demonstrate that learning might be very 
beneficial in solving CSPs. Most improvement was achieved 
by the strongest form of learning we have tested: deep- 
second-order learning. It remains to be tested whether higher 
degrees of learning perform even better or whether storage 
considerations and the amount of work invested in such 
learning outweigh the reduction in search. 

It was also shown that the more “knowledgeable” 
problem representation, achieved upon termination of 
backtrack-with-learning, is significantly better that the original 
one. This feature is beneficial when a CSP model is viewed 
as a world representing an initial set of constraints on which 
many different queries can be posed. Each query assumes a 
world that satisfies all these static constraints and some of the 
additional query constraints. Recording all the solutions for 
the initial set of constraints may be too costly and may not be 
efficiently used when new queries arrive. In such cases it may 
be worthwhile to keep the world model in the form of a set of 
constraints enriched by those learned during past searches. 

Another issue for further research is the comparison of 
first and second-order learning with the pre-processing 
approach of performing full arc and path-consistency prior to 
search. The pre-processing approach yield a representation 
which is usually better then that of second-order-learning, but 
the question is at what cost? Theoretical considerations reveal 
that pre-processing may be too costly and may perform 
unnecessary work. For instance, the Path-consistency algo- 
rithm is known to have a lower bound on its performance of 
0 (n3k3) on every problem instance. For the zebra problem 
this number 1s 1,953,125 consistency checks, which is far 
worse the performance of deep-second- order learning on all 
problem instances presented. 
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APPENDIX I: THE CLASS PROBLEM 

Several students take classes from several professors in dif- 
ferent days and rooms according to the following constraints: 

Student(Robert,Prolog) 
Student(John,Music) 
Stu&nt(John,Prolog) 
Student(John,surf) 
Student(Mary,Science) 
Student(mary,Art) 
Student(Mary, Physics) 

Professor(Luis ,Prolog) 
Professor(Luis,SurfJ 

Course(Prolog,Monday,Rooml) 
Course(Prolog,Friday,Rooml) 
Course(surf,Sunday,Beach) 
Course(Math,Tuesday,Rooml) 
Course(Math,Friday,Room2) 
Course(Science,Thurseday,Rooml) 
Course(Science,Friday,Room2) 
Course(Art,Tuesday,Rooml) 
Course(Physics,Thurseday,Room3) 
Course(Physics,Saturday,Room2) 

Professor(Maurice,Prolog) 
Professor(Eureka,Music) 
Professor(Eureka,Art) 
Professor(Eureka,Science) 
Professor(Eureka,Physics) 

The query is: find Student(stud,coursel) and 
Cou.rse(coursel ,day 1 ,room) and Professor(prof,course 1) and 
Student(stud,course2) and Course(course2,day2,room) and 
noteq(course 1 ,course2) 

APPENDIX II: THE ZEBRA PROBLEM 

There are five houses of different colors, inhabited by dif- 
ferent nationals, with different pets, drinks, and cigarettes: 

1. 

i* 
4: 
5. 

4: 

f * 
lb. 
11. 
12. 
13. 
14. 

The Englishman lives in the red house 
The Spaniard owns a dog. 
Coffee is drunk in the green house. 
The Ukranian drinks tea 
The green house is to the right of the ivory house. 
The old-gold smoker owns snails 
Kools are being smoked in the yellow house. 
Milk is drunk in thye middle house. 
The Norwegian lives in the first house on the left. 
The chesterfield smoker lives next to the fox owner. 
Kools are smoked next to the house with the horse. 
The Lucky-Strike smoker drinks orange juice. 
The Japanese smoke Parliament 
The Norwegian lives next to the blue house. 

The question is: Who drinks water? and who owns the 
Zebra? 
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