
LEARNING WHILE SEARCHING IN CONSTRAINT-SATISFACTION-PROBLEMS*

Rina Dechter

Artificial Intelligence Center
Hughes Aircraft Company, Calabasas, CA 91302

and
Cognitive Systems Laboratory, Computer Science Department

University of California, Los Angeles, CA 90024

ABSTRACT

The popular use of backtracking as a control strategy for
theorem proving in PROLOG and in Truth-Maintenance-
Systems (TMS) led to increased interest in various schemes
for enhancing the efficiency of backtrack search. Researchers
have referred to these enhancement schemes by the names
‘ ‘Intelligent Backtracking’ ’ (in PROLOG), ‘ ‘Dependency-
directed-backtracking” (in TMS) and others. Those improve-
ments center on the issue of “jumping-back” to the source of
the problem in front of dead-end situations.

This paper examines another issue (much less
explored) which arises in dead-ends. Specifically, we concen-
trate on the idea of constraint recording, namely, analyzing
and storing the reasons for the dead-ends, and using them to
guide future decisions, so that the same conflicts will not arise
again. We view constraint recording as a process of learning,
and examine several possible learning schemes studying the
tradeoffs between the amount of learning and the improve-
ment in search efficiency.

I. INTRODUCTION

The subject of improving search efficiency has been on the
agenda of researchers in the area of Constraint-Satisfaction-
Problems (CSPs) for quite some time [Montanari 1974,
Mackworth 1977, Mackworth 1984, Gaschnig 1979, Haralick
1980, Dechter 19851. A recent increase of interest in this sub-
ject, concentrating on the backtrack search, can be attributed
to its use as the control strategy in PROLOG [Matwin 1985,
Bruynooghe 1984, Cox 19841, and in Truth Maintenance Sys-
tems [Doyle 1979, De-Kleer 1983, Martins 19861. The terms
“intelligent backtracking”, “selective backtracking”, and
“dependency-directed backtracking” describe various efforts
for producing improved dialects of backtrack search in these
systems.

The various enhancements to Backtrack suggested for
both the CSP model and its extensions can be classified as fol-
lowed:

1. Look-ahead schemes: affecting the decision of what
value to assign to the next variable among all the con-
sistent choices available [Haralick 1980, Dechter
19851.

*This work was supported in part by the National Science
Foundation, Grant #DCR 85-01234

2. Look-back schemes: affecting the decision of where
and how to go in case of a a dead-end situation.
Look-back schemes are centered around two funda-
mental ideas:

a. Go-back to source of failure: an attempt is
made to detect and change previous decisions
that caused the dead-end without changing
decisions which are irrelevant to the dead-end.

b. Constraint recording: the reasons for the
dead-end are recorded so that the same
conflicts will not arise again in the continuation
of the search.

All recent work in PROLOG and truth-maintenance
system, and much of the work in the traditional CSP model is
concerned with look-back schemes, particularly on the go-
back idea. Examples are Gaschnig’s “Backmark” and
“Backjump” algorithms for the CSP model [Gaschnig 19791
and the work on Intelligent-Backtracking for Prolog
[Bruynooghe 1984, Cox 1984, Matwin 19851. The possibility
of recording constraints when dead-ends occur is mentioned
by Bruynooghe [Bruynooghe 19841. In truth-maintenance
systems both ideas are implemented to a certain extent. How-
ever, the complexity of PROLOG and of TMS makes it
difficult to describe (and understand) the various enhance-
ments proposed for the backtrack search and, more impor-
tantly, to test them in an effort to assess their merits. The
general CSP model, on the other hand, is considerably
simpler, yet it is close enough to share the basic problematic
search issues involved and, therefore, provides a convenient
framework for describing and testing such enhancements.

Constraint-recording in look-back schemes can be
viewed as a process of learning, as it has some of the proper-
ties that norrnally characterize learning in problem solving:

1. The system has a learning module which is indepen-
dent of the problem-representation scheme and the
algorithm for solving problem instances represented in
this scheme.

2. The learning module works by observing the perfor-
mance of the algorithm on any given input and record-
ing some relevant information explicated during the
search.

3. The overall performance of the algorithm is improved
when it is used in conjunction with the learning
module.

178 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

4. When the algorithm terminates, the information accu-
mulated by the learning module is part of a new, more
knowledgeable, representation of the same problem.
That is, if the algorithm is executed once again on the
same input, it will have a better performance.

Learning has been a central topic in problem solving.
The task of learning is to record in a useful way some infor-
mation which is explicated during the search and use it both at
the same problem instance and across instances of the same
domain. One of the first applications of this notion involved
the creation of macro-operators from sequences and sub-
sequences of atomic operators that have proven useful as solu-
tions to earlier problem instances from the domain. This idea
was exploited in STRIPS with MACROPS [Fikes 19711. A
different approach for learning macros was more recently
offered by [Korf 19821. Other recent examples of learning in
problem solving are: the work on analogical problem solving
[Carbonell 19831, learning heuristic problem-solving stra-
tegies through experience as described in the program LEX
[Mitchel 19831 and developing a general problem solver
(SOAR) that learns about aspects of its behavior using chunk-
ing [Laird 19841.

In this paper we examine several learning schemes as
they apply to solving general CSPs. The use of the CSP
model allows us to state our approach in a clear and formal
way, provide a parameterized learning scheme based on the
time-space trade-offs, and analyze the trade-offs involved
theoretically. We evaluated this approach experimentally on
two problems with different levels of difficulty.

II. THE CSP MODEL AND ITS SEARCH-SPACE

A constraint satisfaction problem involves a set of n variables
Xl , X,, each represented by its domain values, R 1, . . . , R,
and a set of constraints. A constraint Ci(Xil, * * * ,Xij) is a
subset of the Cartesian product Ri, x * * * xRij which specifies
which values of the variables are compatible with each other.
A solution is an assignment of values to all the variables
which satisfy all the constraints and the task is to find one or
all solutions. A constraint is usually represented by the set of
all tuples permitted by it. A Binary CSP is one in which all
the constraints are binary, i.e., they involve only pairs of vari-
ables. A binary CSP can be associated with a constraint-
graph in which nodes represent variables and arcs connects
pairs of constrained variables. Consider for instance the CSP
presented in figure 1 (from [Mackworth 19771). Each node
represent a variable whose values are explicitly indicated, and
the constraint between connected variables is a strict lexico-
graphic order along the arrows.

Xl x2

Figure 1: An example CSP

Backtracking works by provisionally assigning con-
sistent values to a subset of variables and attempting to
append to it a new instantiation such that the whole set is con-
sistent. An assignment of values to subset of the variables is
consistent if it satisfies all the constraints applicable to this
subset. A constraint is applicable to a set of variables if it is
defined over a subset of them.

The order by which variables get instantiated may
have a profound effect on the efficiency the algorithm
[Freuder 19821 since each ordering determine a different
search space with different size. The ordering can be pre-
determined, or could vary dynamically, in which case the
search space is a graph whose states are unordered subsets of
consistently instantiated variables. The methods suggested in
this paper are not dependent on the particular ordering scheme
chosen, and we assume, without loss of generality, that the
ordering is given as part of the problem input. Moreover, in
Section 5 we generate different instances of a problem, for our
numerical experiments, by simply changing the ordering of
the variables of the same problem.

Another issue that have influence on the size of the
search space is the CSP’s input representation, i.e. a set of
variables, their domains and the set of explicit constraints. It
defines a relation among the variables, consisting of those
tuples satisfying all the constraints, or the set of all solutions.
There may be numerous equivalent CSP representations for
the same set of solutions and some may be better then others
since they yield a smaller search space. One way of improv-
ing the representation is by inducing, or propagating con-
straints [Montanari 1974, Mackworth 19771. For example,
the constraints C(X,Y) and C(Y,Z) induce a constraint
C(X,Z) as follows: A pair (x,2) is allowed by C(X,Z) if there
is at least one value y in the domain of Y such that (x,y) is
allowed by C(X,Y) and (y,z) is allowed by C(Y,Z). For
instance, for the problem in figure 1, a constraint between X 1
and X2 can be induced from the binary constraints C(X 1 ,X3)
and C(X3,Xz) to yield a constraint C(X 1 ,X2) that disallow
(among other pairs) the pair (a,a). The definition of induced
constraints can be extended in a natural way to non-binary
constraints.

Several schemes for improving the search efficiency
by pre-processing the problem’s representation have been pro-
posed [Montanari 1974, Mackworth 1984, Dechter 19851.
These pre-processing schemes can be viewed as a mode of
learning since they result in modified data structure and
improved performance. However, inducing all possible con-
straints may involve a procedure which is exponential both in
time and space [Freuder 19781.

III. LEARNING WHILE SEARCHING

The process of learning constraints need not be performed as
a pre-processing exercise, but can rather be incorporated into
the backtrack search. An opportunity to learn new constraints
is presented each time the algorithm encounters a dead-end
situation, i.e. whenever the current state S =
(Xl =X1, s a a ,Xi-1 = xi-1) cannot be extended by any value
of the variable Xi. In such a case we say that S is in conflict
with Xi or, in short, that S is a conflict-set. An obvious con-
straint that can be induced at that point is one that prohibits
the set S. Recording this constraint, however, is of no help
since under the backtrack control strategy this state will never
reoccur. If, on the other hand, the set S contains one or more
subsets which are also in conflict with Xi, then recording this
information in the form of new explicit constraints might

Search: AUTOMATED REASONING / 179

prove useful in future search.

One way of discovering such a subset is by removing
from S all the instantiations which are irrelevant to Xi. A
pair consisting of a variable and one of its value (X,x) in S is
said to be irrelevant to Xi if it is consistent with all values of
Xi w.r.t the constraints applicable to S. We denote by
Conf(S,Xi), or Conf-set in short, the conflict-set resulting by
removing all irrelevant pairs from S.

The Conf-set may still contain one or more subsets
which are in conflict with Xi. Some of these subsets are
Minimal conflict sets [Bruynooghe 19811, that is, they do not
contain any proper conflict-sets and, so, can be regarded as the
sets of instantiations that “caused” the conflict. Since a set
which contains a conflict-set is also in conflict, it is enough to
explicitly discover all the minimal conflict-sets i.e., the set of
smallest conflict-sets.

Consider again the problem in figure 1. Suppose that
the backtrack algorithm is currently at State
(X 1 = b ,X2 = b ,X3 = a,Xd = b). This state cannot be
extended by any value of X5 since none of its values is con-
sistent with all the previous instantiations. This means, of
course, that the tuple (Xl = b ,X2 = b ,X3 = a,X4 = b) should
not have been allowed in this problem. As pointed out above,
however, there is no point recording this fact as a constraint
among the four variables involved. A closer look reveals that
the instantiation X1 = b and X2 = b are both irrelevant in this
conflict simply because there is no explicit constraint between
X1 andX5 or betweenX2 andX5. NeitherX3 = a norX4 = b
can be shown to be irrelevant and, therefore, the Conf-set is
(X3 = a,X4 = b). This could be recorded by eliminating the
pair (a,b) from the set of pairs permitted by C (X3,X4). This
Conf-set is not minimal, however, since the instantiation
X4 = b is, by itself, in conflict with X5. Therefore, it would
be sufficient to record this information only, by eliminating
the value b from the domain of X4.

Finding the conflict-sets can assist backtrack not only
in avoiding future dead-ends but also by backjumping to the
appropriate relevant state rather then to the chronologically
most recent instantiation. If only the Conf-set is identified the
algorithm should go back to the most recent variable (i.e. the
deepest variable) in this set. If the minimal conflict-sets
mlm2,. . . , ml are identified, and if d&i) is the depth of the
deepest variable in mi then the algorithm should jump back to
the shallowest among those deep variables, i.e. to.

Min {d(ntj)] (1)

Discovering all minimal conflict-sets amounts to
acquiring all the possible information out of a dead-end. Yet,
such deep learning may require considerable amount of
work. While the number of minimal conflict-sets is less then
2r, where r is the cardinality of the Conf-set, we can envision
a worst case where all subsets of Conf(S,Xi) having f ele-

ments are in conflict with Xi.
conflict-sets should then satisfy

The number of Lnimal

r1
#m&conflict-sets = L 3 2’ ,

II z

(2)

which is still exponential in the size of the Conf-set. If the
size of this Conf-set is small it may still be reasonable to
recognize all minimal conflict-sets.

Most researchers in the area of truth-maintenance-
systems have adopted the approach that all the constraints
realized during the search should be recorded (recording no-
good sets or restriction sets), e.g., [Doyle 1979, De-Kleer
1983, Martins 19861. However, learning all constraints may
amount to recording almost all the search space explored.
Every dead-end contains a new induced constraint. The
number of dead-ends may be exponential in the worst case,
i.e., O(P) when n is the number of variables and k is the
number of values for each variable, which presents both a
storage problem and a processing problem. It seems reason-
able, therefore, to restrict the information learned to items
which can be stored compactly and still have a gc& chance
for being reused. In the next section we discuss several possi-
bilities for accomplishing these criteria.

N. CONTROLLED LEARNING

Identifying the Conf-set is the first step in the discovery of
other subsets in conflict and, by itself, it can be considered a
form of shallow learning. It is easy to show that the Conf-set
satisfies

Conf = UT(Xij) , (3)
xij

where xi. is the jfh
subset o f value in the domain of Xi and T(xij) is a

S which contains all instantiations in S that are not
consistent with the assignment Xi =x+.. Let C be the set of
relevant constraints on SU{Xij which‘involve Xi, and let I be
the size of C. The identification of a specific T-set requires
testing all these constraints. An algorithm for identifying the
Conf-set may work by identifying T-sets for all the values of
Xi and unionize them and its complexity is 0 (k-l) when k is
the number of values for Xi.

An approximation of the Conf-set may be obtained by
removing from the set S only those variables that are not asso-
ciated with any constraint involving Xi. The resulting conflict
set, which contains the Conf-set, may be used as a surrogate
for it. The complexity of this algorithm is just O([) but it may
fail to delete an irrelevant pair which appears in some con-
straint but did not participate in any violation. For example,
in the example CSP the state {Xl = a,Xz =c} is at dead-end
since it cannot be extended by any value of X3. The approxi-
mate Conf-set in this case is the whole state since both X 1 and
X2 have constraints with X3 however a careful look reveals
that X2 = c is irrelevant to X3 and the real Conf-set is
VI = al.

Independently of the depth of learning chosen, one
may restrict the size of the constraints actually recorded.
Constraints involving only a small number of variables
require less storage and have a better chance for being reused
(to limit the search) than constraints with many variables. For
example, we may decide to record only conflict-sets consist-
ing of a single instantiation. this is done by simply eliminat-
ing the value from the domain of the variable. We will refer
to this type of learning as first-order learning which amounts
to making a subset of the arcs arc-consistent [Mackworth
19771. It does not result in global arc-consistency because it
only make consistent those arcs that are encountered during
the search. First-order learning does not increase the storage
of the problem beyond the size of the input and it prunes the
search each time the deleted value is a candidate for assign-
ment. For example, if we deleted a value from a veable at
depth j we may prune the search in as much as kl-’ other
states.

180 / SCIENCE

Second-order learning is performed by recording
only conflict-sets involving either one or two variables. Since
not all pairs of variables appear in constraints in the initial
representation (e.g. when all pair of values are permitted noth-
ing is written), second-order learn:

f 5
nml increase the size of

the problem. There are at most * binary constraints,
each having at most k2 pairs of values, the increase in storage
is still reasonably bounded and may be compensated by sav-
ing in search. Second-order learning performs partial path-
consistency [Montanari 19741 since it only adds and modify
constraints emanating from paths discovered during the
search.

When deep learning is used in conjunction with res-
tricting the level of learning we get deep first-order learning
(identifying minimal conflict sets of size 1) and deep second-
order learning (i.e. identifying minimal conflict-sets of sizes
1 and 2). The complexity of deep first-order learning is
0 (kd) when r is the size of the Conf-set since each instan-
tiation is tested against all values of Xi. The omplex’ of

deep second-order learning can rise to 0(

I r

F .k.l)

since in this case each pair of instantiations shou d be checked
against each value of Xi.

In a similar manner we can define and execute higher
degrees of learning in backtrack. In general, an irh-order
learning algorithm will record every constraint involving i or
less variables. Obviously, as i increases storage increases.
The additional storage required for higher order learning can
be avoided, however, by further restricting the algorithm to
only modify existing constraint without creating new ones.
This approach does not change the structure of the constraint-
graph associated with the problem, a property which is some-
times desirable [Dechter 19851.

V. EXPERIMENTAL EVALUATION

The backtrack-with-learning algorithm has been tested on two
classes of problems of different degrees of difficulty. The
first is the class problem, a data-base type problem adapted*
from [Bruynooghe 19841. The problem statement is given in
Appendix 1.

The second, and more difficult, problem is known as
the Zebra problem. The problem’s statement is given in
Appendix 2. It can be represented as a binary CSP by
defining 25 variables each having five possible values denot-
ing the identities of the different houses.

Several instances of each problem have been generated
by randomly varying the order of variables’ instantiation. As
explained in Section 2, each ordering results in a different
search space for the problem and, therefore, can be considered
as a different instance.

The mode of learning used in the experiments was
controlled by two parameters: the depth of learning (i.e., shal-
low or deep), and the level of learning (i.e., first order or
second order). This results in four modes of learning:
shallow-first-order, shallow-second-order, deep-first-order,
and deep-second-order. The information obtained by the
learning module was utilized also for backjumping as dis-
cussed in Section 3.

*Our problem is an app roximation of the original problem
where only binary constraints are used.

Each problem instance was solved by six search stra-
tegies: naive backtrack, backtrack with backjump (no learn-
ing), and backtrack with backjump coupled with each of the
four possible modes of learning. The results for six problem
instances of the class problem are presented in table 1, and for
six problem instances of the zebra problem in table 2. The
following abbreviations are used: NB = naive backtrack, BJ =
Backjump, SF = Shallow-First-Order, SS = Shallow-Second-
Order, DF = Deep-First-Order, DS = Deep-Second-order.

NB BJ SF SS DF DS

’ 1 219 219 218 221 218 194
25 25 25 25 25 22

(;1243) (44) !if? (44) .
2 123 123 133 155

I 12 I 12 I 12 I 12 I 12 I 12 I
(43) (43) (42) (42)

3 266 266 266 267 260 125
24 24 24 24 20 7

(140) (140) (140) (51)
4 407 407 406 409 423 509

42 42 42 42 40 39

Table 1: The Class Problem

Table 2: The Zebra Problem

Each of the problem instances was solved twice by the
same strategy; the second run using a new representation that
included alI the constraints recorded in the first run. This was
done to check the effectiveness of these strategies in finding a
better problem representation.

Search: AUTOMATED REASONING / 18 1

Each entry in the table records three numbers: the first
is the number of consistency checks performed by the algo-
rithm, the second is the number of backtrackings, and the
Parenthesized number gives the number of consistency checks
in the second run.

Our experiments (implemented in LISP on a Symbol-
its LISP Machine) show that in most cases both performance
measures improve as we move from shallow learning to deep
learning and from first-order to second-order. The class prob-
lem turned out to be very easy, and is solved efficiently even
by naive backtrack. The effects of backjumping and learning
are, therefore, minimal except for deep-second-order learning
where gains are sometimes evident. In some instances there is
some deterioration due to unnecessary learning. In all these
cases, the second run gave a backtrack-free performance.

The zebra problem, on the other hand, is much more
difficult, and in some cases could not be solved by naive back-
track in a reasonable amount of time (in these cases the
number reported are the counts recorded at time the run was
stopped (*)). The enhanced backtrack schemes show dramatic
improvements in two stages. First, the introduction of
backjump by itself improved the performance substantially,
with only moderate additional improvements due to the intro-
duction of first-order or shallow second-order learning.
Second-order-deep learning caused a second leap in perfor-
mance, with gains over no-learning-backjump by a factor of 5
to 10. The experimental results for the zebra problem are
depicted graphically in Figure 2 (for the number of con-
sistency checks) and in Figure 3 (for the number of bakctrack-
ings) .

250,000 -

200,000

NB = naive backtrack
BJ = backjump
SF = shallow first
SS = shallow second
DF = deep first
DS = deep second

50,000
I
L
i

25,000

.
NB BJ SF SS DF DS

STRENGTH OF LEARNING

Figure 2: Number of Consistency Checks for the
Zebra Problem

NB = naive backtrack

STRENGTH OF LEARNING

Figure 3: Numebr of Backtrackings for the
Zebra Problem

VI. CONCLUSIONS

Our experiments demonstrate that learning might be very
beneficial in solving CSPs. Most improvement was achieved
by the strongest form of learning we have tested: deep-
second-order learning. It remains to be tested whether higher
degrees of learning perform even better or whether storage
considerations and the amount of work invested in such
learning outweigh the reduction in search.

It was also shown that the more “knowledgeable”
problem representation, achieved upon termination of
backtrack-with-learning, is significantly better that the original
one. This feature is beneficial when a CSP model is viewed
as a world representing an initial set of constraints on which
many different queries can be posed. Each query assumes a
world that satisfies all these static constraints and some of the
additional query constraints. Recording all the solutions for
the initial set of constraints may be too costly and may not be
efficiently used when new queries arrive. In such cases it may
be worthwhile to keep the world model in the form of a set of
constraints enriched by those learned during past searches.

Another issue for further research is the comparison of
first and second-order learning with the pre-processing
approach of performing full arc and path-consistency prior to
search. The pre-processing approach yield a representation
which is usually better then that of second-order-learning, but
the question is at what cost? Theoretical considerations reveal
that pre-processing may be too costly and may perform
unnecessary work. For instance, the Path-consistency algo-
rithm is known to have a lower bound on its performance of
0 (n3k3) on every problem instance. For the zebra problem
this number 1s 1,953,125 consistency checks, which is far
worse the performance of deep-second- order learning on all
problem instances presented.

182 / SCIENCE

APPENDIX I: THE CLASS PROBLEM

Several students take classes from several professors in dif-
ferent days and rooms according to the following constraints:

Student(Robert,Prolog)
Student(John,Music)
Stu&nt(John,Prolog)
Student(John,surf)
Student(Mary,Science)
Student(mary,Art)
Student(Mary, Physics)

Professor(Luis ,Prolog)
Professor(Luis,SurfJ

Course(Prolog,Monday,Rooml)
Course(Prolog,Friday,Rooml)
Course(surf,Sunday,Beach)
Course(Math,Tuesday,Rooml)
Course(Math,Friday,Room2)
Course(Science,Thurseday,Rooml)
Course(Science,Friday,Room2)
Course(Art,Tuesday,Rooml)
Course(Physics,Thurseday,Room3)
Course(Physics,Saturday,Room2)

Professor(Maurice,Prolog)
Professor(Eureka,Music)
Professor(Eureka,Art)
Professor(Eureka,Science)
Professor(Eureka,Physics)

The query is: find Student(stud,coursel) and
Cou.rse(coursel ,day 1 ,room) and Professor(prof,course 1) and
Student(stud,course2) and Course(course2,day2,room) and
noteq(course 1 ,course2)

APPENDIX II: THE ZEBRA PROBLEM

There are five houses of different colors, inhabited by dif-
ferent nationals, with different pets, drinks, and cigarettes:

1.

i*
4:
5.

4:

f *
lb.
11.
12.
13.
14.

The Englishman lives in the red house
The Spaniard owns a dog.
Coffee is drunk in the green house.
The Ukranian drinks tea
The green house is to the right of the ivory house.
The old-gold smoker owns snails
Kools are being smoked in the yellow house.
Milk is drunk in thye middle house.
The Norwegian lives in the first house on the left.
The chesterfield smoker lives next to the fox owner.
Kools are smoked next to the house with the horse.
The Lucky-Strike smoker drinks orange juice.
The Japanese smoke Parliament
The Norwegian lives next to the blue house.

The question is: Who drinks water? and who owns the
Zebra?

REFERENCES

[l]Bruynooghe, Maurice, ‘ ‘Solving combinatorial search
problems by intelligent backtracking,” Information Process-
ing Letters, Vol. 12, No. 1, 1981.

[2]Bruynooghe, Maurice and Luis M. Pereira, “Deduction
Revision by Intelligent backtracking,” in Implementation of
Prolog, J.A. Campbell, Ed. Ellis Harwood, 1984, pp. 194-
215.

[3]Carbonell, J.G., “Learning by analogy: Formulation and
generating plan from past experience,” in Machine Learning,
Michalski, Carbonell and Mitchell, Ed. Palo Alto, California:
Tioga Press, 1983.

[4]Cox, P.T., “Finding backtrack points for intelligent back-
tracking,’ ’ in Implementation of Prolog, J.A. Campbell, Ed.
Ellis Harwood, 1984, pp. 216-233.

[S]Dechter, R. and J. Pearl, “The anatomy of easy problems:
a constraint-satisfaction formulation,” in Proceedings Ninth
International Conference on Artificial Intelligence, Los
Angeles, Cal: 1985, pp. 1066-1072.

[6]De-Kleer, Johan, “Choices without backtracking,” in
Proceedings AAAZ, Washington D.C.: 1983, pp. 79-85.

[7]Doyle, Jon, “A truth maintenance system,” Artijcial Intel-
ligence, Vol. 12, 1979, pp. 231-272.

[8]Fikes, R.E. and N.J. Nilsson, “STRIPS: a new approach to
the application of theorem to problem solving.,” Artificial
Intelligence, Vol. 2, 1971.

[9]Freuder, EC., ‘ ‘Synthesizing constraint expression, ’ ’ Com-
munication of the ACM, Vol. 21, No. 11, 1978, pp. 958-965.

[lO]Freuder, E.C., ‘ ‘A sufficient condition of backtrack-free
search.,’ ’ Journal of the ACM, Vol. 29, No. 1, 1982, pp. 24-
32.

[1 l]Gaschnig, J., “A problem similarity approach to devising
heuristics: first results,” in Proceedings 6th international
joint co& on Artificial Intelligence., Tokyo, Jappan: 1979, pp.
301-307.

[12]Haralick, R. M. and G.L. Elliot, “Increasing tree search
efficiency for cconstraint satisfaction problems,” AZ Journal,
Vol. 14, 1980, pp. 263-313.

[13]Korf, R.E., “A program that learns how to solve rubic‘s
cube.,’ ’ in Proceedings AAAI Conference, Pittsburg, Pa: 1982,
pp. 164-167.

[14]Laird, J. E., P. S. Rosenbloom, and A. Newell, “Towards
chunking as a general learning mechanism,” in Proceedings
National Conference on Artijcial Intelligence, Austin, Texas:
1984.

[15]Mackworth, A.K., “Consistency in networks of rela-
tions,’ ’ Artifficial intelligence, Vol. 8, No. 1, 1977, pp. 99-
118.

[16]Mackworth, A.K. and EC. Freuder, “The complexity of
some polynomial network consistancy algorithms for con-
straint satisfaction problems,” Artificial Intelligence , Vol. 25,
No. 1, 1984.

[17]Martins, Joao P. and Stuart C. Shapiro, “Theoretical
Foundations for belief revision,” in Proceedings Theoretical
aspects of Reasoning about knowledge, 1986.

[18]Matwin, Stanislaw and Tomasz Pietrzykowski, “Intelli-
gent backtracking in plan-based deduction,” IEEE Transac-
tion on Pattern Analysis and Machine Intelligence, Vol.
PAMJ-7, No. 6, 1985, pp. 682-692.

[19]Mitchel, T., P.E. Utgoff, and R. Banerji, “Learning by
experimentation; acquiring and refining problem solving
heuristics.,” in Machine learning, Michalski, R.S., Carbonel,
J.R., Mitchel, T.M., Ed. Palo Alto, California: Tioga publish-
ing company, 1983.

[20]Montanari, U., “Networks of constraints :fundamental
properties and applications to picture processing,” Informa-
tion Science, Vol. 7, 1974, pp. 95-132.

Search: AUTOMATED REASONING / 18.3

