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ABSTRACT. 

Among various approaches to hand1 ing 
incomplete and negative information in knowledge 
representation systems based on predicate logic, 
McCarthy’s circumscription appears to be the most 
powerful. In this paper we describe a decidable 
algorithm to answer queries in circumscriptive 
theories. The algorithm is based on a modif ied 
version of ordered linear resolution, which 
constitutes a sound and complete procedure to 
determine whether there exists a minimal model 
satisfying a given formula. 

The Closed-World Assumption and its 
generalizations, GCWA and ECWA, can be considered 
as a special form of circumscription. 
Consequently, our method also applies to 
answering queries in theories using the 
Closed-World Assumption or its generalizations. 

For the sake of clarity, we restrict our 
attention to theories consisting of ground 
clauses. Our algorithm, however, has a natural 
extension to theories consisting of arbitrary 
clauses. 

1. Introduction 

We describe a decidable algorithm to answer 
queries in indefinite theories with the proper 
treatment of incomplete information and, in 
particular, with the correct representation of 
negative information. The need for such 
algorithms has been recently stressed in the 
literature (cf. [GMN], [RZ], [Mi]). Our algorithm 
is based on McCarthy’s theory of circumscription 
(see [M],[M2],[L],[L2],[L3]), which appears to be 
the most powerful among various approaches to 
handling incomplete and negative information in 
knowledge representation sys terns based on 
predicate logic. 

For the sake of clarity, in this paper we 
restrict our attention to theories consisting of 
ground clauses. Under natural conditions, 
explained in Section 5, our algorithm has a 
straighforward decidable extension to theories 
consieting of arbitrary clauses. 

Suppose that T is a fi rst order 
clausal form and F is a sen tence. We 

theory in 
develop a 

i¶Inimal model Linear Ordered resolution 
(MILO-resolution) which constitutes a sound and 
complete method to determine whether there exists 
a minimal model M of T satisfying the formula F. 
Since a circumscriptive theory CIRC(T) implies a 
formula H if and only if there are no minimal 
models M of T satisfying the negation of H, 
MILO-resolution gives rise to an algorithm for 
answering queries in circumscriptive theories. 

Our method also applies to answering queries 
in theories using Rei ter’s Closed-World 
Assumption (CWA; see [RI) or its generalizations. 
It has been shown in [L2], that under the 
assumptions of unique names, domain closure and 
finitely many terms, CWA (applicable only to 
definite theories) is equivalent to 
circumscription. A generalization GCWA of the CWA 
for indefinite theories has been proposed by 
Minker [Mi] (see also [WI). In [GPP], an 
extension, ECWA, of GCWA for non-unit clauses has 
been described and proven (under the 8 ame 
assumptions) to be equivalent to circumscription. 
Since the above mentioned assumptions are 
routinely made when applying the CWA; it can be 
argued that CWA and its generalizations 
constitute a special case of circumscription. 

Finally, we wish to point out that our 
algorithm will naturally suffer from all the 
inherent inefficiencies present in a general 
theorem prover. In fact, being more complex, it 
will be even more inefficient. Therefore, we see 
its main importance as an analytical tool to 
study theorem proving methods in general 
closed-world theories, which - when restricted to 
a suitable domain - becomes a sound and complete 
inference engine. It is fairly clear, that if 
efficient implementation of a closed-world 
inference engine is the main objective, then 
strong syntactical restrictions have to be 
imposed on the theory involved. The so called 
stratifiable databases (see [ABW] and EPI) 
provide a case in point. 

2. Parallel Circumscription 

From now on we assume that T is a first order 
theory consisting of finitely many ground clauses 
over the language L. We also assume that the 
Unique Names Assumption is satisfied for L , i.e. 

0fL.l 2 
that t #t for any two different terms tl and t2 
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Parallel circumscription was introduced by J. 
McCarthy [M),[M2]. Suppose thet P = (P1,...,Pn) 
is a list of some predicate symbols from T that 
we intend to minimize and Q = {Q ,...,Q } is the 
list of the remaining pre icatesy a- called 
parameters. The process of circumscribing (or 
minimizing) predicates P in T transforms T into a 
stronger second order theory CIRC(T;P) as defined 
below. 

Definition 2.1. The circumscription of P in T . the following 
;;P) A V P’ [( T(P’) A P’ 

sentence CIRC(T;P) : 
-> P > -> (P’ = P)], 

where P’ -> P stands for V x (P’(x) -> P(x)).@ 

This formula states that predicates from P 
have a minimal possible extension under the 
condition T(P) (cf.[L],[L2],[L3]). 

Reurrk. For the sake of simplicity, in this 
paper we do not consider variable predicates 2 
(see [h2] 1. At the cost of becoming more 
complex, the procedure can be generalized to 
handle variable predicates.0 

To clarify the notion of circumscription we 
reformulate it in model-theoretic terms. 

Definition 2.2. For any two models M and N of 
T we write I¶ ( N Md P if M and N differ only in 
how they interpret the predicates in P, and if 
the extension of every predicate in M is a subset 
of its extension in N.I 

This relation is a partial-order and hence we 
can talk about minimal models M w.r.t. 6 in the 
class S of all models of T. Such models are 
called P-rriniral models of T. The following 
result is fundamental: 

Theorem 2.3. [L] A structure M is a model of 
CIRC(T;P) iff M is a P-minimal model of T. In 
other words, for any formula F we have 
CIRC(T;P) k F iff M I= F, for every P-minimal 
model M of T.I 

Our algorithm will be based on the following 
important characterization of circumscription 
obtained in [GPP] and stating, in effect, that 
circumscription is equivalent to the so called 
Extended Closed-World Assumption: 

Theorer 2.4. [GPP] Suppose that F is a ground 
formula. Then CIRC(T;P) I= F if and only if there 
are no clauses C such that: 

(i) C does not contain literal8 from P-; 
(ii) T b ~FvC, but T H C.I 

Theorems 2.3 and 2.4 yield the following: 

Corollary 2.5. [GPP] Suppose that K is a 
ground formula. There exists a P-minimal model M 
of T satisfying K if and only if there exists a 
clause C such that: 

(i) C does not contain literal8 from P-; 
(ii) T I- KvC, but T H C.I 

The purpose of the MILO-resolution defined in 

the next section is to determine the existence of 
a clause C and thus the existence of a P-minimal 
model. 

3. Diniral Model Resolution 

In this section we describe a l¶Inilral model 
Linear Ordered resolution (HILO-resolution) which 
constitutes a sound and complete method to 
determine whether there exists a P-minimal model 
M of a theory T satisfying a given formula F. 
Since a circumscriptive theory CIRC(T;P) implies 
a formula H if and only if there are no P-minimal 
models M of T satisfying the negation of H, 
MILO-resolution leads to an algorithm for 
answering queries in circumscriptive theories. 
MILO-resolution is a modification of the ordered 
linear resolution (OL-resolution; see [CL]). 

We denote by P- the set of all negative 
literals, whose predicate symbols are in P and we 
consider every clause as an ordered list of 
literal8 {ll,...,lm]. By an extended clause we 
mean an ordered list of literals, some of which 
may be framed. A framed literal k is denoted by 
[kl. Framed literal8 are merely used for 
recording those literals that have been resolved 
upon ; they do not participate in the resolution. 
An extended clause is a tautology if it contains 
a pair of unframed complementary literals. An 
extended clause C subsures an extended clause D 
if the set of unframed literals of C is contained 
in D. Now we are ready to define ?lILD-deduction. 
For readers unfamiliar with the OL-deduction, we 
have indicated in bold case those parts of the 
definition that have to be removed to obtain 
standard OL-deduction. 

Definition 3.1. Given a theory T and a clause 

cO’ a i¶ILD-deduction of a clause C from T + C 
is any sequence of extended clause! C ,C CO 
in which C. is generated from C 
the follow!:; rules: i ac!or&fng”tZ 

(i> First, an extended clause D 
i+l is 

constructed, which is the ordered resolvent of 

ci=Ill’...‘lm] and some clause B={kl,...,ks} 

from T upon the first literal 1 
j 

in. Ci that 

belongs to p-9 i.e. D i+l 
= 

ll,.-,~j_l~kl'"~ku_l~ku+l".'ks~[ljl'lj+l lm I l l , 

where k =ll 
U 

j (framed literal [l.] is used to 
J 

record the performed operation); 

(ii) The clause C is obtained from 
by performing the folfziing 

D. 
reductions in GA 

order specified: 
(a) deleting any unframed literal8 k in 

for which there exists a framed literal [lk] 
%+bi+l ; 

(b) merging any identical literal8 in 
D i+l to the right; 
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(c) removing any framed literala in D. 
that are not preceded by unframed literal8 f++o)l 
P-. 

(iii) The clause Ci+ 
and it cannot be subsume a 

cannot be a tautology 
by any of the previous 

clauses. I 

As indicated above, MILO-deduction differs 
from the standard ordered 1 inear deduct ion 
(OL-deduction; see [CL]) only by: (1) restricting 
the resolution to literal8 from P- and (2) 
removing all those framed literals in D +l 

# 
that 

are not preceded by unframed li terals rom P-, 
rather than just removing those framed literal6 
which are not preceded by any unframed literals. 

Definition 3.2. A IlILO-deduction of a clause 
C fromT+CD 
f?omT+Co, if 

is called a HILO-derivation of Cn 

The process of finding 
called a HILO-resol .ution.l 

a MILO-derivation is 

Let us explain the meaning of this 
definition. First of all, if C does not contain 
any literal8 from P- then: according to 
Definition 3.1, no further deduction can be 
performed from it, and therefore C is a terminal 
clauee. Secondly, it is not diffikrlt to show, 
that if K is a conjunction of literals and if a 
clause C is MILO-derivable from lK, then 
T k K v C”, but T tf C 
Corollary” 2.5. shows “ihat 

which in view of 
there exists a 

P-minimal model of T satisfying K. This 
establishes the easy part (soundness) of the 
following fundamental result: 

Theorem 3.3. (Soundness and completeness of 
the HILO-resolution) Suppose that K is a 
conjunction of literals. There exists a P-minimal 
model of T such that M k K iff there exists a 
MILO-derivation from T + 1K .I 

Example 3.4. Suppose that T consists of the 
following clauses: 

(1) s(C) V -IS(B) 
(2) s(A) v s(B) v is(C) 
(3) s(A) v s(B) v s(C) 
and suppose that P = (8). The following 

deduction is a MILO-derivation from 
T + l(s(B)hs(C)) (literal8 resolved upon are 
underlined and side clauses are given in 
parentheses): 

ls(B~Vls(C) 
I (2) 

s(A)vxI(C)V[~S(B)]V~S(C) 
1 (reduction) 

s(A)vls(C) 
I (1) 

s(A)vls(B1V[ls(C)] 
I (3) 

~(A)~~(C)V[~~(B)JV[~~(C)] 
1 (reduction) 

s(A) 

because, it is easy to verify, using e.g. 
standard OL-resolution, that TVs(A). Therefore, 
Theorem 3.3 implies that there exists a P-minimal 
model of T in Example 3.4 satisfying s(B)hs(C).I 

Although the notions of HILO-deduction and 
OL-deduction are similar, the proof of Theorem 
3.3 is considerably more involved than the proof 
of the soundness and completeness of the standard 
OL-resolution. This is due to the special 
treatment of literals from P-. 

Suppose now that F is any formula. We can 
obviously assume that F is represented in normal 
disjunctive form, i.e. F=KlV....vK,, where Ki’s 
are conjunctions of literale. 

Corollary 3.5. For a formula F the following 
conditions are equivalent: 

(i) there exists a P-minimal model tl of T 
such that H I= F ; 

(ii) there exists a P-minimal model kl of T 
such that M I= Ki, for some i; 

(iii) there exists a MILO-derivation from 
T+,Ki , for some i.@ 

From the description of the MILO-resolution, 
it is clear that its role is to reduce the 
original problem of the existence of P-minimal 
models M of T satisfying a given formula F to the 
problem of establishing whether a Riven clause C 
is derivable from T. The last problem can bg 
handled by a standard theorem prover. Obviously, 
if the theory T is not decidable, we will not be 
always able to establish that C is not derivable 
from T. This dependence on the aecidability of T 
is not surprising: after all our query concern6 
the existence of specific models of T. 

4. Query answering in circumscriptive 
and closedjworld theories 

Suppose that F is any formula. We can 
obviously assume that F is represented in normal 
conjunctive form, i.e. F = G A...AG 
are clauses. From Theorem 2. 3 

, where G ‘8 
and torollary 5.5 

we easily obtain: 

Theorem 4.1, For a formula F the following 
conditions are equivalent: 

(i> CIRC(T;P) Lt F ; 
(ii) there is a P-minimal model for -IF; 
(iii) there is a P-minimal model for lGi, for 

some i ; 
(vi) there is a MILO-derivation 

for some i .I 
from T+Gi, 

Corollary 4.2. For 
conditions are equival 

(1) CIRC(T;P) k 
(ii) there is no 
(iii) for every i 

for 1G.; 
(vi) for every i 

from T+Gi .I 

a formula F the following 
ent: 
F i 
P-minimal model for 1F; 
there is no P-minimal model 

there is no tlILO-derivation 

According to Theorem 4.1, 
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CIRC(T;P) does not imply is(B) v is(C), where T 
is the theory described in Example 3.4.1 

The following corollary is a special case of 
results established in [EMR] and [GPP] and shows 
that as long as F does not contain any literal8 
from P-, F is implied by CIRC(T;P) iff it is 
derivable from T, which further explains the 
reduction process described in the previous 
section. 

Corollary 4.4. ([EMRJ,[GPP]) Suppose that F 
is a formula which does not contain any negative 
occurrences of predicates from P. Then: 

T + F iff CIRC(T;P) t= F .I 

Corollary 4.2 leads to the following 
decidable algorithm for query answering in 
circumecriptive theorier based on 
tlILO-resolution. 

Theorem 4.5. (Decidable Query Answering 
Algorithm). The following procedure constitutes a 
decidable algorithm for determining whether a 
given formula F is implied by a circumscriptive 
theory CIRC(T;P): 

Step 1. Represent F in normal conjunctive 
form, i.e. 
clauses. 

let F = Glh...hGm, where Gi’s are 

Step2. For all j=l,...,m use the depth-first 
search on the HILO-resolution tree with the top 
clause G 
with cla se8 H that do not contain literal8 d 

to find all MILO-deductions terminating 
from 

P-. 

Step 3. If no such terminal clauses H are 
found for any j=l,...,m, then CIRC(T;P) b F. 

Step 4. Else, for any terminal clause H found 
use any decidable standard theorem prover to 
determine whether T t- H. 

Step 5. If there is an H such that T HH, then 
CIRC(T;P) PC F, else CIRC(T;P) I= F.I 

The decidability of the above algorithm 
follows from the fact that, due to the 
subsumption check in the definition of 
HILO-deduction, the search tree for 
MILO-resolution is finite. The following example 
illustrates the above algorithm. In order to show 
that the algorithm is not limited to ground 
clauses, we apply it to clauses that contain 
variables. 

Example 4 .6.(c f.[B S]) Suppose that 
T is given by the foll owing clauses: 

our theory 

(1) learns (x, Latin)vlearns(x, Greek) (- 
senior(x) 

(2) learns(x, French)Vlearns(x,Spanish) <- 
junior(x) 

(3) senior(x)Vjunior(x) 
(4) senior(Ann) 
(5) learns(Ann,Latin). 

Suppose that P={learns,senior,junior} and 

that we want to find out whether 
CIRC(T;P) I= llearns(Ann,Greek). As shown below 
(using obvious abbreviations), all 
MILO-deductions from T + llearns(Ann,Greek) 
terminate with clauses implied by T ( because 
T+learns(Ann,Latin) ), thus showing that 
CIRC(T;P) I= llearns(Ann,Greek). 

ll(A,Gl 
I (1) 

l(A,L)v~s(A>v[~l(A,G>l 
I (4) \ (3) 
I \ 

l(A,L) l(A,L)Vjunior(A) 

Similarly, we can show that: CIRC(T;P) b 
llearns(Ann,French)Allearns(Ann,Spanish). 

On the other hand, if P={learns,senior) then, 
as shown below, there exists a MILO-derivation 
from T + llearns(Ann,French), thus 
CIRC(T;P) Pt llearns(Ann,French). Similarly, 
CIRC(T;P) Pt llearns(Ann,Spanish). 

ll(A,F) 
I (2) 

l(A,S)Vlj(A)V[ll(A,F)] 
I (reduction) 

l(A,S)Vlj(A) 

It is easy to verify that THl(A,S)Vlj(A).I 

Beaark. Under the assumptions mentioned in 
the introduction, which are routinely made when 
CWA is applied, the Extended Closed-World 
Assumption [GPP] is exactly equivalent to 
circumscription, i.e. for any formula F we have: 
ECWA(T;P)l-F iff CIRC(T;P)l=F. In particular, for 
any unit clause F, GCWA(T;P)kF iff CIRC(T;P)t=F, 
where GCWA stands for the Generalized 
Closed-World Assumption of J. Minker [IYi]. 
Moreover, for Horn clauses, all the four 
approaches - CWA,GCWA,ECWA and circumscription - 
coincide. This shows that our methods apply to 
answering queries in closed-world the0ries.l 

5, Concluding remarks 

For the sake of simplicity, we have presented 
our results under the assumption that all clauses 
are ground, i.e. in the propositional case. This 
assumption is not necessary. Without significant 
changes, our results can be generalized to the 
following caee: 

(1) the theory T consists of any, not 
necessarily ground, clauses; 

(2) the query F in Section 4 is universal: 
(3) the Unique Names Axiom is assumed. 

In particular, there is no need to replace 
the theory T by the set of ground instances of 
its clauses, because the algorithm described in 
Section 4 (with natural modifications) works 
properly with variables. Moreover, if the 
language L does not contain function symbols, 
then the algorithm remains decidable. 
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In [BS], Bossu and Siegel describe an 
entirely different theorem proving procedure to 
answer queries in circumscriptive theories. Their 
procedure, however, is restricted to the so 
called ‘groundable clauses’ and applies only to 
the case when all predicates are minimized. 
Moreover, it seems that in many instances it can 
be grossly inefficient as it always deals with 
the entire set of clauses, not just with those 
that pertain to a particular query. 

Other methods of answering queries in 
closed-world theories can be found in [GM], [YHI 
and [GP]. Grant and Minker’s algorithm [GM] is 
restricted to ground positive clauses. Yahya and 
Henshen’s algorithm also assumes that all clauses 
are ground and seems too inefficient to be 
implemented in practice. Gelf ond and 
Przymusinska’s approach [GP] is sound but often 
far from completeness. 

Finally, Clark’s QEP-procedure [Cl, 
essentially equivalent to the one implemented in 
PROLOG, correctly evaluates queries under CWA 
only for Horn clauses. 
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