
INDEFINITE AND GCWA INFERENCE IN INDEFINITE DEDUCTIVE DATABASES

Lawrence J. Henschen and Hyung-Sik Park

Northwestern University
Department of EECS

Evanston, Illinois 60201

ABSTRACT

This paper presents several basic
results on compiling indefinite and
GCWA(Generalized Closed World Assumption)
inference in IDDB(Indefinite Dedutive
Databases). We do not allow function
symbols, but do allow non-Horn clauses.
Further, although the GCWA is used to
derive negative assumptions, we do also
allow negative clauses to occur
explicitly. We show a fundamental
relationship between indefiniteness and
indefinite inference. We consider three
representation alternatives to separate
the CDB(Clausa1 D W from the
RDB(Relationa1 DB) . We present the basic
ideas for compiling indefinite and GCWA
inference on CDB and evaluating it through
the RDB. Finally, we introduce
decomposition theorems to evaluate
disjunctive and conjunctive queries.

I INTRODUCTION

The reader is assumed to be familiar
with the logic approach to databases,
especially with the concept of guery
compilation relative to an intensional
database (IDB) . This paper presents some
basic results on compiling indefinite and
GCWA inference, i.e. generating queries
that will correctly answer questions like,
"Is a ground formula q indefinite?" and
"Can we assume a ground atom q to be
false?", in an IDDB (Indefinite Deductive
Database) under the GCWA(Generalized
Closed World Assumption) [Minker, 19821 .
The notion of indefinite and GCWA
inference can be defined by using the
semantics of minimal model: A ground
formula q is indefinite with respect to
IDDB iff it is true in some minimal model
of IDDB and false in some minimal model of
IDDB. Such a q is false with respect to
IDDB under the GCWA iff it is false in
every minimal model. An IDDB is a
deductive database which does not allow
function symbols, but does allow negative
and non-Horn clauses in addition to Horn
clauses. Since the volume of negative
facts may be too huge to be explicitly
represented, deductive databases have

traditionally treated negative
information implicitly. While the negation
of a ground atom can be assumed to be true
straightforwardly by negation as (finite)
failure[Clark, 1978][Reiter, 1978-b] in a
Horn database, a generalized metarule
[Bossu and Siegel, 1985][Minker, 19821
must be used in a DB with non-Horn
clauses. These metarules are much more
difficult to compute. We introduce a
compiling technique to help overcome the
computational problems and also to
separate the deduction from the data
retrieval.

Three typical methods for dealing with
the GCWA have been recently reported,
First, Grant and Minker(GM) [Minker and
Grant, 19811 developed an algebraic method
which can answer a negative query in a
generative database under the GCWA.
Second, Yahya and Henschen(YH) [Yahya and
Henschen, 19851 developed a deductive
method which can answer a negative query

a non-Horn database under the extended
gWA. Third, Bossu and Siegel(BS) [Bossu
and Siegel, 19851 developed a deductive
method which can answer a guerY by
subimplication. Subimplication is a
generalization of GCWA that handles
databases having no minimal model. It
reduces to GCWA if the database has no
function symbols. However, those methods
have the following weak points: GM's
method requires the system to generate all
data base models. YH's method requires the
query to be decomposed into several
subqueries which must all be proved at
guery time. BS's requires many
subsumption tests in the computation of
characteristic clauses and characteristic
formulas[Bossu and Siegel, 19851. None of
these methods seems practical enough for
application to large databases.

A major difficulty is that ordinary
resolution applied to an IDDB cannot
distinguish between ground atoms that are
indefinite and those that can be assumed
false under GCWA. This will be
illustrated by an example in section 2.
In order to overcome this problem we will
investigate the relationships between
indefiniteness and indefinite inference in

Theorem Proving: AUTOMATED REASONING / 19 1

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

an IDDB. We will also discuss certain
tradeoffs among three schemes for
representing explicit negative data. We
will then develop indefinite and GCWA
inference engines by introducing a
compilation technique for IDDBs similar in
spirit to compilation for Horn
databases[Chang, 19811 penschen and Naqvi,
1984][Reiter, 1978-a].

II INDEFINITE DEDUCTIVE DATABASES
AND THEGCWA

A deductive database is an extension
of the proof theoretic relational
DB[Reiter, 19841 in which new facts may be
derived from the set of explicit facts,
called the EDB(Extensiona1 DB), by using
the deductive general laws, called the
IDB(Intensiona1 DB) . There are two kinds
of deductive databases relevant to our
study, DDDB (Definite Deductive
Databases) and IDDB(Indefinite Deductive
Databases), and their properties are
quite different. A DDDB allows only
function-free Horn definite clauses, while
an IDDB allows function-free indefinite
(non-Horn) clauses as well. For an
extensive survey of deductive databases,
refer to [Gallaire, Minker, and Nicolas,
19841. In this paper, we use the notations
"DB / - q" for "q can be derived from DB",
"DB IX q" for "q cannot be derived from
DB", "DB I-GCWA -q" for 'l-q can be assyed
by GCWA", and "DB IXGCWA -q" for -q
cannot be assumed by GCWA". A clause is
written as a list of literals without
commas.

Since a typical database will have
vast amounts of negative information, such
information should be implicitly
represented. To this end we distinguish
two parts to a database - those formulas
represented explicitly, e.g., IDDB or
DDDB, and those parts not represented
explicitly, for example, the negative
facts that are to be assumed.
Reiterpeiter, 1978-b] developed the
closed world assumotion &WA) , for
implicit negative information in a DDDB.
CWA says that a negative ground unit
clause, -p, can be assumed to be true if p
cannot be derived from DDDB. However, CWA
leads to inconsistencies when used with an
IDDB. For example, let IDDB = Cp q). IDDB
IX p, Hz;zrIDDB I-CWA -p, Similarly
for q. IDDB + (-p, -q} I- nil.
Minker[Minker, ‘19821 suggested the
semantic . * * and gvntactlc deflnltlons of the
GCWA, which can be used to handle negative
information implicitly in an IDDB, and
showed that they are equivalent. It is
based on the concept of minimal model. An
interpretation is specified by listing the
ground atoms that are to be true. A . . w model is a model of a database
such that no proper subset of the true

atoms still satisfies the database.

. . . Semantic Ihz.hnltlon QfGcwA:
-+ (.G> can be assumed to be true with
respect to IDDB iff P(s) is not in any
minimal model of IDDB.

Svnt . . .

-P (GP
tjc Definltlon QfGcwA:

can be assumed to be true with
respect to IDDB iff P(c) v C is not
provable from IDDB for any C in S, where S
is a set of all purely positive@ossibly
empty) clauses not provable.

Let DB = (p q, r, -s). Then, there are two
minimal models of DB: Ml = Cp, r) and M2 =
-h r3- Consider the following queries.

Ql = r. This query is true. in DB.
Semantic justification:
r is in Ml and M2.

Syntactic justification:
DB + (-r) I- nil,
and DB is consistent.
That is, DB I- r.

42 = p. This query is -finite in DB.
Semantic justification:
p is in Ml, but not in M2.
Syntactic justification:
DB + (-p) IX nil, and DB + (p) IX nil.
That is, DB IX p, DB IX -p,
and DB IXGCWA -p.

43 = s. This query is provablv false in
DB.
Semantic justification:
s is not in Ml or in M2.

Syntactic justification:
DB + (-s) IX nil, but DB + s I- nil.
That is, DB I- -s.

44=t.Thisquerycanbemfalse
in DB by GCWA.
Semantic justification:
t is not in Ml or in M2.

Syntactic justification:
DB + (-t) IX nil, andDB+t IXnil.
DB IX t C for any positive or empty C.
That is, DBlX t and DB IX -t,
but DB I-GCWA -t.

As shown in example 1, one difficulty
in evaluating a query in an IDDB under the
GCWA is that there is no difference
between the indefinite and false cases
when the ordinary approach (of trying to
prove the query or its negation) is
applied, as in Q2 and 44. The difference
arises only when the query literal is
considered in conjunction with additional
positive parts. Hence, we need to develop
specialized inference engines for
indefinite and GCWA answers.

III INDEFINITENESS AND INDEFINITE
INFERENCE

192 / SCIENCE

We introduce the basic notions for
analyzing indefiniteness as follows: PIGC

the set of minimal positive indefinite
;ound clauses implied by IDDB, where the
notion of "minimal set" means that clauses
in PIGC cannot be properly subsumed by any
positive ground clause derivable from
IDDB. If q is a ground atom, then PIGC[q]
consists of members of PIGC that contain
q- Recall that q is indefinite if it is
true in some minimal model of DB and
false in some minimal model of DB. We
introduce three auxilliary functions.

. . . inition
True[q] = t if DB I- q

f otherwise

Indef[q] = t if q is indefinite in DB
f otherwise

Definition
GCWA[q] = t if True[q] = f

and Indef[q] = f
f otherwise

Notice that the above makes no
distinction between provably false and
false by assumption. Our main purpose is
to determine which of the three values q
has, true, false or indefinite. If it was
important for a user to distinguish
between the two false cases, additional
tests would have to be made.

-2
Let DBl = (p, p q), and DB2 = Cp q, r s).
In DBl, PIGc LPI = (3, IndefCp] = f and
GCWA[r] = t.
In DB2, PIKCp] = (p q), Indef[p] = t and
GCWACp-J = f.

Lemma 1 (Minker's Lemma[Minker, 19821)
Every minimal model of C is a minimal
model of CP, where C = CP union CNP, CP
denotes a set of all positive clauses
provable from DB, and CNP denotes a set of
clauses provable from DB each of which
includes at least one negative literal.

The lemma 1 says that Mcp = MC rather
than Mcp < MC, where Mcp and MC mean sets
of minimal models of CP and C,
respectively.

-2
C = q v C' is in PIGC iff q is
indefinite in DB.

Theorem 1 (Indefiniteness Theorem)
Indef[q] = t if PIGC[q] is not empty

f otherwise

Corollawu
GCWA[q] = t if True[q] = f

and PIGC[q] is empty
f otherwise

The Indefiniteness Theorem says that
PIGC characterizes the indefiniteness of
an IDDB. It provides the theoretical
basis for developing the indefinite
inference. That is, it seems unavoidable
to consider PIGC in some form or other for
answering Indef[q] . However, since it is
obviously unfeasible to derive PIGC in
general, we should develop an appropriate
mechanism to handle only PIGC[q], that is,
the portion of PIGC relevant to the query
at hand.

IV COMPILATION AND REPRESENTATION
ALTERNATIVES

The goal of compiling is to separate
the deductive process from the data
retrieval process. For the problem at
hand, namely determining PIGC[q] for a
generic q, we need to find which
resolvents of IDB clauses could lead to
positive ground clauses containing q when
data from the database is taken into
consideration. Further, such a positive
ground clause must not be subsumed by
another positive clause. A simple example
will illustrate the basic approach.
Suppose the database contained the clauses

-p (xl
-0 (4

-Q(Y) -S(z) “Lki~.z) T(~JJ) 8
s 64 u o-4 *

-M (9 T(v,lO,u) U(u) 8
where P, Q, M and 0 are simple relations
stored in the EDB. Suppose we had the
guery. "Is R(JOHN,lO,TOYS) indefinite or
false?" The resolvent, -p (4
-0 (4 R(x,y,z) T(x,y,z) U(z) ' 2%
produce a positive ground clause
containing R(JOHN,lO,TOYS) if the
appropriate data were in the relations P,
Q and 0. On the other hand, if JOHN were
in M, the third clause would derive a
positive ground clause subsumming the one
containing R(JOHN,lO,TOYS); that *
R(JOHN,lO,TOYS) T(JOHN,lO,TOYS) U(TO;:j
would not be in PIGC after all. Thus, we
may answer false or indefinite after
retrieving the appropriate data from P, Q,
0 and M and testing the resulting clauses
for subsumption. Notice that if the third
clause had contained T(v,25,u) instead,
there would be no possibility for
subsumption, and R(JOHN,lO,TOYS)
T(JOHN,lO,TOYS) U(TOYS) would definitely
be in PIGC. As with regular TV-=-Y
compilation, the above kinds of analyses
can be carried out on the basis of generic
values for the attributes of R, and the
deductive analysis separated from the data
retrieval.

In order to carry out the above
deductive analysis, we identify certain
sets of clauses.
consists of

The IIDB(Indefinite IDB)
indefinite general clauses.

Theorem Proving: AUTOMATED REASONING / 193

The DIDB(Definite IDB) consists of
definite general clauses. The
IEDB(Indefinite EDB) consists of non-Horn
ground clauses. The DEDB(Definite EDB)
consists of positive unit ground clauses.
As will be seen below, the precise details
of compiling will depend on whether
negative clauses and clauses in IEDB are
used at compile time or are to be handled
at retrieval time. Therefore, we call CDB
(Clausal Database) the set of clauses that
are to be used in the compile phase.
Then, IGI[ql is the set of minimal non-Horn
clauses which contain a positive
occurrence .of predicate q and are
derivable from the CDB. A clause Cl is
said to gotentiallv pubs- another clause
C2 iff there is a positive subclause of Cl
obtained by deleting the negative EDB
literals and the positive literals for
which there are corresponding negative EDB
relations that subsumes a ground instance
of a positive subclause obtained similarly
from C2. PSUR[nhi] denotes a set of
clauses which potentially subsume a
clause, nhi, in NH[q] and are derivable
from CDB. The sets NH[q] and PSUB[nhi]
can be used to generate PIGC[q] if the
negative data is used properly.

To see why the negative data plays a
crucial role, we consider three
representation alternatives. We assume
that #DEDB >> #-p > #-C > #IEDB > #DIDB >>
#IIDB, where #X denotes the number of
clauses or relational tuples in each
database X, #-p the number of negative
ground unit clauses explicitly occuring in
DB, and #-C the number of negative nonunit
clauses explicitly occuring in DB.

-1
(a) CDB = IIDB + DIDB

+ negative nonunit clauses
(b) RDB = IEDB + DEDB

+ negative unit ground facts

RE RE ENTATI
(a: CgB = II:: 4 DIDB + IEDB

+ negative nonunit clauses
(b) RDB = DEDB

+ negative unit ground facts

REPRE ENT TI N
(a) CgB "II:, 2 DIDB + IEDB

+ negative clauses
(b) RDB = DEDB

fzF=-r = (-P(x) Q(X), -U(x) S(x) V(x) a
-T(x) P(x) R(x) S(x), -Q(a), -S(a), T(a),
u (a> 3 -
In representation 2,
CDB = =C-P W Q (xl , -U (x) S (x) V(x) , -T(x)
P(x) R(x) S(x)) and
mB = (-Q(a), -S(a), T(a) , U(a) 3.
Then NH[P] = (nhl: -T(x) P (x) R (4 S (x> 3

and PSUB[nhl] = (-U(x) S(x) V(x), -T(x)

t?El
R (4 S (x> 3 -
NH[P(cl)] = {nhl: -T(cl) P(c1) R(c1)

s (cl) 3 and PSUB[nhl] ={-U(c1) S(c1)
v (cl) , -T(cl) Q(c1) R(c1) S(cl)),
where cl denotes a generic constant.
Hence, PIGC[P(a)] is empty.

In representation 3,

-S(a)3 and RDB =

Then, performing resolution on the CDB
yields the following resolvents :
-T (4 R (x> S (x) Q(x) , -P (a> , -U (a> V(a) I
and -T(a) R(a).
Hence, NH[P(cl)] = {nhl: -T(cl) P(c1)
R (~1) S (~1) 3 and PSUB[nhl] = (-T(a) R(a)).
Hence, PIGCp(a)] is empty.

In example 3, notice that the clause
-U(x) S(x) V(x) should be in PSUB[nhl] for
representation 2, since the literal V may
be resolved with the negative data in RDB
if there is a negative table for V, and
these resolutions are made at query time,
not at compile time. In representation 3,
any negative information about V would
have to be in the CDB and would therefore
be resolved at compile time.

meorem 2 (Representation Theorem)
1. In representation-l. PIGCrul of DB is
not equivalent to PIGC[qj of R%+ NH[qj +
PSUB[nhi] .

2. In representation-2, PIGC[qj of DB is
equivalent to PIGc[q] of RDB+NH[q-j +
PSUB[nhi] .

3. In representation-3, PIGC[q] of DB is
equivalent to PIGC[q] of RDB+NH[q-J +
PSUB[nhi] .

The representatian Zheorem indicates
that representation schemes 2 and 3 enable
us to compile the CDB with respect to
NH[q] and PSUB[nhi] before query time. In
order to avoid extra overhead in the
deduction at compile time, we may prefer
representation 1. However, we have some
difficulties with the algebraic
manipulation of the IEDB in representation
1: First, the ordinary relational table is
not adequate for storing indefinite
clauses due to the variable length of
these clauses. Second, the representation
theorem indicates that it is very
difficult to develop the interface for
generating PIGC[q] between CDB and RDB.
In order to avoid some combinatorial
explosion due to indefinite ground clauses
at gu--Y* time, we may prefer

resentatlon 2 and 3. Representation 2
needs an additional RDB operation for
handling the negative unit ground clauses,
while representation 3 needs additional
resolutions on the CDB. When the negative
ground facts are updated into the IDDB,

19-k / SCIENCE

some modifications to the compiled program
are needed in representation 3, but not in
representation 2. However, assuming that
the volume of explicit negative ground
facts is not very large and updates to
them are not frequent, representation 3
may be preferred, since it reduces the
size of NH [sl and PSUB[nhi] and it
incorporates the traditional relational DB
as the RDB.

V COMPILING INDEFINITE INFFRENCE IN A
NON-RECURSIVE IDDB

em Z,&?orem and its
tell us that for answering

Indef[q] and GCWA[q], we must calculate
True Es1 and PIGC[q]. The representation
theorem tells us that we may have the
following scenario for developing more
practical indefinite & GCWA inference
enaines which consists of three major
procedures, namely Compile[q], EvaI [q] ,
and Modify[C], in the following manner:
(1) At m desiw time, the procedure

Compile[q] compiles generic queries with
respect to the CDB. (4 At cge~~~ time,
the procedure Eval[q] evaluates True[q],
k&f [ql , and GCWA[q] for a closed query,
q, by evaluating the compiled program
through the RDB. (3) At update time, the
procedure Modify[C] modifies the compiled
programs with respect to the update of a
clause C into CDB. Updates in RDB require
no program modification.

The compilation of the CDB may be
performed by various techniques such as
linear resolution[Chang and Lee, 19731,
connection g-raph[Kowalski, 1975][McKay and
Shapiro, 1981][Sickel, 19761, a
generalized version of the system
graph[Lozinskii, 19851, etc., of which the
effectiveness will depend upon the
structure of IDDB. In this paper, we
show a simple saturated resolution
technique for compiling a non-recursive
IDDB with a small CDB. However, even
though the CDB of an IDDB consists of only
a few clauses, a large volume of
resolvents may be generated by simple
saturation. We present a more effective
compiling technique in penschen and Park,
1985][Park, 19851 by introducing
NH-reduction theorems. Furthermore, we
present a basic idea on compiling queries
in a recursive IDDB in [Park, 19851.

Comnjlation Phase
For True[q], perform resolution on the CDB
until saturation occurs, i.e. no more
resolutions are possible. Construct a set
of Horn clauses, called PTRUE[q], of which
the positive literal unifies with q and
the negative part consists of only base
relations. For PIGC[q], perform
resolution on the CDB until saturation
occurs, and construct NH[q] and PSUB[q]

defined in the previous section.

F. aluation Phase
Fzr True[q] evaluate the negative part of
each Horn clause in PTRUE[q] by performing
join operations through the RDB, until
either True[q] = t or PTRUE[q] has been
exhausted. For PIGC[q], evaluate the
negative part of each clause in NH[q] and
PSUB[nhi] and compute PIGC[q] and its
potential subsuming clauses. Perform
subsumotion tests on each clause in
PIGC[~~, say pigc, by its potential
subsuming clauses and relations in RDB
relevant to pigc.

Example 4 illustrates the compilation
and evaluation of Indef[q] and GCWA[q] in
a non-recursive IDDB by resolution, using
representation scheme 3. The given IDDB
partially describes the blood tYPe
relationship between parents and
children.

-4
Base Relations:
P(person, father, mother)
B(person, blood-type)

Virtual Relations:
FBCperson, father-blood-type)
MB(person, mother-blood-type)
BPCperson, possible-blood-type)

CDB:
P(xl,x2,x3) & B(x2,x5) --' FB(xl,x5)
P(xl,x2,x3) & B(x3,x5) --' MB(xl,x5)
FB(xl,A) & MB(xl,O)

--> BP(xl,A) V BP(xl,O)
B(x4,x5) --> BP(x4,x5)
-BP (g,O>

RDB:
P (a, i, j) P (b,m,n) P(e,a,b) P (f, a/b)
P(g,a,b) B(a,A) B(b,O) B(e,A)

. . S;ompihtlon.
PTRUE[BP(cl,c2)] =
{hl: B(x4,x5) --> BP(x4,x5) 3

NH[BP(cl,c2)] =
(nhl: P(xl,x2,x3) & B(x2,A) & B(x3,O)

--> BP(xl,A) V BP(xl,O)}
PSUB[nhl] =
(B(x4,x5) --> BP(x4,x5),
P(g,x2,x3) & B(x2,A) & B(x3,O)

--' BP (g,A) 3

- . Evaluation
For the query BP(e,A),
PTRUE[BP(e,A)] = {hl:B(e,A) --> BP(e,A))
True[BP(e,A)] = t by resolving hl in PTRUE
and B(e,A) in RDB.
Hence, Indef[BP(e,A)] = f and
GCWA[BP(e,A)] = f.

For the query BP(f,A),
NH[BP(f,A)] = (nhl: P(f,x2,x3) & B(x2,A)

& B(x3,O) --> BP(f,A) V BP(f.0))

Theorem Proving: AUTOMATED REASONING / 1 c);i

PSUB[nhl] = (B(f,A) --> BP(f,A))
PIGC[BP(f,A)] = (BP(f,A) V BP(f,O))
Since True[BP(f,A)]=f and PIGC[BP(f,A)] is
not empty, Indef[BP(f,A)] = t and
GCWA[BP(f,A)] = f.

For the query BP(g,A),
PIK [BP (g,A)] '
subsumes BP(g,A)i$ BETgtgj.

since BP(g,A)

That is, True[BP(g,A)] = t.
Hence, Indef[BP(g,A)] = f and
GCWA[BP(g,A)] = f.

This example is relatively simple
because the indefinite predicate, BP, does
not occur as an hypothesis of any rule.
We point out that the complexity of the
simple saturation method grows very fast
as more indefinite predicates occur as
hypotheses and as the length of resolution
chains stemming from an indefinite
hypothesis grows.

VI QUERY DECOMPOSITION

We introduce the following
decomposition theorem to evaluate
disjunctive and conjunctive queries from
their unit subqueries.

Theorem 3 (Decomposition Theorem)
Let CL1 and CL2 be different clauses. "*"
denotes "don't care" and "x" denotes "t,
f, or i(indefinite) 'I.

1. Disjunctive decomposition

al !ILLz GLLYU
t * t
f X X

i i i or t

2. Conjunctive decomposition

CL1 .!ixdz ixJYU
f * f
t X X

i i i or f

Notice that the decomposition theorem
shows a duality between disjunctive and
conjunctive decomposition. In
disjunctive decomposition, if all ground
literals appearing in CL1 and CL2 are
indefinite, CL1 v CL2 may be either
indefinite or true. Let DB = (p r, q s,
-P -9). Then, the minimal models are Ml =
-k ~3, M2 = Cp, s), and M3 = (q, r). Let
DB' = -& r, q s). Then, Ml' = (p, q), M2'
= J&b s), M3' = (r, q), and M4' = (r, s)
are the minimal models. Let CL1 = -p and
CL2 = -q. Then, both CL1 and CL2 are
indefinite with respect to DB and DB'.
However, CL1 V CL2 = -p V -q is true with
respect to DB, while it is indefinite with
respect to DB'.

Disjunctive queries can be evaluated

as follows. Let Q = Ll V L2 V V Ln.
Then, determine the value of each literal
Li by utilizing the compiled program for
it, and evaluate Q by using the
disjunctive decomposition theorem. In case
all Li are indefinite, there are two ways
to proceed. First, we may look for a
straightforward refutation of DB & -Q to
infer the value of Q. If nil is derived,
Q is true. Otherwise, Q is indefinite.
Second, Q may be evaluated by utilizing
the compiled program of unit queries as
follows. Generate PIGC[Li] for each Li.
Let pigc be a clause in PIGC[Li]. If Q is
a positive clause and there is a pigc
consisting of only ground atoms of Q, Q is
true with respect to DB. Otherwise, it is
indefinite. For example, let DB = Cp r, q
s) and Q = p V q V r. All p, q, and r are
indefinite. Since we can generate p V r
consisting of only ground atoms p and r
appearing in Q, Q is true. Notice that Q
may be compiled. Evaluation theorems for
more complex queries including conjunctive
queries are presented in [Park, 19851.

VII CONCLUSION

Our goal is to develop effective
inference engines for indefinite
databases. We have shown that PIGC is the
key to determining when a positive ground
literal is indefinite or can be assumed
false under GCWA. Further, we have shown
which sets of resolvents must be generated
in a compile phase in order to separate
deduction from data retrieval. We have
shown that two of the three obvious
representation schemes allow such clause
sets to be generated in a separate compile
phase. We have shown how conjunction and
disjunction can be handled. Work beyond
that described in [Henschen and Park,
1985][Park, 19851 is needed to improve the
actual compilation, in particular the
generation of just the right resolvents in
an effective way. This is especially true
for recursive IDDBs.

REFERENCES

El1

PI

[31

Bossu, G. and P. Siegel "Saturation,
nonmonotonic reasoning and the . . . closed-world assumption." Artlflc1a.l

telliam. 25 (1985) pp.13-63.

Chang, C.L. "On evaluation of queries
containing derived relations." In
Advances in Data Base Theory Vol. 1.
H. Gallaire, J. Minker, and J.M.
Nicolas, Eds. Plenum Press, New York.
(1981) pp. 235-260.

Chang, C.L. and R.C.T. Lee. Svmbol~
JitQgic ZmdMechanicalTheoremProviw.
Academic Press, New York, 1973.

196 / SCIENCE

[41

[51

161

PI

PI

PI

1101

II111

1121

II131

El41

L-1

P61

Clark, K.L. "Negation as Failure." In

!?g?%*%-*
H. Gallaire and

Plenum Press,
York. (197A),Eg;: 293 -324.

New

P-7

Gallaire, H., J. Minker, and J.
Nicolas. "Logic and Databases: a
deductive approach." u !&nol~tlng
Surveys. 10:2 (1984) pp. 153-185.

Henschen, L.J. and S. Naqvi. "on
compiling queries in recursive
first-order databases." J.ACM 31:l
(1984) pp. 47-85.

Henschen, L.J. and H.S. Park.
"Compiling the GCWA in indefinite
deductive databases." in preparation
for MaLand Work ~13 Deductive
Databases and Li2g.k P=s=xrmw .
Maryland, August, 1986.

[181

1191

Kowalski, R. "A proof procedure using
connection graphs." J.AcM 22:4 (1975)
pp. 572-595.

Lozinskii, E.L. "Evaluating queries in
deductive database by generating." In
Proc.IJCAI-85. PP. 173-177.

Maier, D. Pelatlonal
Database. ThS2 ?c%ce Computer Press I
Maryland, 1983.

McKay, D. and S. Shapiro. "Using
active connection graphs for
reasoning with recursive rules." In
Proc. IJCAI-81. pp. 24-28.

Minker, J. "On indefinite database
and the closed world assumption."
In Lecture Notes in .tZmwbx Science
138 Springer Verlag, 1982, pp.
292-308.

Miriker, J. and J. Grant, J.
"Answering queries in indefinite
databases and the null value
problems." University of Maryland,
College Park, Maryland, July, 1981.

Park, H.S. "Compiling queries in
indefinite deductive databases
under the generalized closed-world
assumption." in preparation for
Ph.D. dissertation, Department of
EECS, Northwestern University,
August, 1986.

Reiter, R. "Deductive question
answering on relational databases."
In Logic, & D&a Bases. H. Gallaire
and J. Minker, Eds. Plenum Press, New
York, 1978-a, pp. 149-177.

Reiter, R. "on closed world
databases." In Logic & Databases.
H. Gallaire and J. Minker, Eds.
Plenum Press, 1978-b, pp 55-76.

Reiter, R. "Towards a logical
reconstruction of relational
database theory."

. M.L. In Eo5E==Y
Mylopoulos, and J.W. Schmit: Eds:
Springer-Verlag, New York, 1984,
PP. 163-189.

Sickel, S. "A search technique for
clause interconnectivity graphs."

C-25:8 (1976) pp. 823-8%
Comx>uter*

YaQm A. and L.J. Henschen.
"Deduction in non-Horn databases."

a Automated Beasoning. 1:2 Journal
(1985) pp. 141-160.

Theorem Proving: AUTOMATED REASONING / 197

