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ABSTRACT 

This paper presents several basic 
results on compiling indefinite and 
GCWA(Generalized Closed World Assumption) 
inference in IDDB(Indefinite Dedutive 
Databases). We do not allow function 
symbols, but do allow non-Horn clauses. 
Further, although the GCWA is used to 
derive negative assumptions, we do also 
allow negative clauses to occur 
explicitly. We show a fundamental 
relationship between indefiniteness and 
indefinite inference. We consider three 
representation alternatives to separate 
the CDB(Clausa1 D W from the 
RDB(Relationa1 DB) . We present the basic 
ideas for compiling indefinite and GCWA 
inference on CDB and evaluating it through 
the RDB. Finally, we introduce 
decomposition theorems to evaluate 
disjunctive and conjunctive queries. 

I INTRODUCTION 

The reader is assumed to be familiar 
with the logic approach to databases, 
especially with the concept of guery 
compilation relative to an intensional 
database (IDB) . This paper presents some 
basic results on compiling indefinite and 
GCWA inference, i.e. generating queries 
that will correctly answer questions like, 
"Is a ground formula q indefinite?" and 
"Can we assume a ground atom q to be 
false?", in an IDDB (Indefinite Deductive 
Database) under the GCWA(Generalized 
Closed World Assumption) [Minker, 19821 . 
The notion of indefinite and GCWA 
inference can be defined by using the 
semantics of minimal model: A ground 
formula q is indefinite with respect to 
IDDB iff it is true in some minimal model 
of IDDB and false in some minimal model of 
IDDB. Such a q is false with respect to 
IDDB under the GCWA iff it is false in 
every minimal model. An IDDB is a 
deductive database which does not allow 
function symbols, but does allow negative 
and non-Horn clauses in addition to Horn 
clauses. Since the volume of negative 
facts may be too huge to be explicitly 
represented, deductive databases have 

traditionally treated negative 
information implicitly. While the negation 
of a ground atom can be assumed to be true 
straightforwardly by negation as (finite) 
failure[Clark, 1978][Reiter, 1978-b] in a 
Horn database, a generalized metarule 
[Bossu and Siegel, 1985][Minker, 19821 
must be used in a DB with non-Horn 
clauses. These metarules are much more 
difficult to compute. We introduce a 
compiling technique to help overcome the 
computational problems and also to 
separate the deduction from the data 
retrieval. 

Three typical methods for dealing with 
the GCWA have been recently reported, 
First, Grant and Minker(GM) [Minker and 
Grant, 19811 developed an algebraic method 
which can answer a negative query in a 
generative database under the GCWA. 
Second, Yahya and Henschen(YH) [Yahya and 
Henschen, 19851 developed a deductive 
method which can answer a negative query 

a non-Horn database under the extended 
gWA. Third, Bossu and Siegel(BS) [Bossu 
and Siegel, 19851 developed a deductive 
method which can answer a guerY by 
subimplication. Subimplication is a 
generalization of GCWA that handles 
databases having no minimal model. It 
reduces to GCWA if the database has no 
function symbols. However, those methods 
have the following weak points: GM's 
method requires the system to generate all 
data base models. YH's method requires the 
query to be decomposed into several 
subqueries which must all be proved at 
guery time. BS's requires many 
subsumption tests in the computation of 
characteristic clauses and characteristic 
formulas[Bossu and Siegel, 19851. None of 
these methods seems practical enough for 
application to large databases. 

A major difficulty is that ordinary 
resolution applied to an IDDB cannot 
distinguish between ground atoms that are 
indefinite and those that can be assumed 
false under GCWA. This will be 
illustrated by an example in section 2. 
In order to overcome this problem we will 
investigate the relationships between 
indefiniteness and indefinite inference in 
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an IDDB. We will also discuss certain 
tradeoffs among three schemes for 
representing explicit negative data. We 
will then develop indefinite and GCWA 
inference engines by introducing a 
compilation technique for IDDBs similar in 
spirit to compilation for Horn 
databases[Chang, 19811 penschen and Naqvi, 
1984][Reiter, 1978-a]. 

II INDEFINITE DEDUCTIVE DATABASES 
AND THEGCWA 

A deductive database is an extension 
of the proof theoretic relational 
DB[Reiter, 19841 in which new facts may be 
derived from the set of explicit facts, 
called the EDB(Extensiona1 DB), by using 
the deductive general laws, called the 
IDB(Intensiona1 DB) . There are two kinds 
of deductive databases relevant to our 
study, DDDB (Definite Deductive 
Databases) and IDDB(Indefinite Deductive 
Databases), and their properties are 
quite different. A DDDB allows only 
function-free Horn definite clauses, while 
an IDDB allows function-free indefinite 
(non-Horn) clauses as well. For an 
extensive survey of deductive databases, 
refer to [Gallaire, Minker, and Nicolas, 
19841. In this paper, we use the notations 
"DB / - q" for "q can be derived from DB", 
"DB IX q" for "q cannot be derived from 
DB", "DB I-GCWA -q" for 'l-q can be assyed 
by GCWA", and "DB IXGCWA -q" for -q 
cannot be assumed by GCWA". A clause is 
written as a list of literals without 
commas. 

Since a typical database will have 
vast amounts of negative information, such 
information should be implicitly 
represented. To this end we distinguish 
two parts to a database - those formulas 
represented explicitly, e.g., IDDB or 
DDDB, and those parts not represented 
explicitly, for example, the negative 
facts that are to be assumed. 
Reiterpeiter, 1978-b] developed the 
closed world assumotion &WA) , for 
implicit negative information in a DDDB. 
CWA says that a negative ground unit 
clause, -p, can be assumed to be true if p 
cannot be derived from DDDB. However, CWA 
leads to inconsistencies when used with an 
IDDB. For example, let IDDB = Cp q). IDDB 
IX p, Hz;zrIDDB I-CWA -p, Similarly 
for q. IDDB + (-p, -q} I- nil. 
Minker[Minker, ‘19821 suggested the 
semantic . * * and gvntactlc deflnltlons of the 
GCWA, which can be used to handle negative 
information implicitly in an IDDB, and 
showed that they are equivalent. It is 
based on the concept of minimal model. An 
interpretation is specified by listing the 
ground atoms that are to be true. A . . w model is a model of a database 
such that no proper subset of the true 

atoms still satisfies the database. 

. . . Semantic Ihz.hnltlon QfGcwA: 
-+ (.G> can be assumed to be true with 
respect to IDDB iff P(s) is not in any 
minimal model of IDDB. 

Svnt . . . 

-P (GP 
tjc Definltlon QfGcwA: 

can be assumed to be true with 
respect to IDDB iff P(c) v C is not 
provable from IDDB for any C in S, where S 
is a set of all purely positive@ossibly 
empty) clauses not provable. 

Let DB = (p q, r, -s). Then, there are two 
minimal models of DB: Ml = Cp, r) and M2 = 
-h r3- Consider the following queries. 

Ql = r. This query is true. in DB. 
Semantic justification: 
r is in Ml and M2. 

Syntactic justification: 
DB + (-r) I- nil, 
and DB is consistent. 
That is, DB I- r. 

42 = p. This query is -finite in DB. 
Semantic justification: 
p is in Ml, but not in M2. 
Syntactic justification: 
DB + (-p) IX nil, and DB + (p) IX nil. 
That is, DB IX p, DB IX -p, 
and DB IXGCWA -p. 

43 = s. This query is provablv false in 
DB. 
Semantic justification: 
s is not in Ml or in M2. 

Syntactic justification: 
DB + (-s) IX nil, but DB + s I- nil. 
That is, DB I- -s. 

44=t.Thisquerycanbemfalse 
in DB by GCWA. 
Semantic justification: 
t is not in Ml or in M2. 

Syntactic justification: 
DB + (-t) IX nil, andDB+t IXnil. 
DB IX t C for any positive or empty C. 
That is, DBlX t and DB IX -t, 
but DB I-GCWA -t. 

As shown in example 1, one difficulty 
in evaluating a query in an IDDB under the 
GCWA is that there is no difference 
between the indefinite and false cases 
when the ordinary approach (of trying to 
prove the query or its negation) is 
applied, as in Q2 and 44. The difference 
arises only when the query literal is 
considered in conjunction with additional 
positive parts. Hence, we need to develop 
specialized inference engines for 
indefinite and GCWA answers. 

III INDEFINITENESS AND INDEFINITE 
INFERENCE 
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We introduce the basic notions for 
analyzing indefiniteness as follows: PIGC 

the set of minimal positive indefinite 
;ound clauses implied by IDDB, where the 
notion of "minimal set" means that clauses 
in PIGC cannot be properly subsumed by any 
positive ground clause derivable from 
IDDB. If q is a ground atom, then PIGC[q] 
consists of members of PIGC that contain 
q- Recall that q is indefinite if it is 
true in some minimal model of DB and 
false in some minimal model of DB. We 
introduce three auxilliary functions. 

. . . inition 
True[q] = t if DB I- q 

f otherwise 

Indef[q] = t if q is indefinite in DB 
f otherwise 

Definition 
GCWA[q] = t if True[q] = f 

and Indef[q] = f 
f otherwise 

Notice that the above makes no 
distinction between provably false and 
false by assumption. Our main purpose is 
to determine which of the three values q 
has, true, false or indefinite. If it was 
important for a user to distinguish 
between the two false cases, additional 
tests would have to be made. 

-2 
Let DBl = (p, p q), and DB2 = Cp q, r s). 
In DBl, PIGc LPI = (3, IndefCp] = f and 
GCWA[r] = t. 
In DB2, PIKCp] = (p q), Indef[p] = t and 
GCWACp-J = f. 

Lemma 1 (Minker's Lemma[Minker, 19821) 
Every minimal model of C is a minimal 
model of CP, where C = CP union CNP, CP 
denotes a set of all positive clauses 
provable from DB, and CNP denotes a set of 
clauses provable from DB each of which 
includes at least one negative literal. 

The lemma 1 says that Mcp = MC rather 
than Mcp < MC, where Mcp and MC mean sets 
of minimal models of CP and C, 
respectively. 

-2 
C = q v C' is in PIGC iff q is 
indefinite in DB. 

Theorem 1 (Indefiniteness Theorem) 
Indef[q] = t if PIGC[q] is not empty 

f otherwise 

Corollawu 
GCWA[q] = t if True[q] = f 

and PIGC[q] is empty 
f otherwise 

The Indefiniteness Theorem says that 
PIGC characterizes the indefiniteness of 
an IDDB. It provides the theoretical 
basis for developing the indefinite 
inference. That is, it seems unavoidable 
to consider PIGC in some form or other for 
answering Indef[q] . However, since it is 
obviously unfeasible to derive PIGC in 
general, we should develop an appropriate 
mechanism to handle only PIGC[q], that is, 
the portion of PIGC relevant to the query 
at hand. 

IV COMPILATION AND REPRESENTATION 
ALTERNATIVES 

The goal of compiling is to separate 
the deductive process from the data 
retrieval process. For the problem at 
hand, namely determining PIGC[q] for a 
generic q, we need to find which 
resolvents of IDB clauses could lead to 
positive ground clauses containing q when 
data from the database is taken into 
consideration. Further, such a positive 
ground clause must not be subsumed by 
another positive clause. A simple example 
will illustrate the basic approach. 
Suppose the database contained the clauses 

-p (xl 
-0 (4 

-Q(Y) -S(z) “Lki~.z) T(~JJ) 8 
s 64 u o-4 * 

-M (9 T(v,lO,u) U(u) 8 
where P, Q, M and 0 are simple relations 
stored in the EDB. Suppose we had the 
guery. "Is R(JOHN,lO,TOYS) indefinite or 
false?" The resolvent, -p (4 
-0 (4 R(x,y,z) T(x,y,z) U(z) ' 2% 
produce a positive ground clause 
containing R(JOHN,lO,TOYS) if the 
appropriate data were in the relations P, 
Q and 0. On the other hand, if JOHN were 
in M, the third clause would derive a 
positive ground clause subsumming the one 
containing R(JOHN,lO,TOYS); that * 
R(JOHN,lO,TOYS) T(JOHN,lO,TOYS) U(TO;:j 
would not be in PIGC after all. Thus, we 
may answer false or indefinite after 
retrieving the appropriate data from P, Q, 
0 and M and testing the resulting clauses 
for subsumption. Notice that if the third 
clause had contained T(v,25,u) instead, 
there would be no possibility for 
subsumption, and R(JOHN,lO,TOYS) 
T(JOHN,lO,TOYS) U(TOYS) would definitely 
be in PIGC. As with regular TV-=-Y 
compilation, the above kinds of analyses 
can be carried out on the basis of generic 
values for the attributes of R, and the 
deductive analysis separated from the data 
retrieval. 

In order to carry out the above 
deductive analysis, we identify certain 
sets of clauses. 
consists of 

The IIDB(Indefinite IDB) 
indefinite general clauses. 
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The DIDB(Definite IDB) consists of 
definite general clauses. The 
IEDB(Indefinite EDB) consists of non-Horn 
ground clauses. The DEDB(Definite EDB) 
consists of positive unit ground clauses. 
As will be seen below, the precise details 
of compiling will depend on whether 
negative clauses and clauses in IEDB are 
used at compile time or are to be handled 
at retrieval time. Therefore, we call CDB 
(Clausal Database) the set of clauses that 
are to be used in the compile phase. 
Then, IGI[ql is the set of minimal non-Horn 
clauses which contain a positive 
occurrence .of predicate q and are 
derivable from the CDB. A clause Cl is 
said to gotentiallv pubs- another clause 
C2 iff there is a positive subclause of Cl 
obtained by deleting the negative EDB 
literals and the positive literals for 
which there are corresponding negative EDB 
relations that subsumes a ground instance 
of a positive subclause obtained similarly 
from C2. PSUR[nhi] denotes a set of 
clauses which potentially subsume a 
clause, nhi, in NH[q] and are derivable 
from CDB. The sets NH[q] and PSUB[nhi] 
can be used to generate PIGC[q] if the 
negative data is used properly. 

To see why the negative data plays a 
crucial role, we consider three 
representation alternatives. We assume 
that #DEDB >> #-p > #-C > #IEDB > #DIDB >> 
#IIDB, where #X denotes the number of 
clauses or relational tuples in each 
database X, #-p the number of negative 
ground unit clauses explicitly occuring in 
DB, and #-C the number of negative nonunit 
clauses explicitly occuring in DB. 

-1 
(a) CDB = IIDB + DIDB 

+ negative nonunit clauses 
(b) RDB = IEDB + DEDB 

+ negative unit ground facts 

RE RE ENTATI 
(a: CgB = II:: 4 DIDB + IEDB 

+ negative nonunit clauses 
(b) RDB = DEDB 

+ negative unit ground facts 

REPRE ENT TI N 
(a) CgB "II:, 2 DIDB + IEDB 

+ negative clauses 
(b) RDB = DEDB 

fzF=-r = ( -P(x) Q(X), -U(x) S(x) V(x) a 
-T(x) P(x) R(x) S(x), -Q(a), -S(a), T(a), 
u (a> 3 - 
In representation 2, 
CDB = =C-P W Q (xl , -U (x) S (x) V(x) , -T(x) 
P(x) R(x) S(x)) and 
mB = (-Q(a), -S(a), T(a) , U(a) 3. 
Then NH[P] = ( nhl: -T(x) P (x) R (4 S (x> 3 

and PSUB[nhl] = (-U(x) S(x) V(x), -T(x) 

t?El 
R (4 S (x> 3 - 
NH[P(cl)] = {nhl: -T(cl) P(c1) R(c1) 

s (cl) 3 and PSUB[nhl] ={-U(c1) S(c1) 
v (cl) , -T(cl) Q(c1) R(c1) S(cl)), 
where cl denotes a generic constant. 
Hence, PIGC[P(a)] is empty. 

In representation 3, 

-S(a)3 and RDB = 

Then, performing resolution on the CDB 
yields the following resolvents : 
-T (4 R (x> S (x) Q(x) , -P (a> , -U (a> V(a) I 
and -T(a) R(a). 
Hence, NH[P(cl)] = {nhl: -T(cl) P(c1) 
R (~1) S (~1) 3 and PSUB[nhl] = (-T(a) R(a)). 
Hence, PIGCp(a)] is empty. 

In example 3, notice that the clause 
-U(x) S(x) V(x) should be in PSUB[nhl] for 
representation 2, since the literal V may 
be resolved with the negative data in RDB 
if there is a negative table for V, and 
these resolutions are made at query time, 
not at compile time. In representation 3, 
any negative information about V would 
have to be in the CDB and would therefore 
be resolved at compile time. 

meorem 2 (Representation Theorem) 
1. In representation-l. PIGCrul of DB is 
not equivalent to PIGC[qj of R%+ NH[qj + 
PSUB[nhi] . 

2. In representation-2, PIGC[qj of DB is 
equivalent to PIGc[q] of RDB+NH[q-j + 
PSUB[nhi] . 

3. In representation-3, PIGC[q] of DB is 
equivalent to PIGC[q] of RDB+NH[q-J + 
PSUB[nhi] . 

The representatian Zheorem indicates 
that representation schemes 2 and 3 enable 
us to compile the CDB with respect to 
NH[q] and PSUB[nhi] before query time. In 
order to avoid extra overhead in the 
deduction at compile time, we may prefer 
representation 1. However, we have some 
difficulties with the algebraic 
manipulation of the IEDB in representation 
1: First, the ordinary relational table is 
not adequate for storing indefinite 
clauses due to the variable length of 
these clauses. Second, the representation 
theorem indicates that it is very 
difficult to develop the interface for 
generating PIGC[q] between CDB and RDB. 
In order to avoid some combinatorial 
explosion due to indefinite ground clauses 
at gu--Y* time, we may prefer 

resentatlon 2 and 3. Representation 2 
needs an additional RDB operation for 
handling the negative unit ground clauses, 
while representation 3 needs additional 
resolutions on the CDB. When the negative 
ground facts are updated into the IDDB, 
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some modifications to the compiled program 
are needed in representation 3, but not in 
representation 2. However, assuming that 
the volume of explicit negative ground 
facts is not very large and updates to 
them are not frequent, representation 3 
may be preferred, since it reduces the 
size of NH [sl and PSUB[nhi] and it 
incorporates the traditional relational DB 
as the RDB. 

V COMPILING INDEFINITE INFFRENCE IN A 
NON-RECURSIVE IDDB 

em Z,&?orem and its 
tell us that for answering 

Indef[q] and GCWA[q], we must calculate 
True Es1 and PIGC[q]. The representation 
theorem tells us that we may have the 
following scenario for developing more 
practical indefinite & GCWA inference 
enaines which consists of three major 
procedures, namely Compile[q], EvaI [q] , 
and Modify[C], in the following manner: 
(1) At m desiw time, the procedure 

Compile[q] compiles generic queries with 
respect to the CDB. (4 At cge~~~ time, 
the procedure Eval[q] evaluates True[q], 
k&f [ql , and GCWA[q] for a closed query, 
q, by evaluating the compiled program 
through the RDB. (3) At update time, the 
procedure Modify[C] modifies the compiled 
programs with respect to the update of a 
clause C into CDB. Updates in RDB require 
no program modification. 

The compilation of the CDB may be 
performed by various techniques such as 
linear resolution[Chang and Lee, 19731, 
connection g-raph[Kowalski, 1975][McKay and 
Shapiro, 1981][Sickel, 19761, a 
generalized version of the system 
graph[Lozinskii, 19851, etc., of which the 
effectiveness will depend upon the 
structure of IDDB. In this paper, we 
show a simple saturated resolution 
technique for compiling a non-recursive 
IDDB with a small CDB. However, even 
though the CDB of an IDDB consists of only 
a few clauses, a large volume of 
resolvents may be generated by simple 
saturation. We present a more effective 
compiling technique in penschen and Park, 
1985][Park, 19851 by introducing 
NH-reduction theorems. Furthermore, we 
present a basic idea on compiling queries 
in a recursive IDDB in [Park, 19851. 

Comnjlation Phase 
For True[q], perform resolution on the CDB 
until saturation occurs, i.e. no more 
resolutions are possible. Construct a set 
of Horn clauses, called PTRUE[q], of which 
the positive literal unifies with q and 
the negative part consists of only base 
relations. For PIGC[q], perform 
resolution on the CDB until saturation 
occurs, and construct NH[q] and PSUB[q] 

defined in the previous section. 

F. aluation Phase 
Fzr True[q] evaluate the negative part of 
each Horn clause in PTRUE[q] by performing 
join operations through the RDB, until 
either True[q] = t or PTRUE[q] has been 
exhausted. For PIGC[q], evaluate the 
negative part of each clause in NH[q] and 
PSUB[nhi] and compute PIGC[q] and its 
potential subsuming clauses. Perform 
subsumotion tests on each clause in 
PIGC[~~, say pigc, by its potential 
subsuming clauses and relations in RDB 
relevant to pigc. 

Example 4 illustrates the compilation 
and evaluation of Indef[q] and GCWA[q] in 
a non-recursive IDDB by resolution, using 
representation scheme 3. The given IDDB 
partially describes the blood tYPe 
relationship between parents and 
children. 

-4 
Base Relations: 
P(person, father, mother) 
B(person, blood-type) 

Virtual Relations: 
FBCperson, father-blood-type) 
MB(person, mother-blood-type) 
BPCperson, possible-blood-type) 

CDB: 
P(xl,x2,x3) & B(x2,x5) --' FB(xl,x5) 
P(xl,x2,x3) & B(x3,x5) --' MB(xl,x5) 
FB(xl,A) & MB(xl,O) 

--> BP(xl,A) V BP(xl,O) 
B(x4,x5) --> BP(x4,x5) 
-BP (g,O> 

RDB: 
P (a, i, j) P (b,m,n) P(e,a,b) P (f, a/b) 
P(g,a,b) B(a,A) B(b,O) B(e,A) 

. . S;ompihtlon. 
PTRUE[BP(cl,c2)] = 
{hl: B(x4,x5) --> BP(x4,x5) 3 

NH[BP(cl,c2)] = 
(nhl: P(xl,x2,x3) & B(x2,A) & B(x3,O) 

--> BP(xl,A) V BP(xl,O)} 
PSUB[nhl] = 
(B(x4,x5) --> BP(x4,x5), 
P(g,x2,x3) & B(x2,A) & B(x3,O) 

--' BP (g,A) 3 

- . Evaluation 
For the query BP(e,A), 
PTRUE[BP(e,A)] = {hl:B(e,A) --> BP(e,A)) 
True[BP(e,A)] = t by resolving hl in PTRUE 
and B(e,A) in RDB. 
Hence, Indef[BP(e,A)] = f and 
GCWA[BP(e,A)] = f. 

For the query BP(f,A), 
NH[BP(f,A)] = (nhl: P(f,x2,x3) & B(x2,A) 

& B(x3,O) --> BP(f,A) V BP(f.0)) 
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PSUB[nhl] = (B(f,A) --> BP(f,A)) 
PIGC[BP(f,A)] = (BP(f,A) V BP(f,O)) 
Since True[BP(f,A)]=f and PIGC[BP(f,A)] is 
not empty, Indef[BP(f,A)] = t and 
GCWA[BP(f,A)] = f. 

For the query BP(g,A), 
PIK [BP (g,A) ] ' 
subsumes BP(g,A)i$ BETgtgj. 

since BP(g,A) 

That is, True[BP(g,A)] = t. 
Hence, Indef[BP(g,A)] = f and 
GCWA[BP(g,A)] = f. 

This example is relatively simple 
because the indefinite predicate, BP, does 
not occur as an hypothesis of any rule. 
We point out that the complexity of the 
simple saturation method grows very fast 
as more indefinite predicates occur as 
hypotheses and as the length of resolution 
chains stemming from an indefinite 
hypothesis grows. 

VI QUERY DECOMPOSITION 

We introduce the following 
decomposition theorem to evaluate 
disjunctive and conjunctive queries from 
their unit subqueries. 

Theorem 3 (Decomposition Theorem) 
Let CL1 and CL2 be different clauses. "*" 
denotes "don't care" and "x" denotes "t, 
f, or i(indefinite) 'I. 

1. Disjunctive decomposition 

al !ILLz GLLYU 
t * t 
f X X 

i i i or t 

2. Conjunctive decomposition 

CL1 .!ixdz ixJYU 
f * f 
t X X 

i i i or f 

Notice that the decomposition theorem 
shows a duality between disjunctive and 
conjunctive decomposition. In 
disjunctive decomposition, if all ground 
literals appearing in CL1 and CL2 are 
indefinite, CL1 v CL2 may be either 
indefinite or true. Let DB = (p r, q s, 
-P -9). Then, the minimal models are Ml = 
-k ~3, M2 = Cp, s), and M3 = (q, r). Let 
DB' = -& r, q s). Then, Ml' = (p, q), M2' 
= J&b s), M3' = (r, q), and M4' = (r, s) 
are the minimal models. Let CL1 = -p and 
CL2 = -q. Then, both CL1 and CL2 are 
indefinite with respect to DB and DB'. 
However, CL1 V CL2 = -p V -q is true with 
respect to DB, while it is indefinite with 
respect to DB'. 

Disjunctive queries can be evaluated 

as follows. Let Q = Ll V L2 V . . . . V Ln. 
Then, determine the value of each literal 
Li by utilizing the compiled program for 
it, and evaluate Q by using the 
disjunctive decomposition theorem. In case 
all Li are indefinite, there are two ways 
to proceed. First, we may look for a 
straightforward refutation of DB & -Q to 
infer the value of Q. If nil is derived, 
Q is true. Otherwise, Q is indefinite. 
Second, Q may be evaluated by utilizing 
the compiled program of unit queries as 
follows. Generate PIGC[Li] for each Li. 
Let pigc be a clause in PIGC[Li]. If Q is 
a positive clause and there is a pigc 
consisting of only ground atoms of Q, Q is 
true with respect to DB. Otherwise, it is 
indefinite. For example, let DB = Cp r, q 
s) and Q = p V q V r. All p, q, and r are 
indefinite. Since we can generate p V r 
consisting of only ground atoms p and r 
appearing in Q, Q is true. Notice that Q 
may be compiled. Evaluation theorems for 
more complex queries including conjunctive 
queries are presented in [Park, 19851. 

VII CONCLUSION 

Our goal is to develop effective 
inference engines for indefinite 
databases. We have shown that PIGC is the 
key to determining when a positive ground 
literal is indefinite or can be assumed 
false under GCWA. Further, we have shown 
which sets of resolvents must be generated 
in a compile phase in order to separate 
deduction from data retrieval. We have 
shown that two of the three obvious 
representation schemes allow such clause 
sets to be generated in a separate compile 
phase. We have shown how conjunction and 
disjunction can be handled. Work beyond 
that described in [Henschen and Park, 
1985][Park, 19851 is needed to improve the 
actual compilation, in particular the 
generation of just the right resolvents in 
an effective way. This is especially true 
for recursive IDDBs. 
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