
Parallel Logical Inference
and Energy Minimization

Dana H. Ballard

Computer Science Department
The University of Rochester

Rochester, NY 14627

Abstract

The inference capabilities of humans suggest that
they might be using algorithms with high degrees of
parallelism. This paper develops a completely parallel
connectionist inference mechanism. The mechanism
handles obvious inferences, where each clause is only
used once, but may be extendable to harder cases. The
main contribution of this paper is to show formally that
some inference can be reduced to an energy
minimization problem in a way that is potentially
useful.

1. Motivation

This paper explores the possibility that a restricted
class of inferences in first order logic can be made with
a very large knowledge base using only a parallel
relaxation algorithm. The main restriction is on the
infrastructure of the logical formulae, but not on the
number of such formulae. The relaxation algorithm
requires that problems be formulated as the
intersection of (possibly huge) numbers of local
constraints represented in networks.

The formulation of the algorithm is in terms of a
connectionist network [Feldman and Ballard, 19821.
Recently a class of algorithms for solving problems has
emerged that has particularly economical formulations
in terms of massively parallel architectures that use
large networks of interconnected processors
[Kirkpatrick et al., 1983; Hopfield, 1984; Hopfield and
Tank, 1985; Hinton and Sejnowski, 19831. For a
survey, see [Feldman, 19851. By “massively parallel,”
we mean that the number of processors is on the order
of the size of the knowledge base. This class of
algorithms has been described as “energy
minimization” owing to analogies between the
algorithms and models of physical processes.

The key contribution of this paper is to show that
some theorem proving can be described in terms of this
formalism. Formally, there is an algorithm to
minimize the “energy” functional E given by

E = - cc wlj.sisj + CIisi (2)
L i

where si is the binary state of a unit, either on (0) or off
(l), wu is a real number that describes a particular
constraint, 8i is a threshold (also a real number)
[Hopfield, 19821, and the weights are symmetric, i.e.,
Wij = wji. The energy functional has a related
constraint network where there is a node for each state,
and the weights are associated with the ends of arcs in
the network and the thresholds are associated with
each state. The technical status of algorithms for
minimizing E are discussed in [Ballard, 19861. This
paper shows that the weights and thresholds can be
chosen to encode theorem-proving problems.

A controversial aspect of our formulation is that it is
not guaranteed to work in every case. For many
scientific applications, an inference mechanism that
handles only the simpler cases, and fails in many cases,
might not be useful. In particular, this is true for
research directed toward the development of
mechanical theorem provers, that handle cases that
are difficult for humans. However, for models of human
inference mechanisms, this may not be the case. Our
conjecture is that: facts that humans can infer in a few
hundred millisconds have an efficient time solution on a
parallel machine. The key assumption we are willing to
make is that the kind of inferences that humans can do
quickly may be restricted cases of a general inference
mechanism. One reason for this assumption is that the
human inference mechanism can be viewed as one
component of several in a perception-action process.
For example, in our model, if the inference mechanism
fails to identify a visual object, one of the options
available is to move closer and gather more data. Thus
our goal is to develop an inference mechanism that
allows many inferences to be made in parallel with the
understanding that it may also fail in many cases.

A general method of theorem proving is refutation.
In other words, to prove S I- W where S and W are sets
of clauses, one attempts to show that S u 1 W is
unsatisfiable. One way of doing this is to use resolution
[Robinson, 19651. Our approach uses the unit
resolution paradigm but has three important
restrictions: (1) clauses may be used only once in each
proof; (2) the knowledge base must be logically
consistent; and (3) the method uses a large network that
must bepreconnected.

Theorem Proving: AUTOMATED REASONING / 20.3

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

The overall organization of our parallel inference is
shown in Figure 1. The process has three overall
phases that are carried out sequentially:

Step 0: Logical Consistency Constraints. The first part
has the goal of activating a logically consistent set of
constraints. This is the focus of other research, and we
assume that the enterprise is successful.

Step 1: Filter Constraints. Constraints derived from the
clause structures [Sickel, 1976; Kowalski, 19751
deactivate parts of the network that are inconsistent.

Step 2: Resolution. The last part of the algorithm uses a
second filtering technique based on unit resolution. In
this phase, parts of the network are deactivated if they
correspond to pairs of clauses that would resolve where
one of the pair is a unit clause. If the entire network
can be deactivated in this way, a proof has been found;
otherwise, the result is inconclusive.

start

r\I; Parallel
Filter

Figure 1.

2. The Constraint Network

The constraint network has five sets of nodes: (1) C,
the set of clause nodes; (2) L, the set of predicate letters
and their complements; (3) F, the set of clause
fragments; (4) U, the set of unifications between
fragments; and (5) B, the set of substitutions. In any set
of clauses there will be one clause node, c c C for each
clause in the set, There will be one clause fragment
node f c F for each predicate letter and its complement
that are mentioned in different clauses. There will be a
separate unification node u c U for each possible
resolution between complementary literals in different
clauses. Finally there will be a substitution node b c B
for each possible substitution involving a unification.
For example, in the following set {S U 1 W} = {cl:
P(v), cz: -P(hy)h

c = {Cl, c2)

L = {P, -P}
F = {(Cl, PI, (c2, -+I)

u = {((Cl, P) (cz, -P))}

B = {xb, ya}

(1)

There are six different kinds of constraints: (1) a
predicate letter constraint; (2) a clause-predicate
substitution constraint; (3) a clause constraint; (4)
unification constraints; (5) a substitution constraint;
and (6) a unit clause constraint. The first five capture
constraints implied by the clause syntax and
unification. The sixth is an additional constraint which
anticipates the unit resolution proof procedure. Table 1
summarizes these constraints, which are described in
detail below. All of the constraints can be obtained
directly from the clause syntax.

The Clause Constraint, The clause constraint
captures the notion that a clause can only be part of the
solution if all of its fragments have viable bindings.
Thus the fragments must be connected to the node in a
way that exhibits conjunctive behavior. Table la
shows an example of a clause with n fragments.

The Clause-Predicate-Substitution Constraint (or
Clause Fragment Constraint). This constraint is
derived from the clauses in a straightforward way.
Each clause may be decomposed into triples consisting
of: (clause symbol, predicate letter, substitution). For
example, cl: P(x)&(a) may be decomposed into (cl, P,
~1) and (cl, Q, ~2) where ul and u2 are appropriate
substitutions (these will be discussed further as part of
the substitution constraints). In the filter network,
there are a set of clause fragment nodes F, one for each
triple. A clause fragment node f is connected to each
node in the triple with positively weighted connections
as shown in Table lb.

Unification Constraints. Complementary literals in
different clauses that can unify constrain the network
in two important ways. These can be captured by
positively weighted links to unification nodes. Any two
clause fragment nodes that are connected to
complementary literals are linked to a unique
unification node. That node also has links to
substitution nodes for each of the substitutions that
result from the unification. Thus in the example given
by Equation (2), one unification node was linked to the
two appropriate fragment nodes and the two
appropriate substitution nodes.

The Literal Constraint. The literal constraint is
derived from propositional logic. If in the set of clauses,
a literal appears without its complement or vice versa,
then that clause can be pruned from the solution. In
terms of the filter network, this constraint is easily
expressed as a positively weighted arc between
different nodes representing predicate letters, as shown
in Table Id.

20-i / SCIENCE

The Substitution Constraints. The substitution
constraints limit possible bindings between terms. The
clauses that can potentially resolve constrain possible
substitutions, and these possible substitutions are

realized by a set of substitution nodes S. Substitutions
that are incompatible are connected by negatively
weighted connections. For example, in the set of
clauses -P(Q), P(x,y)Q(y,d, l&k&, +(a,& the
possible substitutions are xa, yb, yc, and zd. Of these,

Table 1: Summary of Constraints

- positive
links

negative
- links

between rival
constant substitutions e. Constant

Substitution

f. Substitution
Incompatibility

compatible pairs are: (xa, yb), (xa, yc) and (yc, zd), and
there is one incompatible pair: (yc, yd). This example is
simple and does not capture all the constraints possible
in unification. At least one other is necessary. This
relates bindings between constants and variables. If a
variable is substituted with a constant and another
variable is substituted with a different constant, then
the two variables cannot be substituted with each
other. These constraints are summarized below:

x, y : var ; c, d const
(xc, xy, yd) are incompatible
(xc, xd) are incompatible

In the network there are potentially NU(Nc + NJ nodes
where NC is the number of constants and IV, is the
number of variables. Thus the above constraints are
connected between all relevant groupings.
Representative network fragments are shown in Table
le and lf. These constraints can be extended to handle
some function symbol constraints, but the development
herein will assume only constants and variables.

The substitution constraint can be easily
implemented if we allow multiplicative effects.
Multiplicative effects cause a node to be turned off if
any one of the inputs becomes zero. A way of handling
this problem that also adheres to the symmetric weight
requirement needed for convergence is to use ternary
nodes. Table If shows a multiplicative connection in
terms of symmetric ternary connections, and Figure 2
shows the detailed connections.

The final constraint to be added is a single use
constraint. This constraint is not dictated by the clause
syntax but anticipates a unit clause inference rule. The
constraint is simply this: literals in different clauses
that can resolve with the same literal in a given clause
have mutually inhibitory connections. To clarify this,
consider the example cl:P(x), ~2: 1 P(a), cg:lP(b).
Either cg or c3 could resolve with cl. However, to force
the network to “choose” one or the other, a negatively
weighted arc is introduced between the corresponding
fragments (~2, -P) and (~3, -P).

Figure 2: The substitution network showin only
consistency connections for constants {a, b and 3
variables {x, y, z}.

Theorem Proving: AUTOMATED REASONING / 205

3. Choosing the Weights

In the previous sections it was shown that the
formulae of first order predicate calculus and the
inference rules of a proof producer (viz. resolution) can
be uniquely expressed in terms of a network. Such a
network has a particularly simple form, consisting only
of undirected links between nodes. To relate this
network to Equation (2), we add real-valued weights at
the ends of each arc and real-valued thresholds to each
node.

Owing to the various constraints, some unification
nodes or substitution nodes may be forced off. Under
this circumstance, just the clause structure that
depends on these should be turned off. Building the
networks out of AND, OR, and AND-OR nodes
guarantees that this happens, since the energy
efficiency of the desired state can be shown to be
optimal by direct calculation [Ballard, 19861. Thus
parts that are consistent according to the logical syntax
form local energy minima.

T , able 2: (a) Weights and (b) thresholds for filtering stage. (a = (l/2)(0 + e);

Owing to space limitations, we will omit the proof m = number of instances of a predicate P; n = number of instances of a
complementary predicate ,P; NC = number of literals in the clause.)

that the weights and thresholds that we specify
guarantee the desired behavior. This can be found in
[Ballard, 19861. Instead, the basic ideas will be
outlined using Figure 3. The figure shows a
hypothetical plot of the energy of the network as a
function of the states. The two most important
constraints are those that guarantee that: (1) each
literal has exactly one complement; and (2) the
substitutions are consistent. These are to be weighted
so that violating them incurs very large penalties.
Remaining states that satisfy them are defined to be
admissible states. These are weighted so that the more
of the network structure that can be turned on, the
better. The global minimum of the network is simply
the admissible state with the most clause structure.

E

A
(4

&v LL

EH

&v -k* -k* * between appropriate
pairs and triples

ww -k* -k’

states b
states

admissible state with
most clause structure

Figure 3: Hypothetical plot of energy vs. states
showing desirable network propertIes.

The complete summary of weights is shown in Table
2. From this table, it is not intuitive how these weights
function. To help overcome this problem we classify
the nodes into three types, AND, OR, and AND/OR, as
shown in Figure 4. All of the node types will have
negative thresholds: AND nodes will have a threshold
that must be less (in absolute value) than the sum of all
the arc weights but greater than any subset of arc
weights; OR nodes will have a threshold that is less
than any of the arc weights; an AND-OR node may be
constructed if the sum of the OR arcs is equal to the
value of the weights on the AND arcs, assuming that
the latter are all identical.

4. How It Works

Consider the set of clauses {P(a), P(b), P(c), lP(x),
lP(y)}. The network for this example is shown in
Figure 5, with the weights and thresholds chosen
according to Table 2 with 8 = 1. To understand the
example, note that if there are m instances of a literal
P and n of its complement in different clauses, then:

1) for the P node there will be m OR connections;

2) for the -P node there will be n OR connections;

3) for each fragment node related to P there will
be n OR connections;

4) for each fragment node related to 1 P there will
be m OR connections.

206 / SCIENCE

At the beginning of stage two the filtering process
has pruned the network so that only portions with
consistent substitutions are left in the on state.
Therefore in the resolution process there is no need to
recheck the substitutions since they are known to be
consistent. For this reason, the substitution network
may be ignored. It is removed from the computation
and the threshold on the unification node is adjusted
accordingly.

The thresholds on the clauses are now lowered
(remember that they are negative) to the point where
they are each greater in absolute value than the
weights from the clause fragment link. This means
that it is now profitable to turn the singleton clause
nodes off. Ideally, this should cause other nodes to be
turned off as well. If the entire network can be turned
off, a proof by unit resolution exists. [Ballard, 19861
elaborates on this point. The one case where the
network cannot be turned off is where there is a loop,
e.g., clfufcgfufclfufcl. The energy of a loop is negative,
whereas the energy of all nodes in the off state is zero,
so it is never profitable to turn off the nodes in a loop.
The main change to the weights is to leave out the
substitution network and make each clause node an OR
node with threshold W2.

5. Summary and Conclusions

The implementation of the first order logic
constraints results in two coupled networks: (1) a
clause network that represents the clause syntax; and
(2) a binding network that represents the relationships

.5(1 +e)

AND .5(1 +c)

.25(1 +E)

OR .5(1 +E)

AND-OR

Figure 4: AND, OR, and AND/OR nodes. Numbers
inside tokens are thresholds (that appear next to the
tokens in Figure 5). Epsilon is a small positive number
required for correctness [Ballard, 19861.

between terms in different clauses. The method for
resolving bindings, unification, can be as complex as
the entire inference mechanism. Thus for the purposes
of computing eficiently, we would expect the actual
bindings in the knowledge base to have a simple
structure.

At the outset, the possibility of reusing clauses was
ruled out, but there are some limited cases that can be
handled. To see the necessity of reusing clauses,
consider {S U ‘W) = {dW, wP(b), c3: -P(x)&(x),
~4:7Q(a)7Q(b)}. This can be handled by resolution in a
straightforward way. The resolution tree is: ((cl, cg),
((~2, c3), ~4)). However, note that c3 appears twice. The
consequence of this is that since the unification
constraints do not allow xa and xb simultaneously, the
network will not pass the filter test. To handle this
case we note that both possibilities for cg involve
constant bindings. Thus we can resolve this by making

two copies of c3: -p(a)Q(a) and -, P(b)Q(b). Once this is
done, the inference mechanism will find the proof.
However, this is not a very elegant strategy. As noted
by Josh Tenenberg, if cg were -P(X)&(Y) one would
need four copies, +(a)&(~),~ lP(a)Q(b), ~P(b)Q(a),
Tp(b)Q(b), and in general a clause with k literal% each
with a different variable, would generate kNC
possibilities, where NC is the number of constants.

The main intent of this paper has been to provide a
new look at formal inference mechanisms from the
standpoint of performance. Our contention is that
models that do not have a parallel implementation are
unlikely candidates for models of human inference.

-.66

Figure 5: Network for {P(a), P(b), P(c), -P(x), -P(y)}. Epsilons omitted.

Theorem Proving: AUTOMATED REASONING / 20’

This realization may prove catalytic for approaches
that try to unify the complementary goals of
competence and performance. The technical
contribution of this paper is in the detailed
specification of a network inference mechanism. The
network runs in parallel and can handle obvious
inferences in first order logic. We have described how
the problem of proving theorems or making inferences
of the form S b W can be reduced to two sequential
network optimization problems. The first checks the
formulae for the constraints defined in Section 2 and
settles in a state where each literal instance has a
unique complement. The second minimization is
equivalent to a unit resolution proof. If a proof by unit
resolution exists, it will be manifested as a global
energy minimum. While no computer simulations
have been done, the proofs provided in [Ballard, 19861
show that the problem reduction works. The stable
states of the two optimization problems are just those
desired.

The reduction of theorem proving to energy
minimization is an important step, but much
additional work needs to be done. At present, the one
convergence proof available [Geman and Geman, 19841
does not provide an encouraging estimate on the
running time of such algorithms, and simulations that
have been done give varying results for different
problems. Algorithms that require global minima are
still comparable to conventional approximation
techniques [Johnson et al., 19841. However, studies of
the Traveling Salesman problem using analog
processing units have shown that good solutions can be
found quickly [Hopfield and Tank, 19851. These
encouraging results are a source for some optimism:
perhaps in the case of inferences, if a measure of good,
average performance is used instead of the classical
best-, worst-case performance, these algorithms will
exhibit behavior closer to the Traveling Salesman
result.

Acknowledgements

Pat Hayes was enormously helpful when these ideas
were in formative stages. The artful figures and
carefully formatted text are the work of Peggy Meeker.
Peggy also edited many earlier drafts of this report. I
am grateful to John Mellor-Crummey for pointing out
several areas that needed improvement in the original
design. Jerry Feldman, Josh Tenenberg, Leo Hartman,
and Jay Weber each made several helpful suggestions
on earlier drafts. This work was supported in part by
the National Science Foundation under Grant DCR-
8405720.

References

Ballard, D.H., “Parallel logical inference and energy
minimization,” TR 142, Computer Science Dept., U. Rochester,
March 1986.

Davis, M., “Obvious logical inferences,” Courant Institute, 1983.

Fahlman, S.E., D.S. Touretzky, and W. van Roggen, “Cancellation
in a parallel semantic network,” Proc., 7th Intl. Joint Conf. on
Artificial Intelligence, Vancouver, BC, Canada, August 1981.

Feldman, J.A., “Energy and the behavior of connectionist models,”
TR 155, Computer Science Dept., U. Rochester, November 1985.

Feldman, J.A. and D.H. Ballard, “Connectionist models and their
properties,” Cognitive Science 6,205-254,1982.

Freuder, E.C., “Synthesizing constraint expressions,” CACM 21,
11,958-965, November 1978.

Garey, M.R. and D.S. Johnson. Computers and Intractability.
W.H. Freeman, 1979.

Geman, S. and D. Geman, “Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images,” IEEE
Trans. PAMI 6,6,721-741, November 1984.

Henschen, L.J., “A tutorial on resolution,” IEEE Trans.
Computers C-25,8,770-772, August 1976.

Hinton, G.E. and T.J. Sejnowski, “Optimal perceptual inference,”
Proc., IEEE Computer Vision and Pattern Recognition Conf, 448-
453, Washington, DC, 1983.

Hopfield, J.J., “Neural networks and physical systems with
emergent collective computational abilities,” Proc., National
Academy of Sciences USA 79,2554-2558,1982.

Hopfield, J.J., “Neurons with graded response have collective
computational properties like those of two-state neurons,” Proc.,
Natl. Acad. Sci. 81,3088-3092, May 1984.

Hopfield, J.J. and D.W. Tank, “‘Neural’ computation of decisions
in optimization problems,” to appear, Biological Cybernetics, 1985.

Johnson et al., Lecture Notes, seminar presentation at Yale, 1984.

Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, “Optimization by
simulated annealing,” Science 220,4598,671-680,1983.

Kowalski, R., “A proof procedure using connection graphs,” JACM
22,4,572-595,1975.

Nilsson, N.J. Principles of Artificial Intelligence. Palo Alto, CA:
Tioga Pub. Co., 1980.

Nilsson, N.J. Problem-Solving Methods in Artificial Intelligence.
New York: McGraw Hill Book Co., 1971.

Robinson, J.A., “A machine-oriented logic based on the resolution
principle,” JACM 12,1,23-41, January 1965.

Sickel, S., “A search technique for clause interconectivity graphs,”
IEEE Trans. Computers C-25,8,823-835, August 1976.

208 / SCIENCE

