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Abstract 

The inference capabilities of humans suggest that 
they might be using algorithms with high degrees of 
parallelism. This paper develops a completely parallel 
connectionist inference mechanism. The mechanism 
handles obvious inferences, where each clause is only 
used once, but may be extendable to harder cases. The 
main contribution of this paper is to show formally that 
some inference can be reduced to an energy 
minimization problem in a way that is potentially 
useful. 

1. Motivation 

This paper explores the possibility that a restricted 
class of inferences in first order logic can be made with 
a very large knowledge base using only a parallel 
relaxation algorithm. The main restriction is on the 
infrastructure of the logical formulae, but not on the 
number of such formulae. The relaxation algorithm 
requires that problems be formulated as the 
intersection of (possibly huge) numbers of local 
constraints represented in networks. 

The formulation of the algorithm is in terms of a 
connectionist network [Feldman and Ballard, 19821. 
Recently a class of algorithms for solving problems has 
emerged that has particularly economical formulations 
in terms of massively parallel architectures that use 
large networks of interconnected processors 
[Kirkpatrick et al., 1983; Hopfield, 1984; Hopfield and 
Tank, 1985; Hinton and Sejnowski, 19831. For a 
survey, see [Feldman, 19851. By “massively parallel,” 
we mean that the number of processors is on the order 
of the size of the knowledge base. This class of 
algorithms has been described as “energy 
minimization” owing to analogies between the 
algorithms and models of physical processes. 

The key contribution of this paper is to show that 
some theorem proving can be described in terms of this 
formalism. Formally, there is an algorithm to 
minimize the “energy” functional E given by 

E = - cc wlj.sisj + CIisi (2) 
L i 

where si is the binary state of a unit, either on (0) or off 
(l), wu is a real number that describes a particular 
constraint, 8i is a threshold (also a real number) 
[Hopfield, 19821, and the weights are symmetric, i.e., 
Wij = wji. The energy functional has a related 
constraint network where there is a node for each state, 
and the weights are associated with the ends of arcs in 
the network and the thresholds are associated with 
each state. The technical status of algorithms for 
minimizing E are discussed in [Ballard, 19861. This 
paper shows that the weights and thresholds can be 
chosen to encode theorem-proving problems. 

A controversial aspect of our formulation is that it is 
not guaranteed to work in every case. For many 
scientific applications, an inference mechanism that 
handles only the simpler cases, and fails in many cases, 
might not be useful. In particular, this is true for 
research directed toward the development of 
mechanical theorem provers, that handle cases that 
are difficult for humans. However, for models of human 
inference mechanisms, this may not be the case. Our 
conjecture is that: facts that humans can infer in a few 
hundred millisconds have an efficient time solution on a 
parallel machine. The key assumption we are willing to 
make is that the kind of inferences that humans can do 
quickly may be restricted cases of a general inference 
mechanism. One reason for this assumption is that the 
human inference mechanism can be viewed as one 
component of several in a perception-action process. 
For example, in our model, if the inference mechanism 
fails to identify a visual object, one of the options 
available is to move closer and gather more data. Thus 
our goal is to develop an inference mechanism that 
allows many inferences to be made in parallel with the 
understanding that it may also fail in many cases. 

A general method of theorem proving is refutation. 
In other words, to prove S I- W where S and W are sets 
of clauses, one attempts to show that S u 1 W is 
unsatisfiable. One way of doing this is to use resolution 
[Robinson, 19651. Our approach uses the unit 
resolution paradigm but has three important 
restrictions: (1) clauses may be used only once in each 
proof; (2) the knowledge base must be logically 
consistent; and (3) the method uses a large network that 
must bepreconnected. 
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The overall organization of our parallel inference is 
shown in Figure 1. The process has three overall 
phases that are carried out sequentially: 

Step 0: Logical Consistency Constraints. The first part 
has the goal of activating a logically consistent set of 
constraints. This is the focus of other research, and we 
assume that the enterprise is successful. 

Step 1: Filter Constraints. Constraints derived from the 
clause structures [Sickel, 1976; Kowalski, 19751 
deactivate parts of the network that are inconsistent. 

Step 2: Resolution. The last part of the algorithm uses a 
second filtering technique based on unit resolution. In 
this phase, parts of the network are deactivated if they 
correspond to pairs of clauses that would resolve where 
one of the pair is a unit clause. If the entire network 
can be deactivated in this way, a proof has been found; 
otherwise, the result is inconclusive. 

start 

r\I; Parallel 
Filter 

Figure 1. 

2. The Constraint Network 

The constraint network has five sets of nodes: (1) C, 
the set of clause nodes; (2) L, the set of predicate letters 
and their complements; (3) F, the set of clause 
fragments; (4) U, the set of unifications between 
fragments; and (5) B, the set of substitutions. In any set 
of clauses there will be one clause node, c c C for each 
clause in the set, There will be one clause fragment 
node f c F for each predicate letter and its complement 
that are mentioned in different clauses. There will be a 
separate unification node u c U for each possible 
resolution between complementary literals in different 
clauses. Finally there will be a substitution node b c B 
for each possible substitution involving a unification. 
For example, in the following set {S U 1 W} = {cl: 
P(v), cz: -P(hy)h 

c = {Cl, c2) 

L = {P, -P} 
F = {(Cl, PI, (c2, -+I) 

u = {((Cl, P) (cz, -P))} 

B = {xb, ya} 

(1) 

There are six different kinds of constraints: (1) a 
predicate letter constraint; (2) a clause-predicate 
substitution constraint; (3) a clause constraint; (4) 
unification constraints; (5) a substitution constraint; 
and (6) a unit clause constraint. The first five capture 
constraints implied by the clause syntax and 
unification. The sixth is an additional constraint which 
anticipates the unit resolution proof procedure. Table 1 
summarizes these constraints, which are described in 
detail below. All of the constraints can be obtained 
directly from the clause syntax. 

The Clause Constraint, The clause constraint 
captures the notion that a clause can only be part of the 
solution if all of its fragments have viable bindings. 
Thus the fragments must be connected to the node in a 
way that exhibits conjunctive behavior. Table la 
shows an example of a clause with n fragments. 

The Clause-Predicate-Substitution Constraint (or 
Clause Fragment Constraint). This constraint is 
derived from the clauses in a straightforward way. 
Each clause may be decomposed into triples consisting 
of: (clause symbol, predicate letter, substitution). For 
example, cl: P(x)&(a) may be decomposed into (cl, P, 
~1) and (cl, Q, ~2) where ul and u2 are appropriate 
substitutions (these will be discussed further as part of 
the substitution constraints). In the filter network, 
there are a set of clause fragment nodes F, one for each 
triple. A clause fragment node f is connected to each 
node in the triple with positively weighted connections 
as shown in Table lb. 

Unification Constraints. Complementary literals in 
different clauses that can unify constrain the network 
in two important ways. These can be captured by 
positively weighted links to unification nodes. Any two 
clause fragment nodes that are connected to 
complementary literals are linked to a unique 
unification node. That node also has links to 
substitution nodes for each of the substitutions that 
result from the unification. Thus in the example given 
by Equation (2), one unification node was linked to the 
two appropriate fragment nodes and the two 
appropriate substitution nodes. 

The Literal Constraint. The literal constraint is 
derived from propositional logic. If in the set of clauses, 
a literal appears without its complement or vice versa, 
then that clause can be pruned from the solution. In 
terms of the filter network, this constraint is easily 
expressed as a positively weighted arc between 
different nodes representing predicate letters, as shown 
in Table Id. 
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The Substitution Constraints. The substitution 
constraints limit possible bindings between terms. The 
clauses that can potentially resolve constrain possible 
substitutions, and these possible substitutions are 

realized by a set of substitution nodes S. Substitutions 
that are incompatible are connected by negatively 
weighted connections. For example, in the set of 
clauses -P(Q), P(x,y)Q(y,d, l&k&, +(a,& the 
possible substitutions are xa, yb, yc, and zd. Of these, 

Table 1: Summary of Constraints 

- positive 
links 

negative 
- links 

between rival 
constant substitutions e. Constant 

Substitution 

f. Substitution 
Incompatibility 

compatible pairs are: (xa, yb), (xa, yc) and (yc, zd), and 
there is one incompatible pair: (yc, yd). This example is 
simple and does not capture all the constraints possible 
in unification. At least one other is necessary. This 
relates bindings between constants and variables. If a 
variable is substituted with a constant and another 
variable is substituted with a different constant, then 
the two variables cannot be substituted with each 
other. These constraints are summarized below: 

x, y : var ; c, d const 
(xc, xy, yd) are incompatible 
(xc, xd) are incompatible 

In the network there are potentially NU(Nc + NJ nodes 
where NC is the number of constants and IV, is the 
number of variables. Thus the above constraints are 
connected between all relevant groupings. 
Representative network fragments are shown in Table 
le and lf. These constraints can be extended to handle 
some function symbol constraints, but the development 
herein will assume only constants and variables. 

The substitution constraint can be easily 
implemented if we allow multiplicative effects. 
Multiplicative effects cause a node to be turned off if 
any one of the inputs becomes zero. A way of handling 
this problem that also adheres to the symmetric weight 
requirement needed for convergence is to use ternary 
nodes. Table If shows a multiplicative connection in 
terms of symmetric ternary connections, and Figure 2 
shows the detailed connections. 

The final constraint to be added is a single use 
constraint. This constraint is not dictated by the clause 
syntax but anticipates a unit clause inference rule. The 
constraint is simply this: literals in different clauses 
that can resolve with the same literal in a given clause 
have mutually inhibitory connections. To clarify this, 
consider the example cl:P(x), ~2: 1 P(a), cg:lP( b). 
Either cg or c3 could resolve with cl. However, to force 
the network to “choose” one or the other, a negatively 
weighted arc is introduced between the corresponding 
fragments (~2, -P) and (~3, -P). 

Figure 2: The substitution network showin only 
consistency connections for constants {a, b and 3 
variables {x, y, z}. 

Theorem Proving: AUTOMATED REASONING / 205 



3. Choosing the Weights 

In the previous sections it was shown that the 
formulae of first order predicate calculus and the 
inference rules of a proof producer (viz. resolution) can 
be uniquely expressed in terms of a network. Such a 
network has a particularly simple form, consisting only 
of undirected links between nodes. To relate this 
network to Equation (2), we add real-valued weights at 
the ends of each arc and real-valued thresholds to each 
node. 

Owing to the various constraints, some unification 
nodes or substitution nodes may be forced off. Under 
this circumstance, just the clause structure that 
depends on these should be turned off. Building the 
networks out of AND, OR, and AND-OR nodes 
guarantees that this happens, since the energy 
efficiency of the desired state can be shown to be 
optimal by direct calculation [Ballard, 19861. Thus 
parts that are consistent according to the logical syntax 
form local energy minima. 

T , able 2: (a) Weights and (b) thresholds for filtering stage. (a = (l/2)(0 + e); 

Owing to space limitations, we will omit the proof m = number of instances of a predicate P; n = number of instances of a 
complementary predicate ,P; NC = number of literals in the clause.) 

that the weights and thresholds that we specify 
guarantee the desired behavior. This can be found in 
[Ballard, 19861. Instead, the basic ideas will be 
outlined using Figure 3. The figure shows a 
hypothetical plot of the energy of the network as a 
function of the states. The two most important 
constraints are those that guarantee that: (1) each 
literal has exactly one complement; and (2) the 
substitutions are consistent. These are to be weighted 
so that violating them incurs very large penalties. 
Remaining states that satisfy them are defined to be 
admissible states. These are weighted so that the more 
of the network structure that can be turned on, the 
better. The global minimum of the network is simply 
the admissible state with the most clause structure. 

E 

A 
(4 

&v LL 

EH 

&v -k* -k* * between appropriate 
pairs and triples 

ww -k* -k’ 

states b 
states 

admissible state with 
most clause structure 

Figure 3: Hypothetical plot of energy vs. states 
showing desirable network propertIes. 

The complete summary of weights is shown in Table 
2. From this table, it is not intuitive how these weights 
function. To help overcome this problem we classify 
the nodes into three types, AND, OR, and AND/OR, as 
shown in Figure 4. All of the node types will have 
negative thresholds: AND nodes will have a threshold 
that must be less (in absolute value) than the sum of all 
the arc weights but greater than any subset of arc 
weights; OR nodes will have a threshold that is less 
than any of the arc weights; an AND-OR node may be 
constructed if the sum of the OR arcs is equal to the 
value of the weights on the AND arcs, assuming that 
the latter are all identical. 

4. How It Works 

Consider the set of clauses {P(a), P(b), P(c), lP(x), 
lP(y)}. The network for this example is shown in 
Figure 5, with the weights and thresholds chosen 
according to Table 2 with 8 = 1. To understand the 
example, note that if there are m instances of a literal 
P and n of its complement in different clauses, then: 

1) for the P node there will be m OR connections; 

2) for the -P node there will be n OR connections; 

3) for each fragment node related to P there will 
be n OR connections; 

4) for each fragment node related to 1 P there will 
be m OR connections. 
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At the beginning of stage two the filtering process 
has pruned the network so that only portions with 
consistent substitutions are left in the on state. 
Therefore in the resolution process there is no need to 
recheck the substitutions since they are known to be 
consistent. For this reason, the substitution network 
may be ignored. It is removed from the computation 
and the threshold on the unification node is adjusted 
accordingly. 

The thresholds on the clauses are now lowered 
(remember that they are negative) to the point where 
they are each greater in absolute value than the 
weights from the clause fragment link. This means 
that it is now profitable to turn the singleton clause 
nodes off. Ideally, this should cause other nodes to be 
turned off as well. If the entire network can be turned 
off, a proof by unit resolution exists. [Ballard, 19861 
elaborates on this point. The one case where the 
network cannot be turned off is where there is a loop, 
e.g., clfufcgfufclfufcl. The energy of a loop is negative, 
whereas the energy of all nodes in the off state is zero, 
so it is never profitable to turn off the nodes in a loop. 
The main change to the weights is to leave out the 
substitution network and make each clause node an OR 
node with threshold W2. 

5. Summary and Conclusions 

The implementation of the first order logic 
constraints results in two coupled networks: (1) a 
clause network that represents the clause syntax; and 
(2) a binding network that represents the relationships 

.5(1 +e) 

AND .5(1 +c) 

.25(1 +E) 

OR .5(1 +E) 

AND-OR 

Figure 4: AND, OR, and AND/OR nodes. Numbers 
inside tokens are thresholds (that appear next to the 
tokens in Figure 5). Epsilon is a small positive number 
required for correctness [Ballard, 19861. 

between terms in different clauses. The method for 
resolving bindings, unification, can be as complex as 
the entire inference mechanism. Thus for the purposes 
of computing eficiently, we would expect the actual 
bindings in the knowledge base to have a simple 
structure. 

At the outset, the possibility of reusing clauses was 
ruled out, but there are some limited cases that can be 
handled. To see the necessity of reusing clauses, 
consider {S U ‘W) = {dW, wP( b), c3: -P(x)&(x), 
~4:7Q(a)7Q(b)}. This can be handled by resolution in a 
straightforward way. The resolution tree is: ((cl, cg), 
((~2, c3), ~4)). However, note that c3 appears twice. The 
consequence of this is that since the unification 
constraints do not allow xa and xb simultaneously, the 
network will not pass the filter test. To handle this 
case we note that both possibilities for cg involve 
constant bindings. Thus we can resolve this by making 

two copies of c3: -p(a)Q(a) and -, P( b)Q( b). Once this is 
done, the inference mechanism will find the proof. 
However, this is not a very elegant strategy. As noted 
by Josh Tenenberg, if cg were -P(X)&(Y) one would 
need four copies, +(a)&(~),~ lP(a)Q(b), ~P(b)Q(a), 
Tp( b)Q( b), and in general a clause with k literal% each 
with a different variable, would generate kNC 
possibilities, where NC is the number of constants. 

The main intent of this paper has been to provide a 
new look at formal inference mechanisms from the 
standpoint of performance. Our contention is that 
models that do not have a parallel implementation are 
unlikely candidates for models of human inference. 

-.66 

Figure 5: Network for {P(a), P(b), P(c), -P(x), -P(y)}. Epsilons omitted. 
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This realization may prove catalytic for approaches 
that try to unify the complementary goals of 
competence and performance. The technical 
contribution of this paper is in the detailed 
specification of a network inference mechanism. The 
network runs in parallel and can handle obvious 
inferences in first order logic. We have described how 
the problem of proving theorems or making inferences 
of the form S b W can be reduced to two sequential 
network optimization problems. The first checks the 
formulae for the constraints defined in Section 2 and 
settles in a state where each literal instance has a 
unique complement. The second minimization is 
equivalent to a unit resolution proof. If a proof by unit 
resolution exists, it will be manifested as a global 
energy minimum. While no computer simulations 
have been done, the proofs provided in [Ballard, 19861 
show that the problem reduction works. The stable 
states of the two optimization problems are just those 
desired. 

The reduction of theorem proving to energy 
minimization is an important step, but much 
additional work needs to be done. At present, the one 
convergence proof available [Geman and Geman, 19841 
does not provide an encouraging estimate on the 
running time of such algorithms, and simulations that 
have been done give varying results for different 
problems. Algorithms that require global minima are 
still comparable to conventional approximation 
techniques [Johnson et al., 19841. However, studies of 
the Traveling Salesman problem using analog 
processing units have shown that good solutions can be 
found quickly [Hopfield and Tank, 19851. These 
encouraging results are a source for some optimism: 
perhaps in the case of inferences, if a measure of good, 
average performance is used instead of the classical 
best-, worst-case performance, these algorithms will 
exhibit behavior closer to the Traveling Salesman 
result. 
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