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ABSTRACT 

This study sets out to establish a unified framework for causal and plausible 
reasoning. We identify a primitive set of causal roles which a condition may 
play in the inference. We also extend Dempster-Shafer theory to compose 
the belief in conclusion by the belief in rules and the belief in conditions. 
The combined framework permits us to express and propagate a scale of 
belief certainties in the context of individual roles. Both the causation 
aspect and the certainty aspect of an inference are now accounted for in a 
coherent way. 

I INTRODUCTION 

Inference rules, as a primitive for reasoning in expert systems, contain two 
orthogonal components: the inference nature (i.e. what merits the conclu- 
sion and how is it warranted?) and the inference strength (i.e. how much is 
the conclusion supported - almost for certain, or weakly so?). The two 
inference components have largely received separate attention. To account 
for inference strengths some researchers resort exclusively to various ‘likel- 
ihood calculi* ’ without causal provisions. Others, aiming to explain the 
inference nature, endorse symbolic rules without any likelihood mechanism 
(e.g. [Cohen 831). There are also some other researchers who employ a 
hybrid approach (see [Szolovits 781). 

The problems with these rule representations are as follows: symbolic rules 
without likelihood cannot represent inference strength; likelihood rules 
without a causal account cannot distinguish inference nature; and hybrid 
representations to date are either piecewise (using separately one of the two 
methods in each rule) or ad hoc (lacking a sound theoretical ground for the 
likelihood calculus). In brief, the non-numerical approach errs on the weak 
side, whereas an exclusive likelihood calculus suffers from superficiality. 

The goal of this research is therefore to combine causal and plausible rea- 
soning in a coherent way. There are two aspects to this goal: identifying a 
primitive set of causal categories named roles, and extending plausible rea- 
soning under these qualitatively different roles. 

II RELATED WORK 

A. Non-likelihood Symbolic Approaches 

Endorsements are the explicit construction of records that a particular kind 
of inference has taken place (e.g. the imprecisely defined supportive condi- 
tion may be too specific for the conclusion [Cohen 83, ~1331). There are 
many different kinds of endorsement, corresponding to different kinds of 
evidence for and against a proposition, However, elaborate heuristics do 
not overcome the general problem with pure symbolic reasoning: they err 
on the weak side after all. 

Categorical inferences are “ones made without significant reservations” 
[Szolovits 78, ~1161: IF <condition> THEN commit <decision>. A strong 
causal inference, in our term, is just a categorical one with an explicit 
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causal account: e.g. <condition> IS-SUFFICIENT-FOR <decision>, <con- 
dition, IS-NECESSARY-FOR <decision>, <condition> EXCLUDES 
<decision>, etc. Being simple to make, such categorical decisions usually 
depend on relatively few facts [ibid., ~1171. Unfortunately, for reasons all 
too obvious, reasoning exclusively by (strong causal) categories finds lim- 
ited applications only. 

B. Numerical Likelihood Approaches 

The Certainty Factor (CF) model [Shortliffe 761 attaches to each inference 
rule a CF representing the change in belief about the concluding hypothesis 
given the premised evidence. The actual formulae in the CF model are 
immaterial to our discussion, for they share the same following problems: 
these formulae derive from no where, and the CF model in itself does not 
deal with partial evidence bearing on multiple hypotheses. 

Bayes nehvorks (a term used in [pearl 851) refer to directed acyclic graphs 
in which the nodes signify propositions (or variables), and the strengths on 
the linking arcs represent the (Bayesian) conditional probabilities. Bayes 
networks include the “inference network” in PROSPECTOR [Duda, Hart, 
et al 761 as an important variation. These networks largely employ (varia- 
tions of) Bayes’ rule as the inference mechanism, therefore those usual 
issues in Bayesian theories [Chamiak 831 are raised: the excessive number 
of conditional probabilities, the assumption of pairwise conditional 
independence as a device to escape from the preceding problem, and how to 
deal with partial evidence bearing on multiple hypotheses. 

1. Dempster-Shafer Theory 

There are two distinguishing advantages of Dempster-Shafer theory as a 
‘likelihood calculus’ over Certainty Factors and Bayes Networks: it is able 
to model the narrowing of the hypothesis set with the accumulation of evi- 
dence; it permits us to reserve part of our belief tti the ‘don’t-know’ choice 
(a degree of ignorance). 

Suppose probability judgements are required for possible answers to a par- 
ticular question. These possible answers form a set namedframe of discern- 
ment. To provide supporting evidence, a ‘related’ question may be asked so 
that the established probabilities of the answers to this related question will 
shed light on those to the original. The set of answers to the related ques- 
tion forms a backgroundframe of discernment; correspondingly the original 
frame may be referred to as the foregroundframe. The ‘inter-relatedness’ 
between the two questions is manifested by that not every answer in the 
background frame is compatible (i.e. logically consistent) with all the 
answers in the foreground frame. Furthermore, commitment of belief to an 
answer in the foreground frame can be counted as reason to believe it by 
the sum of probabilities of all the compatible answers in the background 
frame. 

Example 1. (Originated from [Zadeh 84, p81]) Suppose Country X believes 
that a submarine, S, belonging to Country Y is hiding in X’s territorial 
waters. The Ministry of Defense of X wants to evaluate the possible loca- 

* ‘Likelihood’ in this context refers in general to such formalisms as Certainty Factors, 
Probability, and Belief Functions (Plausible Reasoning). 
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tions of S. A group of Navy experts, E I,..., EM, are summoned; each of 
them indicates an area which he believes S is in. Let A 1,..., A, denote the 
areas indicated by the experts E r,..., EM individually (I I M). Assume 
that there are also certain experts who, being ignorant in this case, cannot 
indicate any specific area. Now suppose the Ministry of Defense aggregates 
the experts opinion by averaging: the vote of E,,, is multiplied by a number 
w,,OIw,,,Il,suchthatw,+ ..a + w, = 1. Then the reason to believe 
in an area Ai is counted by a so-called basic probability assignment (bpa) to 
Aj:m(A,)= x w,, where E,,,:+A, &notes that the expert E, votes for 

E-:-d, 
the area Ai. Similarly the amount of ignorance is measured by a bpu to the 

I I 
entire territorial waters UAi : m LJAi = C w,,, . 

i=l 1 1 i=l I 

Em:+gA, 

Stated formally, let eb and @3, be the background and the foreground 
frame of discernment respectively. Between &. and e,, the element-subset 
compatibility relation is denoted by ‘:+‘. More specifically, b :+F denotes 
that b is compatible with all the elements in F, and there is no other super- 
set of F being such, where b E 9, is an item of supporting evidence in the 
background and Fcef is the ‘maximum supported subset’ in the fore- 
ground. Such an F is called afocal element. Then the commitment of belief 
to F, namely a basic probability assignment (bpu) to F, is counted (as rea- 
son to believe) by 

m(F)= x P(b) 
b :-PF 

(1) 

where P(b) is the background probability judgement over b E @,. It is easy 
to see that (1) m(0)=0, and (2) C m(F)= 1. In addition, rn(ef) >O 

FM, 
represents the degree of partial ignorance. When all the focal elements (as 
supported subsets) are singletons, the basic probability assignment m 
reduces to a Bayesian probability. 

III BELIEF CERTAINTY IN FACTS AND RULES 

This section discusses how to represent belief certainty in the knowledge 
base. The knowledge base is first divided into (unconditional) facts and 
(inference) rules. They will be attached with basic probability assignments 
as commitment of beliefs. The role system, to be introduced later, can then 
be viewed as additional causal structures imposed on generic inference 
rules. 

A. Factual Certainty 

To begin with, we represent an unconditional fact by its canonical form: X 
is F. For instance, Cur01 has a young daughter is represented by 
AGE(DAUGHTER(Curo1)) is YOUNG. The belief in “X is F” can usually 
be represented by an interval [vt,vJ. v1 expresses the extent to which we 
confirm “X is F” by the available evidence, whereas va express the extent 
to which we disconfIrm it. 

There are two advantages of using an interval rather than a single qualifier. 
First, information incompleteness (or partial ignorance, measured by 
I-(v,+v,)) is separated from uncertainty (expressed by v1 or v2 alone). 
Second, information absence (indicated by [0, 01) is represented differently 
than negation (expressed by [0, 11). 

If several pieces of facts are related by mutual exclusion, a frame of dis- 
cernment can be formed. Then the degree of confirmation in each proposi- 
tion is simply its basic probability assignment. In view of this frame of dis- 
cernment, any independent proposition and its negation are included in a 
frame by themselves. Such frames are called dichotomous frames. Then the 
belief interval amounts to a concise representation for the (&fault) dichoto- 
mous frame. 

B. Rule Certainty available for the conclusion. 

A central issue in evidential reasoning is how to represent uncertain rules. 
Bayesian probability expresses uncertain rules by the conditional 

probability Prob (h I e ), then concludes the hypothesis from uncertain evi- 
dence: P (h I E’)=v (h 1 ei)P (ei I E ‘). In the original Dempster-Shafer 

theory, however, the counterpart procedure is missing (in spite of the “con- 
ditional belief function” Be1 (h I e ) defined in [Shafer 761). 

To remedy the problem, this study follows [Ginsberg 841, [Baldwin 851 and 
[Yen 851 to extend the original Dempster-Shafer theory, but a different 
approach is taken. In practice, our approach differs from [Ginsberg 841 and 
[Baldwin 851 in that it takes into account those frames of discerment more 
general than the dichotomous ones (those which include only two proposi- 
tions); our approach differs from [Yen 851 in that it is based on associa- 
tional strengths more general than the ‘partition-based conditional probabil- 
ities’. Additionally, in methodology our approach differs from all previous 
ones in that it relates to the fundamental compatibility relation with the 
background frames. As a result, we can derive, not define, the extension 
theory. Examples comparing these approaches are given below. 

The following two paragraphs define the terms needed for the extension. 
Their mathematical relations are then expressed below. 

An inference rule of the form Ai3C, in general may have either the 
antecedent Ai or the consequent Cj as sets (rather than singletons) of some 
elements. *This is especially true for hierarchical narrowing of the 
hypothesi; 6 set, e.g. 

evidence $DISEASE is HEPATITIS, DISEASE is CIRRHOSISJ. 
Therefore we assume in general Ai={uk I u,EAiJre, and 
C,={c, I c/E Cj} ~$3,. e, is the antecedent frame of discerment containing 
all possible uk’s, and 8, is the consequent frame of discerment containing 
all possible cl ‘s. In addition, there is a condirionul frame of discernment 
0 c1A Containing all possible pairs of cl given Ai’S. An inference rule 
Aj +Ci can then be viewed as a subset, {cl given Ai I cI E CjJ, of e,, A. 

To provide a basis for the basic probability assignments over e,, e,, and 
8 clA, certain background frames as the supporting evidence have to be 
assumed. Let @‘=={a’,} be the background of &={a~, 6’=={c’J be the 
background of &={cJ, and 8’ c~A={~ ‘,, given AiJ be the background of 
OcJA={cI given AiJ. To prevent confusion, 8’, is called the background 
antecedent frame, and 8, the foreground untecedeti frame. Similarly @3’, 
is referred to as the background consequenrfiume; 8, the foreground con- 
sequent frame. And @,,A and eclA the background conditional and the 
foreground conditional frames respectively. 

According to (l), a basic probability assignment to the foreground 
antecedent Ai measures the ‘reason to believe’ Ai by compatible evidence 
in the background: 

m(AilE’)= C P(a’,,,lE’) where Ai s&, and u ‘,,, E 8’, (3) 
a’.:+A, 

where E’ denotes the source of observation. In analogy, a conditional bps 
can be defined to measure the ‘reason to believe’ the conditional proposi- 
tion Ci given Ai (corresponding to an inference Ai~C,): 

m(Cj IAi)‘Im(jclJ IAi)tm(jcl given AiJ) 

= c P(C’nIAiI where c’,E@‘~ , c~E~,c@,,A,G~~ 
c I. : -c,={c,} 

(4) 

Actually, background probabilities P (c ‘, ) E ‘)‘s can also determine directly 
the bpu to a foreground consequent Cj: 

m(CjIE’)= C P(c’,,lE’) 
C’A-C, 

where C,&,, and C’“E @3’, (5) 

Butthegoalistoexpressm(CjIE3intermsofm(CiIA,)andm(A,IE’). 
The rationale is similar to the Bayesian conditioning procedure 
P (h I E ‘)=Cp (h ] ei)P (ei ( E ‘). That is, there may not be direct probabilities 

Example 2 (Continuedfrom Example I): Suppose the Ministry of Defense 
of Country X attempts to conjecture the intention of S based on its locations. 
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Assume that these conjectures are made in the form of inference rules: 
Ai+C’i, signifying that S cruising in Area At suggests Conspiracy Cj of 
Country Y. Suppose the Ministry relies on those Navy experts as in Exam- 
ple 1 to evaluate the possible locations of S, but calls the Intelligence 
Agency for a confirming history of activities, c’t, . . . . or c’,v, in each of the 
areas A 1, . . . . A,. Assume furthermore that each of these local history 
reports, c’, within At, is weighted by vti such that Cvti = 1 for each i. 

Then the bpu to a foreground antecedent, m(Ai ) E ‘L is x w, as in 
Em:+.4 

Example 1, whereas a ~~nditiod bpu, m(Cj IA;), is determined by 
m(CjIAt)= z Vi . In above, the weight vti approximates the condi- 

c’.:-+c, 
tional probability P (c’” \A,), and c ‘n:+Cj signifies that the activity history 
c ‘, confirms the conjecture Cj . 

Recall that the goal of the Ministry was to evaluate the reason to believe 
each conspiracy Cj, which is measured by m (Cj 1 E ‘) = z P (c’,, I E ‘). 

I . 
However, short of a direct history on P (c’, I E’)‘s, thec6G& seeks to 
express m(Cj\E’) in terms of m(CjIAi, and m(AiIE’). TO this end 
Theorem 1 provides an answer below. Two lemmas are first established. 

Lemma 1. For each u ‘,,,E 9’a and At~9, such that u ‘,,, :~A,, the follow- 
ing property holds: 

P(Ai lu’mE’)= 1 

Lemma 2. For each a ‘,,,E 8’, and Ai&, such that a ‘m:+Ai, if 
P (c’,, IAt) = P(c’, IAiUbE’) for certain c’,,E~‘~, then the following pro- 
perty holds: 

Theorem 1. (Propagation of Beliefs) In an inference rule Ai+Cj, if for 
each background antecedent a ‘,,, that SUPERS At, and each background 
consequent C’” that supports Ci, the equality P(c’,IAi)=P(c’,IAiU’,E? 
holds,thenm(CiIE> z m(CjIAt)m(AtIE’). 

ProoT: the theorem fol$z from (3), (4), (S), and Lemmas 1 and 2. 

It should be noted (I) that this theorem was implicitly assumed in [Ginsberg 

84, ~1261 and [Baldwin 85, ~121; (2) that not only can beliefs in conse- 
quents be composed of beliefs in antecedents and the rules, but also the 
consequent ignorance (i.e. m(e, I E ‘)) can be composed of antecedent 
ignorance (i.e. m@,, 1 E ‘)) and rule ignorance (i.e. rn(ec IAi)). This is 
expressed in the following corollary: 

Corollary 1. (Increasing Propagation @Ignorance) If m (e, I e,>=i (that 
is, without knowing the foreground antecedent, we cannot conclude any 
foreground consequent except for the frame itself), then 
m(e, IE?= Z m(% IAdm(4 lE?+m@, IE’MV% IE’). 

e.4Ge. 

Example 3 (Correspondence to Buyesiun Beliefs): If there is no partial 
ignorance involved whatsoever, and if all the antecedents and the conse- 
quents are singletons (that is, if the beliefs are all classical Bayesian proba- 
bilities [Shafer 76, P451h then Theorem 1 
m(Cj I E’)= C m (Cj I At)m(Ai I E ‘) reduces to the posterior probability: 

A,Ce. 
P (h ] E ‘)= x P (h I et)P (ei I E ‘). In this case, a foreground frame becomes 

&E e. 
identical to its background counterpart. 

Example 4 (Correspondence to Partition-Bused Probabilities [Yen 85, 
~81): If there is no partial ignorance involved whatsoever, and if both the 
antecedents and the consequents (as focal elements) form a partition in the 
respective foreground frames, then Theorem 1 becomes Yen’s extension 
using ‘partition-based conditional probabilities’: 

P tcj IE’F 2 P(Cj IAiY’(Ai IE? (6) 
Are n, 

for each CjE II,, where I&* and II, are partitions of e, and 8, respec- 
tively. 

Examples 3 and 4 have different meanings. The partitioning approach by 
Yen allows hierarchical narrowing of the hypothesis set, although it doesn’t 
account for ignorances, whereas the classical Bayesian approach requires a 
probability assignment to every single element in the beginning. 

Example 5 (Correspondence to ~$otomous Frames [Ginsberg 84, ~1261, 

[Baldwin 85, ~121) Denote by A ‘4 C an inference rule with dichotomous 
consequents. u is the extent to which we believe C given A is true, and b is 
the extent we believe c given the same A. Then Ginsberg’s and Baldwin’s 
work - which really dealt with singleton C’s only - can be summarized by 

[cdl 
E’+A 

Additionally the consequent ignorance, 1-(cu +cb ) 
be identically obtained by m (e, ( E ‘) in cor011ary 1. 

in their calculation, can 

IV THE ROLE SYSTEM 

In an inference rule, the relations between the condition and the conclusion 
are multi-dimensional. They can be causal, or-more often they are associa- 
tional. In some cases the condition-conclusion relationship would be 
affected by other auxiliary conditions. These relationships are all qualita- 
tively different; they need to be treated accordingly. Therefore a primitive 
causal category, namely the role system IJiu 851, is established to account 
for these distinct relations. The role system divides the condition into six 
possible roles (which the condition may play in the inference): ussocia- 
tionul, supportive, udverse, suficient, necessary, and contrary roles. 

A. Associational Role 

A great deal of the surface-level empirical knowledge belongs to 
ational role. Such an inference rule in general takes the form of 

the associ- 

AU~WCl[m11,C2[mzl, . . . &[mo,l. (7) 

where 8, is the consequent frame of discernment, Ci’s L 8, are focal ele- 
ments as the alternative consequents, and mi ‘s are corresponding condi- 
tional bpu’s given that A is true. That is, mi=m (Ci (A ) as defined in (4). 
Most Often the consequent frame is dichotomized so that C & is the only 
focal element other than Cr and ec itself. In this case (7) may be abbrevi- 

ated as in Example 5: A As-W C r where m r and m 2 are the extent to which 

we believe C and C when A is true. 

The inference making with an uncertain antecedent in (7) is a straightfor- 
ward application of Theorem 1. Examples will be given along with the fol- 
lowing supportive roles. 

B. Supportive and Adverse Roles m-- 

Supportive and adverse roles may take place with an associational role. 
However, they are of secondary importance in the inference rule. That is, 
when a supportive (or adverse) condition is confirmed in addition to the pri- 
mary associational role, the conclusion will be better (or worse ) warranted 
- but the supportive or adverse role by themselves do not make a meaning- 
ful rule. 

Example 6 (Supportive Role from @ich 83, ~3491) 
‘Close to half’ (40%) of the animals use camouflage as the defense mechan- 
ism. But those animals with colors similar to the environment are ‘much 
more liable’ (e.g. 80% of them) to defend themselves by camouflage. 

Example 7 (Continued from Example 6. An Adverse Role) 
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Those animals with colors di$erent from the environment tend not to (e.g. 
only 10% of them will) defend themselves by camouflage. 

1. General Form 

The general form of an inference rule with a supportive role is 

A~~~Cl[m,l,Cz[m2],...9~[me.l where mi=m(CjlA) (8) 

Supported by: 
A’~s~~Cl[m’lll,Cz[m’~ll. - - * ~,[~8,11 where m’jl*(Ci IAA’,) 

~‘mS~~~~~~‘~ml,~~~~‘~ml,~ - * %[m~J whf32 m’i,a(Ci IAA’,) 

where A ‘j 'S are alternative focal elements over the supportive frame of dis- 
cemment 9,#. 

Suppose E +A [m (A 1 E)] from previous inferences. If in addition it is 
known that E’~A’,[m,;l~“,[m,;l, * * - %[me,,l where 
m,, Si=m (A ‘j I E ‘), then for each EE ‘,;;t,Ci the bpa m (Ci 1 EE ‘) may be cal- 

culated from Theorem 1 and (8) as follows: 

m(CiIEE’)= C m(CiIAA’j)m(AA’jIEE’) (9) 
A’,s’% 

=m(CiIA)m(AIE)[l- C m(A’j IE’II 
A’,c {A’,,..A’J 

+ c m(CiIAA’j)m(AIE)m(A’jIE’) 
A’,E{A’,,.A’J 

2. Examples Reformulated 

Rule 1 (Ref;~~t$ing Example 6): 

(animal ?x) ijW (defense-by ?x camouflage) 

Supported by: 
[O.S, 0.11 

(color x ?c) A (habitation x ?y) A (color ?y ?c’) A (similar ?C ?C') s-+P 

(defense-by x camouflage) 

Rule 1’ (MF;$,i;8 Examples 6 and 7): 

(animal ?x) M-X (defense-by ?x camouflage) 

Supported by: 
[O.S. OS] 

(color x ?c) A (habitation x ?y) fi (color ?y ?c’) A (similar ?C ?C') & 

(defense-by x camouflage) 
[O.l, 0.81 

(color x ?c) A (habitation x ?y) A (color ?y ?c’) A (different ?c ?c’) + 
SUPP 

(defense-by x camouflage) 

For illustration, consider the situation in which (animal x) is matched. If 
any of the supporting properties (color x c), (habitation x y), (color y c’) or 
(similar c c’) is unknown, then all that can be concluded is (defense-by x 
camouflage) with [0.4,0.6] by virtue of the generic unsupported rule. How- 
ever, if (animal x) A (color x c) A (habitation x y) A (color y c’) is known, and 
furthermore m (similar c c’)=O.7 and m(different c c’)=O.2, then more 
specific conclusion can be made. 

According to (9), Bel(defense-by x camouflage) = m(defense-by x 
camouflage) in Rule 1’ can be calculated by 
m[(defense x camouflage)lEE 7 
= m[(defense x camouflage)](animal x)] 

* (1 - ml(similar c c’)lE ‘I - m[(different c c’)lE ‘I) + 
m[(defense x camouflage)l(animal x)..(sinular c c’)] . m[(similar c c’)lE ‘I + 
m[(defense x camouflage)l(animal x)..(different c c’)] . m[(different c c’)lE’l 

= 0.4 . (1 - 0.7 - 0.2) + 0.8 . 0.7 + 0.1.0.2 = 0.62 

By the same token, m[(defense x camouflage)lEE 1 in Rule 1 is 

0.4 . (1 - 0.7) + 0.8 * 0.7 = 0.68. Similarly Bel[NOT (defense-by x 
camouflage)] = m[NOT (defense-by x camouflage)] can be obtained 0.25 in 

Rule 1 and 0.29 in Rule 1’. 

C. Sufficient Role -- 

A condition plays a sufficient role if the confirmation of the condition alone 
warrants the conclusion. The typical usage of such sufficient roles is to 
facilitate the inference process of Modus Ponens. In the knowledge base a 
sufficient role may take place at a deep causal level: 

Example 8 lpatil81, ~8941 
traintes tin al fluid. 

Diarrhea causes the excessive loss of lower gas- 

Alternatively, a sufficient role may take place on a surface, empirical basis. 
Consider in assessing the future market of a computer product, the execu- 
tive might have this rule of thumb: 

Example 9 If IBM commits itself to a five-year purchase contract totalling 
multi-million in revenue, then we should go for making the product. 

h 01 
The general form of a rule with sufficient conditions takes the form AssFC 

where m as the bpa of C conditioned on A must be close w 1. The infer- 
ence making of such sufficient roles under uncertainty is simply a special 
form of Example 5 (which follows from Theorem 1): 

“,C 
k 41 

E’+A 
[cm ,Ol 

E 3 

Note that when belief in the antecedent is severely discounted 
role will effectively become a different associational role. 

the sufficient 

Rule 2 (Examples 9 reformulated): 
(has-contract-with ?target) A (is ?target ibm) A (contract-worth multi- 
r$$n) A (contract-span about-or-at-least-s-years) A (contract-for ?product) 

s-$ (support ?product) 

D. Necessary Role 

A condition plays a necessary role if the disconfirmation (or lack of 
confirmation, depending on cases) of the condition enables us to refute the 
conclusion. In classical logic a necessary role would facilitate the inference 
rule of Modus Tollens. In semantic-rich domains, however, there are two 
types of necessary roles: the strong necessary role and the weak one. The 
strong one refers to those conditions whose lack of confirmation suffices to 
refute the conclusion (the condition doesn’t have to be directly disproved), 
and the weak necessary role refers to those conditions which must be 
disproved in order to disprove the conclusion. 

Example 10 (Strong iVecessury Role) A suspect claiming an alibi needs to 
have a wimess. In this case, a witness is the strong necessary condition for 
claiming an alibi. This is because, short of a witness taking the stand (lack 
of proof), the suspect cannot effectively hold his claim (the claim being 
refuted). Stated formally, the prosecutor has: (has-witness ?suspect) IS- 
STRONG-NECESSARY-FOR (has-alibi ?suspect), and he will conclude 
(NOT (has-alibi ?suspect)) on the basis of (NO (has-witness ?suspect)). 
(Note that ‘NO’ implies lack of evidence, whereas ‘NOT’ implies a nega- 
tion.) 

Example 11 (Weak Necessary Role) The employer may require its employ- 
ees to demonstrate a job competence in order for them to continue to be 
employed. Then we have: (competent ?employee) IS-WEAK- 
NECESSARY-FOR (continue-to-be-employed ?employee). This is 
because the employer must confirm (NOT (competent ?employee)) in order 
to determine (NOT (continue-to-be-employed ?employee)); it is not 
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sufficient to just have (NO (competent ?employee)). 

The general form of the rule with a strong necessary condition is: 
b,Ol- 

(NO A)s+cC whereas the weak necessary counterpart takes the form: 
Y m.Ol- 

(NOT A )wzcC where m as the bpa of F again must be close to 1. In addi- 

tion, to su 
m(N0 A)=l-m(A) 2 m(NOT A)!m(A), and m(NOT (NO A))L’=m(A). !i 

port NO’s and NOTs as difkrent forms of negation we define 

To support uncertain inference making, we rewrite Example 5 to obtain 
[c,dl 

E’+A 
b $4 - 

(NO A lrn&C 

Nl-cb,Ol- 
E’ + C 

SNEC 
Rule 7: PENGUIN(x) v OSTRICH(x) + NOT FLY (x ) 

coTol 
Rule 8: OIL -COVERED (x ) v DEAD (x )co~~N0T FLY (x ) 

[0.7,0.2] 

and 

[cdl 
E’-+A 

[a,01 - 
(NOT A )--+cC 

[&PO1 - 

E’w&c 

1. DUCK(x) then “see Rule 10” 
2. “to be added as encountered” 

Rule 9: FOWL(x) As-x NOT FLY(x) 

Unless: 

Rule 3 (Reformulating Exam iltl 10): 
P. 

(NO (has-witness ?suspect)) s-+c (NOT (has-alibi ?suspect)) 

Rule 4 (Reformulating Example 1lJ: 
1 &Ol 

(NOT (competent ?employee)) W-+c (NOT (continued-to-be-employed 

?employee)) 

E. Contrary Role 

A contrary role is an excluding condition. In other words, the contirmation 
of this condition will exclude the conclusion. In many cases a contrary con- 
dition is just the complimentary view of a necessary condition. (The choice 
is largely a semantic one.) For instance, in Example 11 we could have esta- 
blished: 

Rule 5 (See Rule 4): 
P9,Ol 

(incompetent ?employee)) co+m (NOT (continued-to-be-employed 

?employee)) 

V THE INCLUSION OF EXCEPTION ROLE’S 

Inference rules as empirically acquired are often times defeusible (vulner- 
able) when exceptional situations present themselves. A cliche example is 
birds can j?y (a &feasible rule) but ostriches cannot (an exception that 
defeats the rule). These exception conditions may be included as exception 
roles in the role system. Belief functions can then be used to account for 
plausible exceptions. 

Defeasible rules have been the focal subject in ‘non-monotonic reasoning,’ 
e.g. FIcDermott 801 and [Reiter 801. However, none of the non-monotonic 
logics based on classical Predicate Calculus can express the rule defeasibil- 
ity as a natural matter of degree (e.g. how likely the rule is to be valid). To 
remedy the problem, [Rich 831 and [Ginsberg 841 employed likelihood for- 
malisms to express the belief tendency, but Rich’s Certainty-Factor basis 
was ad hoc in itself, and Ginsberg seemed to have diffused the tight rule- 
exception association when he shielded rules from exceptions and 
represented the latter as retracting meta rules. Also this meta-rule approach 
appeared to be ad hoc at partial retraction of earlier conclusions. For exam- 
ple, what is precisely meant by partial retraction? 

The focus in this study will not be global issues of logic, but the local 

representation of defeasible rules. To this end, we propose to include an 
UNLESS clause as the exception role in an inference rule. Then the 
antecedent infers the consequent in the absence of underlying ‘unless’ 
clauses. If one of the ‘unless’ condition becomes satisfied (i.e. an excep- 
tional situation takes place), the default rule is defeated and a new rule will 
be in place. 

[0.9,0.021 
Rule 6: BIRD (x )mU~xmFLY (x ) 

Unless: 
1. PENGUIN(x) then “see Rule 7” 
2.OSTRICH{x) then “see Rule 7” 
3.OIL-COVERED(x) then “see Rule 8” 
4. DEAD(x) then “see Rule 8” 
5. FOWL(x) then “see Rule 9” 
6. “to be added as encountered 

w% 01 

For illustrative purpose, suppose BIRD(Slinky) and EDIBLE(Slinky). Sup- 
pose also that it is not known directly whether ~~~kV$[Slinky) or not, but the 

following inference can be made: EDIBLE (x ) iji FOWL (x ) Then what 

can be said about FLY(Slinky), considering the exception predicate FOWL? 

First, infer Slinky’s liability to fly from Rule 6. Second, infer Slinky’s ina- 
bility to fly from Rule 9. Third, combine the previous two results and reach 
the overall conclusion, which 
[Be1 (FLY (Slinky)), Be1 (NOT FLY (Slinky))] = [0.55, 0.361. The actus 
calculation goes as follows: 

Be1 [FLY (Slinky ) I E ‘E “j 

= Be1 [FLY(Slinky ) I BIRD (Slinky )n(NO FOWL (x))]*Bel [BIRD (x) 1 E’]. 

Be1 [NO FOWL (Slinky ) I EDIBLE (Slinky )]*Bel [EDIBLE (Slinky ) I E “j + 

Be1 [FLY (Slinky ) I FOWL (Slinky )] 

-&l [FOWL (Slinky ) I EDIBLE (Slinky )I.Bel [EDIBLE (Slinky ) I E ‘1 

= 0.9.1*(1 - 0.5).1 + 0.2.0.5.1 = 0.55 

Similarly, Bel[NOT FLY(Slinky) I E’E”J = O.(X?.l.(l- 0.5j.1 + 0.7.0.5.1 
= 0.36 

Although exception roles are useful for inference making, including them 
in the role system is more complicated than other categories of roles. This is 
partly because the fundamental theory is still being developed (e.g. [Moore 
851). Also the dependency-directed backtracking during conclusion retrac- 
tions presents a complex efficiency issue by itself. 

VI CONCLUSION 

The role system manifests the qualitative difference in causations that is 
often overlooked in numerical likelihood representations. In particular, the 
auxiliary nature in supportive roles and the overruling nature in exception 
roles are explicitly represented now. On the other hand, with an extended 
Dempster-Shafer theory, the scale of belief certainties as well as ignorance 
can be expressed and propagated* uniformly in the context of individual 
roles. Study on further usage of the role information during reasoning is 
underway. 

‘The parallel combination of concluding beliefs represents a different issue, which is not 
.covered in this paper. See [Yen 851 for alternatives to the independence assumption in the 

original Dempster’s combining rule. 
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