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ABSTRACT 

It is conventional to apply Bayes' formula 
only to point estimates of the prior probabilities. 
This convention is unnecessarily restrictive. The 
analyst may prefer to estimate that the priors be- 
long to some set of probability vectors. Set esti- 
mates allow the non-paradoxical expression of ig- 
norance and support rigorous inference on such 
everyday assertions as "one event is more likely 
than another" or that an event "usually" occurs. 
Bayes' formula can revise set estimates, often at 
little computational cost beyond that needed for 
point priors. Set estimates can also inform statis- 
tical decisions, although disagreement exists about 
what decision methods are best. 

I INTRODUCTION 

Probabilistic information often comes in forms 
other than point estimates. “It is more likely to 
rain to day than not" is an intelligible statement 
about a probability even though it gives no speci- 
fic value for the chance of rain. The statement is 
also useful as it stands; it helps us decide what 
to wear outdoors. 

A point estimate, e.g. "The chance of rain to- 
day is seventy percent", might be more useful. If 
our weather source doesn't know the precise proba- 
bility, however, then we'd surely rather have the 
"more than fifty percent" estimate than nothing at 
all. We might even be grateful that our source did 
not pretend to have more precise information than 
was actually warranted. 

Such modesty wins no applause from conven- 
tional Bayesians, especially those who work in the 
tradition of Savage. From their vantage, every 
statement about probabilities ought to assert point 
estimates for the events of interest. 

Researchers in artificial intelligence who use 
Bayesian inference have largely adopted the point 
estimate restriction as given. Further, it appears 
that some researchers reject probability methods 
in favor of non-additive belief measures partly be- 
cause they attribute certain shortcomings of point 
estimates to probability estimates in general. 

Freed of the restriction to points, probabil- 
ity estimates can be as expressive as any fuzzy 
possibility. The liberalization of probability 
comes at what is often a modest cost in computa- 
tional effort, and at no cost at all in statistical 

rigor. Bayes' formula still works, the intuitively 
meaningful "relative frequency" interpretation of 
probabilities still holds, and non-point estimates 
retain considerable power to guide decisions under 
uncertainty. 

II QUALITATIVE ASSERTIONS 

One obvious difficulty with point estimates is 
that the analyst simply may not know the probabil- 
ities of the interesting events with much precision. 
Zadeh (1985) cites the commonness of such imprecise 
probability knowledge as the key factor motivating 
a "fuzzy probability". If the analyst is not res- 
tricted to point estimates, however, imprecision 
poses little problem for (crisp) statistical 
inference. 

A dramatic instance of imprecise knowledge oc- 
curs when the analyst is totally ignorant of the 
event probabilities. The conventional, point-bound, 
representation of utter ignorance is to assign 
equal probabilities to each possible "state of the 
world". It is well-known that it's difficult to ex- 
press ignorance consistently by this method when 
there are three or more mutually exclusive states. 

For definiteness, suppose there are three such 
states. Each state is assigned a probability of one 
third. The disjunctive probability of any two 
states (the sum of the two states' probabilities, 
or 2/3) is strictly greater than the probability of 
the third state (i.e. l/3). If the analyst is truly 
ignorant, how does one know that any state is less 
likely than the disjuction of the other two? 

Such problems have led some workers to embrace 
cardinal measures of belief that are point-valued, 
but not additive (Shackle, 1949; Prade, 1985). 
Another answer is to allow the analyst to say that 
the vector of correct state probabilities belongs 
to some set. For ignorance, that is the "vacuous 
set", the set of all probability vectors with the 
right number of states. 

In the general case, where the analyst's know- 
ledge is imprecise, but not so completely imprecise 
as ignorance, the analyst might choose any set that 
is thought to contain the correct vector. We do not 
assume that the analyst has an opinion about which 
member of the set is the right one, only that the 
correct vector is not to be found outside the cho- 
sen set. 

If the analyst's imprecise knowledge happens 
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to involve linear equalities or inequalities among 
the state probabilities, then the resulting esti- 
mate set has a simple and convenient geometry. The 
linear relations define hyperplanes in the proba- 
bility vector space, and the estimate set is the 
intersection of half-spaces bounded by these hyper- 
planes. The resulting figure is a polytope: a con- 
vex set with a finite number of vertices located 
where the hyperplanes intersect. To construct the 
estimate set, the analyst simply enumerates the 
vertices. 

For instance, the analyst may know minimum 
values for the various state probabilities (at 
least some of the minima being positive in the 
non-trivial case). If there are n states, then the 
analyst's know1 edge can be expressed as the n in- 
equalities Pl 3 Ll, P2 3 L2, . . . , Pn 3 Ln. Tf T 
is one minus the sum of the minima (T > 0), then 
it is simple to show that the n vertices are: 

(L1+TiL:2, . . . , Ln), (11, L2+T, . . . , Ln), 
. . . . , . . . . Ln+T) 

Another common kind of estimate is an ordering 
of state probabilities, that is, the n-fold linear 
inequality Pl 3 P2 3 . . . 3 Pn. The seT representing 
this assertion also has fi vertices, which are 

(l/n, l/n, . . . l/n), 
(l/(n-l), .I. , l/(n-l), 0), . . . . 

( 1, 0, l ** 3 0) 

Not all simple probability statements that 
assert linear relationships among the probabilities 
give rise to a small (i.e., comparable to the 
number of states) number of vertices. The number of 
vertices needed to represent probability maxima is 
subject to combinatorial explosion in bad cases. 
E.g., if there are n states and each probability is 
no more than 2/n, t?ien each vertex has rJ2 elements 
equal to 2/n and n/2 elements equal to zero. There 
are C(n, n/T) sucTi linearly independent vectors. 

The information possessed by the analyst might 
vary from state to state; perhaps a point estimate 
for one, a range for another, an ordering among 
others and a bound on the disjunction of still 
others (that is, a bound on the sum of probabili- 
ties, also a linear inequality). The basic proce- 
dure of defining the estimate set by enumerating 
the vertices is the same (and one hopes the number 
of maxima is small, or the maxima are well- 
behaved). 

Although linear relationships are "special 
cases" of the possible probability knowledge, it is 
remarkable how easily they mesh with many common 
qualitative descriptions of the state probabili- 
ties. Nilsson (1986) discusses the construction of 
polytopes from linear relations that arise from 
certain formal logical statements about probabili- 
ties. 

maxima. The breakpoints for such representations 
may be arbitrary (does "almost always" mean P > .8? 
P> .9?), but not obviously more so than the esti- 
mates of membership grades used with fuzzy set 
methods. Freed of the point restriction, probability 
estimates are evidently more useful in the face of 
imprecise qualitative statistical descriptions than 
some workers have believed. 

III BAYESIAN INFERENCE WITH SET PRIORS --- 

Suppose the analyst has chosen a set represen- 
tation for the probability information available 
before observing any evidence. It would be helpful 
if there were some way to revise the estimate later, 
when some evidence has been observed. 

If the analyst knows the conditional probabi- 
lity of seeing the evidence given each of the pos- 
sible states, then the analyst can apply Bayes' 
formula point-by-point to the prior set, making a 
posterior set in the process. If the correct prior 
belongs to the original estimate set, then clearly 
the correct posterior vector is in the revised set. 

That much is self-evident. Point-by-point 
Bayesian revision works, but it is apt to be pro- 
hibitively cumbersome for large prior sets. We can 
lower the computational burden quite a bit if the 
estimate set has a congenial geometry for revision. 
In the discussion to follow, we assume that the 
conditionals are available to us as point estimates. 
We could allow the conditionals to be set estimates, 
but that would obscure the present argument and add 
unilluminating complication. 

As luck would have it, our old friend the poly- 
tope, the hero of the last section, has a congenial 
geometry for Bayesian revision. It turns out that 
if the prior set is a polytope, then the posterior 
set will also be a polytope. The vertices of the 
posterior polytope are the Bayes' formula posterior 
values of the prior set's vertices. For proof, see 
Levi (1980). 

To apply Bayes' formula to a polytope, there- 
fore, one need only find the Bayes' posteriors of 
the prior vertices. As long as the number of ver- 
tices is small, polytope revision is simple and 
cheap. Given that the polytope is also an expres- 
sive geometry, this is a heartening result. 

Polytopes are so gifted that a word of caution 
is in order. Polytopes are not the only convenient 
geometry for Bayesian revision, nor are they the 
only kind of set estimate that can occur in easily 
imagined circumstances. Levi goes too far when he 
offers convex sets as the only defensible geometry. 
A set of discrete points, for example, is not con- 
vex. It isn't hard to imagine cases where the ana- 
lyst knows that the true probability vector is 
either V or W, and no value "in between". Bayesian 
revision of this estimate set is quite efficient. 

Natural language, too, seems rich in lineari- Polytopes are emphasized here because they are 
ties. For example, "Sl is the typical outcome" versatile and convenient, but they are not obliga- 
suggests an ordering in which Pl > Pj for all j. 
Words like "often" "usually" or "almost alway?" 

tory. Restricting the geometry of estimate sets to 
polytopes would be as artificially confining as the 

suggest minima; "rirely" and "almost never" connote point restriction has been. 
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IV ZERO-FREE VERTICES AND CONVERGENCE 

If the prior set contains only vectors that 
have no zero components (for polytopes, if the ver- 
tices are zero-free), then as conditionally inde- 
pendent evidence accumulates, the posterior set 
will converge toward a single point. The asymp- 
totic limit vector has probability one in the cor- 
rect state and zeros elsewhere. This follows from a 
standard result about the ultimate insensitivity of 
Bayesian inference to different zero-free priors 
(see, for example, Jeffrey, 1983). The limiting 
performance of Bayesian updating for set priors, 
then, is comparable to that for point priors. 

Convergence will generally fail to occur if 
the estimate set does contain vectors with zero 
elements. The Bayes' posteriors for such vectors 
will always contain zeros, in the same components 
as the priors' zeros. If the vector is a polytope 
vertex, this will distort the posterior set by 
"tying down" the vertex even if the evidence comes 
to overwhelmingly support one of its zero-valued 
states as true. 

The worst case occurs when the analyst ex- 
presses prior ignorance as the vacuous set, a poly- 
tope whose vertices each have zeros in all com- 
ponents except one. Bayes' inference is fruitless 
in such a case. No amount of evidence (short of 
certain revelation of the true state) ever van- 
quishes initial ignorance. The posterior set re- 
mains vacuous. 

At first glance, this seems to be troublesome. 
Realistically, however, total ignorance about the 
states is rare. We can devise artificial instances 
readily enough, but in the real world, the analyst 
usually knows something about the states. Just to 
name the states typically rules out their having 
a priori zero probabilities, and so eliminates 
vectors with zero components. As a practical mat- 
ter, the analyst is probably willing to assert some 
miniscule positive floor under each state proba- 
bility (Jeffrey makes a similar remark about point 
estimates). 

As has already been shown, the willingness to 
assert positive minima gives rise to a convex set 
whose vertices are zero-free. However modest the 
departure from strict prior ignorance, conditional 
evidence revises the prior set, and asymptotic 
convergence can occur. 

Assertion of small minima also suppresses 
zeros in less drastic circumstances. The vertices 
of an exhaustive probability ordering also have 
zero components, as shown earlier. Even though it 
is no part of the analysts' intention to say that 
some state may be impossible, the zeros will re- 
sist revision as tenaciously as those that arise 
from prior ignorance. The solution is for the ana- 
lyst to assert minima Ll, . . . . Ln in addition to 
the ordering. If each of the minima is less than 
l/n-, then tedious but simple algebra shows that the 
vertices for the combined assertion of an ordering 
and the minima are 

( l-TLi, L2, . . . . Ln), 
( (1-nCLi)/2, (1-CnLi)/2, L3, . . . . Ln), 

( t/n, l/n, .!., l/n) 

In general, it's a good idea to suppress any 
zeros that occur in the estimate set, in order to 
avoid the persistent distortion of posterior esti- 
mates that zeros cause. Asserting minima is often 
the simplest way to do this, and since minima are 
linear relations, they can usually be combined with 
other information fairly readily. 

V IMPLEMENTATION 

The essential AI device for dealing with set 
estimates characterized by a reasonable number of 
points is already in place. It is the ordinary 
Bayesian inference network first proposed for 
PROSPECTOR by Duda, et al. (1976), and developed 
further by many others, notably Pearl (1982). 

Existing networks have two or more exclusive 
events' (point) probabilities attached to each node. 
The links are the conditional probabilities relating 
the events at higher nodes to those at the lower 
(evidence) nodes. 

By convention and practical necessity, the pot- 
ential evidence is resolved into groups of exclusive 
events in such a way that observations from differ- 
ent groups are independent of one another, given the 
states at higher nodes. The geometry of the prior 
estimates at the higher nodes appears to raise no 
new issues for this treatment of the evidence. 

The alterations to the network needed to ac- 
comodate set estimates are straightforward. Where 
the higher nodes now contain a single probability 
vector, in the new scheme they would contain sever- 
al. The amount of calculation needed to update the 
network to reflect any given evidence configuration 
increases linearly in the total number of vectors 
to be updated. 

The extra work can be reduced by the efficient 
handling of intermediate nodes. These nodes contain 
neither the events of ultimate interest nor the 
observed evidence. Rather, their role in the network 
is to aid in its initial construction and to provide 
explanations of the network's "reasoning" as the 
evidence is revealed. These nodes do not contribute 
to the inference itself, and they can be compiled 
out of the network before run time, to be replaced 
by conditional probability links directly connec- 
ting evidence and conclusions (Snow, 1985). The 
explanation function of these nodes can be recovered 
on demand by attaching them distally to the ultimate 
event nodes, where they wait inertly until asked a 
question. 

These comments apply only to the sort of Bayes' 
network that traffics in traditional probability 
estimates. They do not apply to the "influence net- 
works" recently proposed by Pearl (1985). In these 
networks, the structure of the intermediate nodes 
is crucial to the interpretation of the networks' 
outputs. The spirit behind Pearl's proposal seems 
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to be the same as what animates this paper: reten- 
tion of probability as the basis of uncertain infer- 
ence while avoiding the limitations inherent in 
point estimates. 

In any case, set estimates can be manipulated 
by essentially the same techniques that have 
already been widely proposed for point estimates. 
Provided that the number of points needed to repre- 
sent the set is small, the additional cost entailed 
in using sets instead of points can be modest. 

VI DECISIONS 

There are several methods for using set esti- 
mates to inform decisionmaking. The very diversity 
is a hint, however, that no one technique has uni- 
versal acceptance. 

The simplest method is to select a single 
point from the estimate set and to base the deci- 
sion on that single point. Typically, the point 
selected will be the vector that displays the most 
entropy or else the centroid of the estimate set. 
The chosen point is then used in an expected value 
or expected utility analysis to determine the best 
act, or what would be the best act if the chosen 
vector were the right one. This step would usually 
be followed by a "sensitivity analysis" to find out 
whether the choice of an act depends a great deal 
on which probability point is chosen. 

If sensitivity analysis reveals that the final 
decision is pretty much the same regardless of the 
point chosen, then all is well. If not, then selec- 
ting an arbitrary point and acting according to its 
counsel defeats the purpose of working with set 
estimates in the first place. The simplicity of the 
method, however, makes it suitable for "quick and 
dirty" analysis of choices other than the final 
act, e.g. deciding which of several possible ex- 
periments ought to be performed first. 

Other decision approaches involve looking at 
the expected utility of each act for every vector 
in the estimate set. By our earlier assumption, the 
analyst doesn't know which vector is the correct 
one, and so is ignorant about which of the expected 
utilities is the real pay-off for each act. The 
choice among the acts, therefore, can be made using 
any of the popular rules for decisions under pure 
uncertainty. 

Once again, the computational task is simpler 
if the estimate set has a congenial geometry. An 
especially convenient set occurs when the vertices 
of the convex hull of the estimate set are them- 
selves members of the estimate set. This family 
includes not only polytopes, but also discrete 
points and polytopes with all or part of their in- 
teriors removed, 

Several standard decision rules consider only 
the utility values at the hull vertices in such 
cases. The best known decision rule of this kind is 
the linear programming and expected utility cri- 
terion called "mixed strategy maximin". 

If the estimate set has this nice geometry, 
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and we adopt a decision rule that considers only 
the hull vertices, then we need Bayesian updates 
only for the vertices (the proof is a specializa- 
tion of the polytope result discussed earlier). 
If the estimate itself is not a solid polytope, 
then we lose information about how much of the in- 
terior of the posterior set is included in the es- 
timate. This won't affect the final decision, and 
considerable information about the precision of the 
estimate is retained. 

Although the maximin rule has a following, its 
acceptance is far from unanimous, as discussed by 
Lute and Raiffa (1957). Methods for decisionmaking 
under pure uncertainty remain an open research top- 
ic, and with them, methods for choosing an act in- 
formed by a set probability estimate. 

VII THE SAVAGE AXIOMS --- 

The exact nature of the "best" decision rule 
is controversial, but it seems likely that whatever 
rule does emerge will involve some expected utility 
calculation. The "choose a point" and maximin rules 
of the last section both do. 

Savage (1972) has proposed axioms that support 
the conventional point estimate restriction, which 
also appear to tie that restriction to the common- 
nest motivation for the adoption of expected uti- 
lity rules. If rationality (in the sense that ex- 
pected utility rules are rational) demands point 
estimates, and we apply "rational" utility rules to 
"irrational" set estimates, then we court logical 
contradiction. Even if this were not the case, 
Savage's axioms are closely reasoned, widely dis- 
cussed and solidly in the Bayesian mainstream. The 
case for set estimates must include some expla- 
nation of why Savage's prescription is to be 
ignored. 

Savage's first axiom, the complete ordering 
assumption, is the crucial one for the point rest- 
riction (as noted by Smith, 1961). Complete order- 
ing holds that the analyst assigns a specific value 
to each act, even when the analyst doesn’t know the 
state probabilities that govern which outcome the 
act will yield. So, for example, if the analyst 
knows that act A offers either $5, $10 or $20 de- 
pending on whether Sl, S2 or S3 is true, then the 
analyst is assumed to assign act A a specific dol- 
lar value, perhaps $8. The first axiom asserts only 
that an amount like $8 exists, it does not say how 
the assignment is made (why $8 and not $9). In sum, 
the first axiom restricts the analyst to point es- 
timates of value. 

Clearly, this is not the only possible atti- 
tude if the analyst hasn't a clue whether Sl, S2 
or S3 is the true state. The analyst presumably 
would be willing to make an interval estimate of 
A's value (between $5 and $20 inclusive). Absent 
further information about the states, however, the 
analyst might balk at making any stronger, more 
specific assertion about the value of A. 

If the analyst happens to be willing to make 
point value estimates, then the other Savage axioms 
allow us to infer point-valued "judgmental proba- 



bilities" from the analyst's choices. If the ana- 
lyst subscribes to all the axioms, then any claim 
that non-point estimates guide the analyst's 
choices would result in contradiction. 

On the other hand, if the analyst doesn't sub- 
scribe to all the axioms (and we have discussed why 
complete ordering might be denied), then the infer- 
ence about point estimates is unfounded. No logical 
difficulty arises, and the axioms are moot. 

It is worth noting that Savage resorts to axi- 
oms for a reason. A strong restriction (the analyst 
can make only point probability estimates) is to be 
justified by its derivation from other, supposedly 
less restrictive assumptions, In fact, the complete 
ordering axiom (the analyst can make only point 
estimates of value) is on its face as strong and as 
restrictive as the proposition it is called upon to 
justify. 

VI I I CONCLUSIONS 

Many practical problems, e.g. diagnosis, are 
fruitfully viewed as probability inference tasks. 
Here, "probability" means the relative frequency 
with which some event or condition occurs. Although 
the probability estimates may reflect the personal 
opinion of some expert, the goal is typically to 
match as closely as possible the true relative fre- 
quency that prevails in the real world. The loose 
application of the loaded terms "objective" and 
"subjective" sometimes obscures this point. 

The full exploitation of probability methods 
has been hindered by the convention that point es- 
timates are the only way to express probability in- 
formation. Licensing set estimates is not a new 
idea. Objectivist interval estimation, for instance, 
has been in the statistician's tool kit for a long 
time. What may be new is realizing how much well- 
chosen set representations can overcome the sup- 
posed shortcomings of probability estimates. Hap- 
pily enough, set estimates comport well with common 
AI techniques, particularly those based on another 
venerable statistical tool, Bayes' formula. 

Using set estimates to inform decisions re- 
mains a weak spot. The problem of decision informed 
by sets is closely related to decisions under ig- 
norance. Progress on set-informed decisions is thus 
linked to either the invention of new decision 
rules for ignorance, or the elevation of some exis- 
ting rule to preeminence. In the meantime, there is 
no shortage of plausible rules catering to a vari- 
ety of tastes. 
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