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ABSTRACT 

A system capable of performing 
approximate inferences under time constraints is 
presented. Censored production rules are used 
to represent both domain and control informa- 
tion. These are given a probabilistic semantics 
and reasoning is performed using a scheme 

based on Dempster-Shafer theory. Examples 
show the naturalness of the representation and 
the flexibility of the system. Suggestions for 
further research are offered. 

I INTRODUCTION 

It is a Sunday afternoon and your 
fully autonomous car is taking you for a drive. 

Suddenly a truck pulls out into the road ahead 

of you. Your car has 5 seconds to decide what 
to do. If your car were powered by current rea- 
soning technology, chances are it would never 
reach a decision because while trying to deter- 
mine the best course of action it would hit the 
truck, destroying both itself and you. In this 
situation any decision, even a rough guess, is 

better than indecision. What is needed is a sys- 
tem capable of producing the best decision possi- 
ble within a given time limit. 

In any practical reasoning process 
there are extra-logical cost constraints such as 
time and resource limitations which must be 

taken into account. The tradeoff between the 
cost, certainty, and specificity of inferences can 
be used to flexibly adjust to these constraints. 

* Th’ IS work was supported in part by the Defense Advanced 
Research Project Agency under grant N00014-K-85-0878, in part 
by the National Science Foundation under grant NSF DCR 84- 
06801, and in part by the Office of Naval Research under grant 
N00014-82-K-0186. 

Certainty refers to the degree of belief in a 
statement, while specificity refers to the degree 
of detail of a description. The idea of a logic in 
which the certainty of an inference could be 
varied to conform to cost constraints was 
presented by Michalski and Winston [1985]. 
This Variable Precision Logic (VPL) used cen- 
sored production rules to encode both domain 
and control information. The rules take the 
form 

P->D[C 
read If P then D unless C. 

The unless part of the rule is called the censor. 
Censors represent exception conditions and as 
such are considered to be false most of the time. 
Therefore, the determination of their truth 
values is given a lower priority than that of rule 
antecedents. Whereas unlimited resources are 
devoted to checking the antecedents, only a lim- 
ited amount of resources is devoted to checking 
the censors in time critical situations. The 
unless symbol is logically interpreted as an 
exclusive-or operator between the censor and 

the consequent. Thus, given the rule 

Sunday -> Go to the park 1 Weather is bad, 

we can conclude that if it is Sunday and the 
weather is good, I will go to the park; and if it is 
Sunday and the weather is bad, I will not go to 
the park. Formally, 

P,AP,A * - * +D [C,vC,v - - . 

is logically interpreted as 

P,AP,A - - - A-( C,vC,v...)--+D 

and 

P,AP,A ’ ’ - A(C,VC,V...)--D 
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In order to make the exceptions quantitative, 
numerical parameters are associated with each 
rule, representing the strength of inference when 
the truth value of the censor is known and when 
the value is unknown. These values allow the 
precision of inferences to be varied. 

This paper presents a formalization 
of the notion of uncertainty in censored produc- 
tion rules and an implementation of an inference 
system capable of varying the certainty of infer- 
ences to conform to given time limits. 

II FORMALISM AND THEORY 

Uncertain inference in the VPL sys- 

tem is performed using a scheme based on 
Dempster-Shafer theory [Shafer 19761. Domain 
information is represented in the form of rules 
and facts. A fact is assigned a certainty 
represented by a Shafer interval, [s p]. The s 
value indicates the support for a proposition, 
while the p value indicates its plausibility. The 
intervals for A & 1A are related by p(A) = 1 - 
$(-IA). The s and p values can also be thought of 
as the minimum and maximum probabilities of 
the proposition. The amount of uncertainty in a 
proposition is defined as the difference of the 
values. A value of ‘unknown’ is represented as 
the interval [0 l]. Th e value of a conjunction or 

disjunction of facts is calculated by applying the 
formulas for probabilistic product or sum 
respectively to the support and plausibility 
values separately. 

Rules are interpreted as expressing 
conditional probabilities. Beliefs are propogated 
across the rules using an approach similar to 
that employed by Ginsberg [1984] and derived 
by Dubois & Prade [1985]. Suppose we have the 
rule A -> B, where prob(l3~A)~[S,P,] and 

prob(A)EISAPA]. Th en it can be shown that 

prob(B) E [S,S,, I--s,+S,P,]. Now if 
prob(d3 / A)E[S,P,] th en P, = l-S, from which 

it follows that prob(B)EISAS,, l-S,,%]. To use 

this scheme, the certainty of a rule is 
represented by four values: Q p 7 S, where 

a=S,forPAlC->D 
p=S;forPAC->lD 

7= S, for P -> D 
s=S;forP-> YD 

These values are constrained by the following 
restrictions: 

When the value of the censor is known, the 
Shafer interval for the conclusion D is computed 
according to 

s(D) = @‘)[l - p(C)Io 
p(D) = 1 - s(P)s(C)@ 

When the censor value is unknown, the formulas 
are 

s(D) = s(P)a 

p(D) = 1 - s(P)/3. 

Evidence for multiply argued conclu- 
sions is combined using Dempster’s orthogonal 
sum rule. This requires the assumption that the 
evidence events are conditionally independent. 
The formula used to combine two Shafer inter- 
vals is similar to that in [Ginsberg 19841: 

-- 
[u b]@[c d] = l- “_” 

bd 

I-(ad+bc) l-(ad+bc) 1 
The above discussion has presented 

an approximate inference scheme for proposi- 
tional logic, but the VPL system uses a typed 
predicate logic representation. The type infor- 
mation enumerates the elements of a finite 
domain for each predicate argument. In this 
representation, terms containing only ground 
instances are equivalent to propositional logic 
and thus present no additional problems. How- 
ever, a semantics for expressions with free vari- 

ables is needed. Rules of the form A(x,y) -> 

B(x), with an associated certainty [s p] are inter- 

preted as Vx,y p(B(x)lA(x,y)) = [s p]. This is 
essentially a short-hand for listing rules over the 
entire domain of x and y. Similarly, a fact A(x) 
with certainty [s p] is interpreted as Vx p(A(x)) 

= Is PI. 
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III SYSTEM OVERVIEW 

The VPL system consists of six main 
components: the user interface, the parser, the 
knowledge base, the unifier, the inference engine, 
and the rule-base analyzer. The system is 
implemented in Common Lisp and runs on a 
Symbolics 3640. 

The system is designed to be fully 
interactive for incremental rule base develop- 
ment. The user may assert or retract rules and 
facts, define new types and predicates, and make 
queries. Once a rule base is complete, the user 
may perform an analysis of inference times. 
The rule-base analyzer determines for each pos- 
sible query the inference time required for all 
uniform depths of censor chaining. A censor 
chain is a rule chain in the search tree leading 
from a censor. A list of times with associated 
depths for each query is stored in the time data 
base. 

A user query may have an optional 
time limit associated with it, in which case the 
system searches the time data base to determine 
the maximum censor chaining depth which will 
guarantee a response in the requried time. If no 
time limit is specified, chaining depth is unlim- 
ited. The system performs backward chaining 
inference, with possibly limited search depth on 

censors. Inference is performed in two stages: 
search and calculation. The search strategy is 
breadth first and exhaustive. The exhaustive 
search is achieved by generating all consistent 
ground instances of any free variables after 
unification. To satisfy a goal, the system 
searches for a fact which unifies with the goal. 

If none is found, it tries to find rules which unify 
with the goal. If both of these attempts fail, the 
query is given a value of [0 11. During the 
search process, instructions for performing the 
certainty calculations are put on a calculation 

stack. When the search terminates, the entries 
on the calculation stack are evaluated and put 
on a value list. The computation on the bottom 
of the stack corresponds to the user query. 

I-V EXAMPLES 

This section presents two simple 
examples to demonstrate the system’s capabili- 
ties. The first is intended to highlight the 

approximate inference methods. The idea is 
that a bird can fly unless it is a special kind of 
bird such as a penguin or is in an unusual condi- 
tion such as dead. The input file shows domain 
type declarations, followed by predicate declara- 
tions, followed by rules. 

Following the input file is a log of 
some example runs. After the rules are loaded, 
the system is told that tweety is a dead bird, 
from which it concludes that tweety cannot fly. 
Next, changing our certainty in tweety’s death 
changes the certainty in his ability to fly propor- 
tionately. When the system is told that tweety 
may be a kiwi, this information combines with 
the possibility of his death to further decrease 
our belief in his ability to fly. Finally, if tweety 
is neither in an unusual condition nor a special 
bird, he is able to fly. 

type 
(animal (spot rover jane tweety road-runner)) 
(bird (tweety road-runner)) 

pred 
(is-bird (animal)) 
(flies (animal)) 
(is-special-bird (bird)) 
(is-in-unusual-condition (animal)) 
(is-penguin (bird)) 
(is-ostrich (bird)) 
(is-emu (bird)) 
(is-kiwi (bird)) 
(is-domestic-turkey (bird)) 
(is-dead (animal)) 
(is-sick (animal)) 
(has-broken-wing (bird)) 

assert 
((is-bird 8x) => (flies 8x) 

1 (is-special-bird 8x) 

(is-in-unusual-condition 8x) 1.0 1.0 .9 .05) 

((is-dead $x) = > 
(is-in-unusual-condition $x) 1.0 0.0) 

((is-sick $x) = > 
(is-in-unusual-condition 8x) 0.9 0.06) 

((has-broken-wing $x) = > 

(is-in-unusual-condition 8x) 1.0 0.0) 
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((is-penguin 8x) => (is-special-bird 8x) 1.0 0) 
((is-ostrich $x) => (is-special-bird $x) 1.0 0) 
((is-emu $x) = > (is-special-bird 8x) 1.0 0) 
((is-kiwi $x) => (is-special-bird tf;x) 1.0 0) 
((is-domestic-turkey $x) = > 
(is-special-bird $x) 1.0 0) 

Example Runs 

-- Tweety is a dead bird --- 
ENTER Command 
> assert 
ENTER Command or assertion 
> ((is-bird tweety) 1 1) 
ENTER Command or assertion 
> ((is-dead tweety) 1 1) 
ENTER Command or assertion 

0.027635619 seconds elapsed time 

<RESULT> [l.OO 1.001 

The next example is the one 
described in the introduction. It shows the abil- 
ity of the system to vary the depth of censor 
chaining in response to time limits. The input 
file shows rules for determining if a car can stop 
in time to avoid an obstacle based on the condi- 
tion of its brakes and the road. A log of the 

sample run shows the effect of varying the time 
limit. With a censor chaining depth of 1 or less 
the system cannot determine the truth values of 
the road-condition censor and thus uses the 
more approximate version of the rule. 

ENTER Command or make query of system 
> (flies tweety) 
using censor chaining depth of UNLIMITED 
0.103377685 seconds elapsed time 

<RESULT> [O.OO 0.001 

-- reduce certainty in Tweety’s death - 
ENTER Command or make query of system 
> (assert ((is-dead tweety) .7 .8)) 
ENTER Command or assertion 
> (? (flies tweety)) 
using censor chaining depth of UNLIMITED 
0.1013306 seconds elapsed time 

<RESULT> [O.OO 0.3Oj 

--- suspect that Tweety is a kiwi --- 
ENTER Command or make query of system 
> (assert ((is-kiwi tweety) .3 .5)) 
ENTER Command or assertion 

> (? (flies tweety)) 
using censor chaining depth of UNLIMITED 

0.10849539 seconds elapsed time 

<RESULT> [O.OO 0.211 

--- Tweety is healthy and normal -- 
ENTER Command or make query of system 

> (assert (( is in - - unusual-condition tweety) 0 0)) 
ENTER Command or assertion 
> ((I is-special-bird tweety) 1 1) 
ENTER Command or assertion 

> (? (flies tweety)) 
using censor chaining depth of UNLIMITED 

We 
(level (low medium high)) 
(rating (good fair poor)) 
(substance (gravel ice)) 
(place (road ground)) 
(temp-type (below-freezing moderate hot)) 
(looks (shiny rough)) 

pred 
(speed-distance-ratio (level)) 
(can-stop-in-time()) 
(road-condition (rating)) 
(brake-condition (rating)) 
(on (substance place)) 
(temperature (temp-type)) 
(road-appearance (looks)) 
(construction-site 0) 
(sound-of-pebbles-hitting-underside-of-car 0) 

assert 
; rules 
( (- speed-distance-ratio high) => 

(can-stop-in-time) 

1 (road-condition poor) 
(brake-condition poor) 1.0 1.0 .85 .l) 

( (on ice road) = > (road-condition poor) 1.0 0) 

( (on gravel road) => (road-condition poor) .9 .l) 

( (temperature below-freezing) 
(road-appearance shiny) = > (on ice road) .9 .I) 

( (construction-site) 

(sound-of-nebbles-hitting-underside-of-car1 
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=> (on gravel road) .9 .l) 

; facts 
((speed-distance-ratio high) .05 .15) 
((temperature below-freezing) .2 .3) 
((road-appearance shiny) 0 0) 
((construction-site) 1.0 1.0) 
((sound-of-pebbles-hitting-underside-of-car) 
.8 .85) 

Example Runs 

--- time limit of 1 second -- 
ENTER Command or input file 
> (? ((can-stop-in-time) 1)) 
using censor chaining depth of 2 
0.08085977 seconds elapsed time 

<RESULT > [O.OO 0.451 

--- time = .05 second --- 
ENTER Command or make query of system 
> (? ((can-stop-in-time) .05)) 
using censor chaining depth of 1 
0.031729784 seconds elapsed time 

<RESULT > [0.72 0.921 

- time = .03 second --- 
ENTER Command or make query of system 
> (? ((can-stop-in-time) .03)) 
using censor chaining depth of 0 
0.017470836 seconds elapsed time 

<RESULT> [0.72 0.921 

--- time limit too low --- 
ENTER Command or make query of system 
> (? ((can-stop-in-time) .Ol)) 

Cannot perform inference in requested time. 

Minimum guaranteed time is 0.018423745 set 

V CONCLUSIONS 

It has been shown that the formal- 
ism of censored production rules when given a 
probabilistic semantics allows a system to adjust 
the certainty of inferences to conform to time 
constraints. Such a system has numerous appli- 
cations in situations where decisions must be 
made in real time and with uncertain informa- 

tion. Examples range from medical expert 

systems for operating rooms to domestic robots. 

In the current system, if the value of 
a rule’s censor is known, the a! and /3 certainty 
values are used. If the value is unknown, the 7 
and 6 values are used. A better approach would 
be to look at the degree to which the censor 
value is known and use this to interpolate 
between the o & p and 7 & S rule certainty 
values. 

Much world knowledge is best 
expressed in the form of taxonomies. Taxo- 
nomies carry more information than simple col- 
lections of rules. To make the system more 
effective, I am working on incorporating special- 
ized inference rules for reasoning in taxonomies. 

This paper has only investigated the 
trade-off between inference time and certainty. 
The trade-offs between cost and specificity and 
certainty and specificity need yet to be explored. 
This is a direction in which the results of 
machine learning research hold much promise. 
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