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ABSTRACT 

A great deal of recent theoretical work in inference has in- 
volved extending classical logic in some way. I argue that these 
extensions share two properties: firstly, the formal addition of 
truth values encoding intermediate levels of validity between 
true (i.e., valid) and false (i.e., invalid) and, secondly, the ad- 
dition of truth values encoding intermediate levels of certainty 
between true or false on the one hand (complete information) 
and unknown (no information) on the other. Each of these prop- 
erties can be described by associating lattice structures to the 
collection of truth values involved; this observation lead us to 
describe a general framework of which both 
truth maintenance systems are special cases. 

default logics and 

1 Introduction 

There has been increasing interest in AI generally in infer- 
ence methods which are extensions of the description provided 
by first order logic. Circumscription [9], default logic [lo] and 
probabilistic inference schemes such as that discussed in [7] are 
examples. 

Research in truth maintenance systems [4] has involved 
recording information concerning not only the truth or falsity 
of a given conclusion, but also justifications for that truth or 
falsity. This is useful in providing explanations, and also in 
the revision of inferences drawn using non-monotonic inference 
rules. Assumption-based truth maintenance systems [3] provide 
an interesting extension of this idea, taking the truth value of a 
given proposition to be the set of contexts in which it will hold. 

My intention in this paper is to show that these different ap- 
proaches can be subsumed under a uniform framework. Hope- 
fully, such a framework will lead to a greater understanding of 
the natures of the individual approaches. In addition, an imple- 
mentation of the general approach should facilitate the imple- 
mentation of any of the individual approaches mentioned earlier, 
in addition to combinations of them (such as probabilistic truth 
maintenance systems) or new ones yet to be devised. 

The ideas presented in this paper should not be taken as 
supporting any specific multi-valued logic, but as supporting a 
multi-valued approach to inference generally. The specific logic 
selected in any given application can be expected to depend 
upon the domain being explored. 

2 A motivating example 

Let me motivate the approach I am proposing with a rather 
tired example. Suppose that Tweety is a bird, and that birds 
fly by default. 

*This work supported by the Office of Naval Research 

Any of the standard formalizations of default reasoning (such 
as [9] or [lo]) will allow us to conclude that Tweety can fly; 
suppose that we do so, adding this conclusion to our knowledge 
base. Only now do we learn that Tweety is in fact a penguin. 

The difficulty is that this new fact is in contradiction with 
the information just added to our knowledge base. Having in- 
corporated the fact the Tweety can fly into this knowledge base, 
we are unable to withdraw it gracefully. 

Truth maintenance systems [4] provide a way around this 
difficulty. The idea is to mark a statement not as merely “true” 
or “false”, but as true or false for a reason. Thus Tweety’s 
flying may depend on Tweety’s being a penguin not being in 
the knowledge base; having recorded this, it is straightforward 
to adjust our knowledge base to record the consequences of the 
new information. 

The truth maintenance approach, however, provides us with 
a great deal more power than is needed to solve this particular 
problem. We drew a default conclusion which was subsequently 
overturned by the arrival of new information. Surely we should 
be able to deal with this without recording the justification for 
the inference involved; it should be necessary merely to record 
the fact that the conclusion never achieved more than default 
status. 

In this particular example, we would like to be able to la- 
bel the conclusion that Tweety can fly not as true, but as true 
by default. The default value explicitly admits to the possibil- 
ity of new information overturning the tentative conclusion it 
represents. 

3 Truth values 

3.1 Lattices 

This approach is not a new one. There is an extensive lit- 
erature discussing the ramifications of choosing the truth value 
assigned to a given statement from a continuum of possibilities 
instead of simply the two-point set {t, f}. Typical examples are 
a suggestion of Scott’s in 1982 [l2] and one of Sandewall’s in 
1985 [ll]. 

Scott notices that we can partially order statements by their 
truth or falsity, and looks at this as corresponding to an assign- 
ment to these statements of truth values chosen from some set 
L which is partially ordered by some relation <t (the reason for 
the subscript will be apparent shortly). 

He goes on to note that if we can associate to the partial order 
st greatest lower bound and least upper bound operations, the 
set L is what is known to mathematicians as a /nitice (81. Es- 
sentially, a lattice is a triple {L, A, V} where A and V are binary 
operations from L x L to L which are idempotent, commutative 
and associative: 

aAa=aVa=c 

Uncertainty and Expert Systems: AUTOMATED REASONING / 243 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



a b 

Figure 1: A lattice 
Figure 3: The smallest non-trivial bilattice 

l t 

indicating that the probability of the statement in question is 
known to lie somewhere in the associated probability interval. 
This proposal also appears in [‘i’] and [5]. 

Figure 2: The two-point lattice 

ahb=bAa; aVb=bVa 

(aAb)Ac=aA(bAc); (aVb)Vc=aV(bVc). 

In terms of the partial order mentioned earlier, we have a A b = 
glb(a, b) and a V b = lub(a, b). A is called the meet operation of 
the lattice; V is called the join. We also require that if a < b, 
then a A b = glb(a, b) = a and a V b = lub(a, b) = b. This is 
captured by the absorption identities: 

aA(aVb)=a; aV(aAb)=a. 

Lattices can be represented graphically. Given such a repre- 
sentation, we will take the view that p St q if a path can be 
drawn on the graph from p to q which moves uniformly from 
left to right on the page. 

In the lattice in figure 1, f is the minimal element of the 
lattice, and t is the maximal element. We also have a <t b; 
a and c are incomparable since there is no unidirectional path 
connecting them. 

Up to isomorphism, there is a unique two-point lattice, shown 
in figure 2. The truth values in first order logic are chosen from 
this lattice; all we are saying here is that f St t; “true” is more 
true than “false”. 

3.2 Uncertainty 

Sandewall’s proposal, although also based on lattices, is a dif- 
ferent one. Instead of ordering truth values based on truth or 
falsity, he orders them based on the completeness of the infor- 
mation they represent. Specifically, Sandewall suggests that the 
truth values be subsets of the unit interval [O,l], the truth value 

The lattice operation used is that of set inclusion. Thus true, 
corresponding to the singleton set {l}, is incomparable to false, 
which corresponds to the singleton (0). (And each is in turn 
incomparable with any other point probability, such as (0.4}.) 
Instead, the inclusion of one truth value in another relates to 
our acquiring more information about the statement in ques- 
tion. The minimal element of the lattice is the full unit interval 
[0, 11; the fact that the probability of some statement lies in this 
interval contains no real information at all. 

This is in sharp contrast with knowing, for example, that the 
probability of the statement in question is .5. If the probability 
of a coin’s coming up heads is .5, the coin is fair; if nothing is 
known about the probability, it may well not be. 

It is clear that the partial order corresponding to Sandewall’s 
notion is conceptually separate from that in Scott’s construction. 
To capture it, we introduce a second partial order <k onto our 
lattice of truth values, interpreting p Sk q to mean~oosely that 
the evidence underlying an assignment of the truth value p is 
subsumed by the evidence underlying an assignment of the truth 
value q. Informally, more is known about a statement whose 
truth value is q than is known about one whose truth value is p. 

Since f and t in the two-point lattice corresponding to first 
order logic should be incomparable with respect to this second 
partial order, there is no way to introduce this second lattice 
structure onto the lattice in figure 2. Instead, we need to in- 
troduce two additional truth values glb,(t, f) and lubk(t, f), as 
shown in figure 3. Just as p <t q if p is to the left of q in a graph- 
ical representation, we will adopt the convention that p $ q if 
p is below q on the page. 

The two new values are given by u (unknown) and I (contra- 
dictory). The latter indicates a truth value subsuming both true 
and false; this truth value will be assigned to a given statement 
just in case it is possible to prove it true using one method and 
false using another. 

We will denote the two lattice operations corresponding to 
<k by + (hbk) and . (glb,) respectively. In general, we define 
a bilattice to be a quintuple (23, A, V,., +) such that: 
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1. 

2. 

Figure 4: D, the bilattice for default logic 

(B, A, V) and (B, ., +) are both lattices, and 

Each operation respects the lattice relations in the alternate 
lattice. For example, we require that if p <k q and T Sk s, 
then p h T Sk q /\ S. Equivalently, A must be a lattice 
homomorphism from the product lattice (B x B, ., +) into 

(B,+,+) (and similarly for V, - and +). 

Just as figure 2 depicts the smallest non-trivial lattice, figure 
3 depicts the smallest bilattice which is non-trivial in each lattice 
direction. Belnap [1,2] has considered the possibility of selecting 
truth values from this bilattice. 

Another bilattice is shown in figure 4; this is the bilattice 
of truth values in default logic. In addition to the old values 
of t, f , u and I, a sentence can also be labelled as dt (true 
by default) or df (false by default). The additional value * = 
di + df labels statements which are both true and false by 
default. This is of course distinct from u (indicating that no 
information at all is available) or I (indicating the presence of 
a proven contradiction). We will discuss this bilattice in greater 
detail in a subsequent section. 

Before proceeding, however, note that this bilattice shares 
the elements t, f, I and u with the previous one. In fact, any 
bilattice will have four distinguished elements, corresponding 
to the maximal and minimal elements under the two partial or- 
ders. We will denote these distinguished elements in this fashion 
throughout the paper. 

4 Logical operations 
In order to apply these ideas, it is insufficient merely to give 

a framework in which to describe the truth values associated to 
the sentences of our language. We must also be able to perform 
inference using these truth values. We now turn to the issue of 
describing logical operations in a multi-valued setting. 

4.1 Extensions and logical connect ives 

Let L be the set of all well-formed 
we will define a truth function to be 

corresponding to an assignment 
lattice B to each formula in L. 

d:L+B, 

formulae in our 
any mapping 

of some truth value in the bi- 

language. 

In first order logic, consistency is defined for truth functions 4 
that are models, so that for each well-formed formulap, d(p) = t 

or b(p) = f. W e will continue to use this definition in the case 
of multi-valued logics, calling 4 a model if 4 maps L into the 
two-point set {t, j}. 

If 4 and II, are two truth functions with 4(p) $ $(p) for all 
p f L, we will write C# Sk $J and say that $J is an ettension of 
4. If the inequality is strict for at least one p E L, we will write 
@I <k II, and say that the extension is proper. If $J is a model, 
we will say that it is a complete extension of 4. 

Lnformally, an extension of a truth function is what is ob- 
tained upon the acquisition of more information about some 
sentence or sentences in L. The extension will be proper if and 
only if the new information was not already implicit in the ex- 
isting truth values. 

The usual logical operators of negation, conjunction, disjunc- 
tion and implication can be described in terms of natural opera- 
tions on the bilattice structure of our truth values. Conjunction 
and disjunction are the most easily described, since they are es- 
sentially captured by the lattice operators A and V. In order for 
a model to be consistent, we therefore require: 

dP A e) = 4(p) A 4(q) (1) 

+(P v 4 = 4(P) v 4(q). (2) 

Negation is rather different. Clearly we want to have in gen- 
eral that 4(-p) <t 4(-q) if and only if 4(p) It 4(q). Somewhat 
less transparent% that we should have 4(-p) Sk 4(-q) if and 

only if 4(P) Sk d(q): f i we know less about p than about q, we 
also know less about the negation of p than about that of q. 
Additionally, we require that 4(--p) = d(p). 

This leads us to define negation in terms of a map 7 from B 
to itself such that: 

1. 1 is a bilattice isomorphism from (B,A,V, .,-I-) to 

(%%A,-,+), and 
2. -3 = 1. 

Note that in the first condition, we have reversed the order of 
A and V between the two bilattices while retaining the order of 
. and +. This corresponds to the observations of the previous 
paragraph. 

For a model, we require: 

4(-p) = -4(P)- (3) 

We handle implication by retaining the usual identification 

(P --) 4) f (‘PW). 

This gives us 

d(P --+ 4 = -d(P) v 4(q)- (4) 

We deal with quantification by noting that Vx.p -+ p:, where 
t is substitutable for x in p and p: is the result of replacing some 
(but not necessarily all) of the occurrences of x in p with t. This 
leads us to assume: 

W’Z-P) = db, -@(p:) It is substitutable for 3: in p). (5) 

The existential operator is similar: 

4(3x.p) = lubt{ddp;)lt is substitutable for T in p}. (6) 

In general, we will call a truth function r#~ consistent if it has 
a complete extension satisfying (l)-(6). 
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Here are some predicate calculus examples: 

zi %w 
f 

B t(orf) 21 ? 

AAB f f u f t t 

In the first two cases, $J is a consistent complete extension of 4. 
Since # in the third case has no consistent complete extension, 
it is itself inconsistent. 

Suppose that + is consistent, and let {+,} be the set of its 

consistent complete extensions. We define $ to be the greatest 
lower bound of the +i: 

3 = db&‘bb is a consistent complete extension of $}. 

In the following two examples, 4 has two consistent complete 
extensions given by 41 and 42, and 3 is the greatest lower bound 
of these. 

- 
4(x) 41cg 42(x) d+) 

A t t t t 
B 

I 

u 
AvB u 

t f 21 
t t I t 

- 
e4 41(4 42(x) 4(x) 

A U t f u 
Td 

I 

U f t U 
Av-A u t t t 

The above construction is closely related to the usual notion 
of logical inference. In fact, if we denote by &, the truth function 
given by 

we have: 

Theorem 4.1 p b q if and only if G >k dq. 

Proof. All proofs can be found in [6]. 

If p is consistent, &, is the k-minimal truth function in which 

p is true; the point of the theorem is that q will be true in G if 
and only if p b q. 

4.2 Closure 

It might seem that 3 is a natural choice for the closure of a 
Lruth function in general, but it suffers the drawback of having 

4(P) >k E&{t,f} for all P. As our bilattice of truth values 
becomes more complex, such a closure will be insensitive to some 
of the information c_ontained in 4. In the default bilattice D, for 
example, we have $(p) >k *. Contrast this with theorem 5.1, 
where the closure of 4 can also take the values df, df or U. 

The general construction is somewhat more involved; the 
reader is referred to [6] for details. If we denote the closure 
of some truth function 4 by cl(4), the key features of the con- 
struction are the following: 

1. It can be described completely in terms of the bilattice struc- 
ture of the truth values. 

2. Logical inference always “adds” information to a truth func- 

tion, so that 4 <k cl($) in all cases. 

3. The construction is non-monotonic, so that it is possible to 
have 4 <k $ without cl(4) 5 k cl($). An example of this is 

given in the next section. 

The final remark above refers only to a portion of what is 
generally referred to as “non-monotonic” behavior. Consider a 
truth function with 4(p) = dl but cl(4)(p) = f, for example; 
here inference is behaving “non-monotonically” in the sense that 

4(p) >t u but Cl(d)(P) <t u. It is behaving monotonically, how- 
ever, in that 4(p) <k cl(&)(p). lt turns out that the computa- 
tional difficulties which plague non-monotonic inference systems 
arise principally as a result of the potential non-monotonicity in 
the Ic sense; loosely speaking, k-monotonicity is enough to guar- 
antee that we can maintain our knowledge base using updates. 
There are therefore substantial practical advantages to be gained 
by recognizing situations where it can be demonstrated that the 
closure operation is k-monotonic. Details are in [6]. 

5 Examples 

Let me end by very briefly describing Reiter’s default reason- 
ing and truth maintenance in terms of this sort of construction. 
The second of these is extremely straightforward, essentially re- 
quiring us merely to identify those statements that support some 
fixed one. Default reasoning is a bit more intricate, since the 
philosophy underlying Reiter’s approach is very different from 
that of the one we have been presenting. 

5.1 Default logic 

Reiter defines default reasoning in terms of a default theory 
(R, T) where T is a collection of first order sentences, and R is 
a collection of defaults, each of the form 

indicating that if cy holds and all of the p’s 
holds. If every default rule is of the form 

CV:W 
9 

W 

are possible, then w 

so that we infer UJ from cr in the absence of information 
contrary, the default theory is called normal. 

to the 

Reiter goes on to define an eztenaion of a default theory 
(R,T), and shows that these extensions correspond to the col- 
lections of facts derivable from such a theory. Since there may 
be conflicting default rules, it is possible that a given default 
theory have more than one extension. 

The bilattice for default logic appeared in figure 4. 

where i indexes the elements in R. Associate to (R,T) a truth 
junction 4 given by 

ifpisct;+w; jorsomei butpeT; 

Then: 

Cl(dJ)(P) = 

’ t, CUT I= P; 
f, 47 T I= 1~; 
*, ifl p is true in some extensions of (R,T) 

and false in others; 
dt, ifl T pt p but p is true in some of the 

extensions and false in none; 
dj, iff T k -p but p is false in some of the 

extensions and true in none; 
L uv ifl p is undecided in all extensions of (R,T). 
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Theorem 5.2 
monotonic. 

The closure operalion is potentially non- 

Suppose that we have two default rules, one of which indicates 
that birds can fly, and the other that flying things are stupid. 
Consider the following two truth functions: 

Theorem 5.3 Let pl, . . . , p, be possible assumptions in our 
knowledge base; and suppose that 4 is given by 

4(q) = { \!{P*H * nil 17 ythqe;w;;efo7- S0me i; 

Then ifql,... , qm form a subset of the pi ‘s and x is an arbitrary 
sentence, 

1 ({91, - -. , b)) . nil 1 Sk cl(cb)(x) 

if and only if the ql’s form a justification of x. 

6 Future work 
Clearly 4 <k +. But in light of the previous theorem, the 

closures of 4 and ?I, are given by: 

P 
bird(Tweety) 

penguin(Tweety) 
flies(Tweety) 

dumb(Tweety) 

It is painfully clear that the work presented in this paper only 
scratches the surface of the approach being discussed. 

Both theoretical and engineering issues need to be explored, 
There are many other non-standard approaches to inference; 
can they be captured in this framework? Circumscription and 
probabilistic schemes seem especially important candidates. 

Equally important is an implementation of the ideas we have 

We do not have cl(d) 5 k cl($). The point is that the fact 
discussed. Ideally, a general-purpose inference engine can be 

that Tweety is now known not to fly keeps the default rule about 
constructed which accepts as input four functions giving the 

stupidity from firing. 0 
two glb and two lub operations in the bilattice, and which then 
performs suitable multi-valued inference. The key issue is the 

5.2 Truth maintenance 
determination of what price must be paid in terms of efficiency 
for the increased generality of the approach we are proposing. 

In a truth maintenance system, the truth values assigned to Work in each of these areas is currently under way at Stan- 

propositions contain information concerning the reasons for their ford. 

truth or falsity. We can capture this using a multi-valued logic 
in which the truth values consist of pairs [ a . b ] where a and 
b are respectively justifications for the truth and falsity of the REFERENCES 
statement in question. We can assume that these justifications 
are themselves in disjunctive normal form, consisting of a list of 
parallel conjunctive justifications. 

An example will make this clearer. Suppose that p is the 
statement q V (T A s). Then if q, T and s are all in the knowledge 
base, the truth value of p will be 

Either q or the {T, s} pair provides independent justification for 
p, and there is no justification for up. We will assume in general 
that if the truth value of p is [ a . b 1, either a or b is empty; in 
other words, that either p or lp is unjustified. 

Given two justifications j, and j, expressed in disjunctive 

normal form, we write j, 5 j, if every conjunctive subclause in 
j, contains some subclause in j, as a subset: 

(a1 . . . a,) 5 (bl . . . bm) 

if for each a;, there is some bj with b, C a;. It is not hard to 
see that the empty justification (containing no information) is 
a minimal element under this partial order, while the justificac 
tion (0) consisting of a single empty conjunct (a justification 
needing no premises) is maximal. 

If j, 5 j,, we now define: 

[ j, . nil ] St [ j, . nil ] [jl .nil]<k [j2 .nil] (7) 
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The analog to theorem 5.1 is now: 
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