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ABsTRAcr 

We present BACAS. a Binary and Continuous 
Activation System which is a parallel process content- 
addressable memory model. BACAS is designed for the 
representation and retrieval of ‘knowledge of the world’ 
for automatic natural language understanding. In its 
present form, BACAS is a two-layered system with 10 
K-structures (like scripts) in the binary output macro- 
layer represented by 46 Threshold Knowledge Units and 
184 processing elements (like action events) in the 
continuous activation micro-layer. We discuss the problems 
of combining two types of connection system and describe 
a simulation in which the system moves from one pattern 
to the next in response to external input. A new tool for 
connection systems, the pulse-out, is introduced. This is a 
device which replaces the Boltzmann Machine in creating 
energy leaps. The pulsse-out also has the advantage, in the 
current system, of setting the state of the system a short 
Hamming distance from an appropriate pattern. 

I INTRODUCXION 

One of the central problems for any automatic 
natural language understanding device is that humans use 
language elliptically. People try to leave out much of the 
information they believe their readers/listeners share with 
them (Grice. 1975). Thus texts written by humans for 
humans are usually only a partial pattern of the 
information they are intended to convey. It must therefore 
be one of the first jobs of an automatic natural language 
understander to fill in the information missing from the 
input pattern. This technique has been employed for many 
schemata-driven story understanders (eg. Cullingford’s 
(1978) SAM). w e present a content-addressable memory 
retrieval mechanism which is designed to act as the core 
of a natural language understander. This differs from 
schema-appliers in that we use a distributed knowledge 
representation in a parallel process network. 

The model we present here is a considerably extended 
and modified version of the Knowledge Access Network 
(KAN) (Sharkey, in press; Sharkey & Sharkey. in press). 
KAN combines the script concept &hank & Abelson. 
1977) with a spreading activation parallel associative 
network account of memory. The development of this 
model has represented an attempt to capture the notion of 
stereotypical information without relying on ‘packages’ of 
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knowledge. KAN treats memory as continuous while 
behaving ‘as if’ it contained script-like entities. 
Furthermore, the KAN system differs from the Script 
Applier Mechanisms (eg. Cullingford, 1978) in the way it 
accesses knowledge. KAN does not need to search for a 
matching precondition to gain entry to its knowledge. 
Rather, the retrieval of KAN’s knowledge is integrated 
with its understanding process. Also, unlike SAM, KAN 
can have more than one knowledge pattern active at the 
same time. 

The new model BACAS (Binary And Continuous 
Activation System), is more distributed than KAN and 
utilizes both continuous and binary activation schemes. 
Like KAN, BACAS is architecturally very simple. It has 
two distinct domains of processing: a micro-layer, 
consisting of many processing elements which represent the 
system’s conceptual knowledge, and a ?nQcro-layer 
consisting of a number of Threshold Knowledge Units 
(TKUS) which act as the only connecting stations between 
the micro-elements (see Figure 1). (A TKU. as its name 
suggests, is a variant of the Threshold Logic Unit (Minsky 
and Papert. 1969) and follows in the McCulloch & Pitts, 
1943, tradition.) A collection of micro-elements linked to a 
TKU is called a R-pattern. Each processing element may 
belong to several k-patterns. The contribution of an 
element to a given k-pattern is represented by the weight 
of its connection to the TKU. This weight also tells us 
about the system’s ‘belief’ about the likely relevance of an 
element to a TKU. 

A TKU has both an activation level (continuous) 
and an output (binary). The continuous activation level is 
the communication between the macro-layer to the micro- 
layer. Evidence as to the relevance of a particular micro- 
element is collected by the TKUs and, once a TKU reaches 
threshold, its activation is broadcast to all the micro- 
elements connected to it, thus completing its k-pattern in 
the micro-layer. When a TKU is ‘on’ (defined later), its 
output is 1. otherwise it is 0. These outputs form the 
communication between TKUs. The macro-layer settles into 
a particular pattern. based on the evidence of the k- 

patterns which have been recognized. 

In KAN. each TKU in itself corresponded to a script 
(Schank and Abelson, 1977). We had therefore imposed the 
restriction that only one TKU could be on at a time. 
However, because of the psychologically observed ‘handover 
period’ (Sharkey & Mitchell, 1985). the system was 
designed to behave ‘as if’ two K-structures were 
simultaneously active. That is. in the transition period 
between successive K-structures, the micro-elements of 
more than one TKU could be active. For convenience, a 
simple conceptual device, a one-place F-register, was 
employed to shunt TKUs on and off. When a TKU was 
‘on’ it was said to be in focus. In BACAS. like KAN. a 
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Figure 1: The k-pattern corresponding to the ‘watch-film’ scene of the ‘going to the movies’ K-structure, 
and a k-pattern corresponding to the ‘boarding’ scene of the ‘catching-a-plant’ K-structure. These TKUs 
are negatively connected by symmetrical weights. Two k-patterns and two TKUs are shown. 

TKU in the ‘on’ state keeps the k-pattern of elements 
associated with it in an active state until it is switched 
Off. 

In BACAS, each TKU and its associated k-pattern 
corresponds to a scene. The collection of TKUs 
corresponding approximately to a set of scenes occurring 
together in a script &hank & Abelson, 1977) is called a 
K-structure. The macro-layer of BACAS is designed to 
represent one such K-structure at a time. A TKU may 
occur in many K-structures: thus K-structures are like 
MOPS &hank. 1982). For example, the K-structure for 
‘going-to-the-movies’ now has six k-patterns and 
corresponding TKUs (choose film, stand-in-line, buy-ticket, 
enter-cinema, watch-film, exit-cinema). Our motivation for 
this change was to give BACAS more flexibility and to 
create the potential for dynamic modification of memory. 
In order for a BACAS K-structure to be in focus we now 
need several TKUs to be ‘on’ at once. This meant that we 
could no longer use the F-register. Instead, we have had to 
make the macro-layer strongly interconnected, that is. 
connect each TKU to every other TKU. In the most recent 
simulation we have used 10 K-structures and 46 TKUs. 
These are based on a set of empirically collected norms. 
(Galambos, 1982). 

The problems that BACAS is designed to solve are: 

1. How to ensure completion of K-structures in the 
macro-layer such that the appropriate k-patterns in the 
micro-layer would be completed. 

2. How to move from one K-structure to another. that is. 
how to switch on the appropriate TKUs and switch off 
the inappropriate ones on the basis of partial 
information (eg. cashing a check and then going to the 
movies). 

We turn now to examine each of the processing 
layers. We then give an example of the behavior of 
BACAS. showing how the above situations are handled. 
and finally discuss the choice of weights for the macro- 
layer. 

II THEMICRO-LAYER 

Processing in the micro-layer of BACAS (and KAN) 
is driven by an activation mechanism which is a variant 
of that of McClelland and Rumelhart (1981). Their 
threshold rule holds invariably for the micro-elements, but 
a TKU may be in one of three states, and its behavior 
varies accordingly: 

1. A TKU in the of state accumulates activation from the 
micro-layer but it does not transmit activation to the 
micro-layer. 

2. A TKU in the 011 state transmits a constant source of 
activation to the micro-layer but it does not receive 
activation from the micro-layer. This constant activation 
is the TKU’s saturation value. 

3. A TKU is in the irrtermediate state between the ‘on’ 
and ‘off’ states while it decays from saturation to 
resting. In the ‘intermediate* state, a TKU continues to 
transmit its decaying activation until it reaches resting 
level, but it receives no activation from the micro- 
layer. 

The dynamic behavior of a TKU is as follows. When a 
TKU in an ‘off’ state reaches threshold after accumulating 
activation from the micro-layer, it immediately assumes 
the ‘on’ state and its activation is set to saturation. It will 
eventually be set to the intermediate state from the 
macro-layer (see the next section). If the TKU decays to 
resting before being switched on from the macro-layer, it 
assumes the ‘off’ state again. It is only then that it will 
again receive activation from the micro-layer. 

The idea behind 3, the intermediate state, was 
directly imported from KAN and is an important property 
of the model. The decaying activation on a TKU allows 
the ‘handover period’ mentioned above (Sharkey & 
Mitchell, 1985) so that there is a smooth transition 
between K-structures. 
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We can formally describe the micro-lay:; as follows. 
The net input n1 (t ) of activation to the 1 element at 
time t is the weighted sum of the activation passed to it 
by its neighbors thus: 

I  

n,(t) - 
0, for a TKU which is not of. 

c ai ( t  >wiI, otherwise. 
i 

I 

where a. .tll is the activation on the t 
TKU anti w 

micro-element or 
is the strength of association from i to i. 

Note that i:‘BACAS. the neighbors of a micro-element are 
just the TKUs connected to it, and the neighbors of a 
TKU are just the elements of its k-pattern. 

It is assumed that each micro-element and TKU 
saturates at below a point S (we set S = 1). The effect 
5, (t) of activation input to a micro-element or TKU i at 
time t is defined by: 

el(t> - n,(t)@ - a,(t)) 

Activation on an element decays over time at a rate 
proportional to the amount of activation above resting 
level. The activation of the jr’ element at time t+l (i.e., 
one time cycle after, t> is given by: 

aJ(t+l) = I S. for a TKU which is on, 

ai - Hal(t) - rJ > + (j(t). otherwise. 

where P is 
j (whit *h 

the resting or 
is positive). and 

base level activation of element 
sis the constant of decay. 

III THEMAcRo-LAYER 

Communication in the macro-layer is by means of the 
binary outputs of the TKUs and a pulse-out mechanism. 
The pattern completion method in BACAS is similar to 
that of the asynchronous, deterministic machine of 
(Hopfield. 1982). That is. from an ‘initial’ pattern, the 
machine will settle in a state which is a local energy 
minimum, where the energy of a state is defined by: 

1 
E I- - 

2= ‘iwijsj - C Cci’i 
i i i 

where w. is the weight from the i’* to the i’* TKU and 
/.L. is th;?f activation on the i’* TKU. Thus the activation 
of a TKU acts like external input in the formula of 
Hinton & Sejnowski (1983):. To make a transition in the 
macro-layer, a unit i is chosen at random, and the change 
in energy &I), is calculated: 

The state of the unit, s1 is then set as follows: 

* Note that, because of the p term, the energy landscape changes 
while the pattern completion mechanism is in progress, unlike 
Hinton & Scjnowski’s method, where, because the external input is 
fixed during pattern completion, the energy landscape ia also fixed. 

s&t+11 - I on,if AE, 2 0, 

in&mediate. if AE, < 0. 

As with a TKU reaching threshold after accumulating 
activation from the micro-layer, a TKU switched on from 
the macro-layer has its activation set to its saturation 
value. 

One problem which confronted us was that a 
language understander may need to apply a succession Of 
different K-structures as it reads through a text. HOW do 
we get the system to move from one K-structure to the 
next? As a first attempt. we tried using a Boltzmann 
Machine (Hinton & Sejnowski, 1983). We treated each K- 
structure as a global energy minimum to be found using 
an annealing schedule. Following Hinton & Sejnowski. the 
TKUs which had fired were treated as tied or locked 
units. However, this still left the problem of getting the 
system to move from one K-structure to the next. We 
viewed the target K-structure as a required global 
minimum and the current K-structure as an unwanted 
local minimum. The new K-structure could then have been 
found by initiating a new annealing schedule at the 
appropriate time. However to make this work. we would 
have had to have found a way of telling the system when 
to unlock the units of the current K-structure and when 
to begin a new annealing schedule. One possibility would 
have been to run the annealing schedule each time a new 
TKU fired. But it is logically unnecessary to do this, since 
not all of the TKUs which fire will signify a new K- 
structure. 

Instead, we solved the problem by using a pulseout 
mechanism to set up a new ‘initial’ pattern, close to the 
desired local minimum. The local minimum can then be 
found deterministically. The pulse-out works as follows. 
When a new TKU reaches threshold after accumulating 
activation from the micro-layer, it transmits a pulse. Any 
negatively connected ‘on’ TKUs are pulsed out, so that 
they will assume the intermediate state. As a result, when 
the new TKU belongs to a new K-structure, the bit string 
representing the state of the system is set a shorter 
Hamming distance away from the the new K-structure 
than any of the other K-structures. The pulse-out, in 
effect, creates a leap to a higher energy state (if the new 
TKU does not occur in any K-structures with currently 
active TKUs, the energy of the new state will be 0). 

By using the pulse-out, we have avoided using locked 
units and an annealing schedule in conjunction with a 
Boltzmann Machine and, as a result, our system is 
deterministic. 

N PROCESS AND COMPLETION 

In the BACAS model. when script information is 
presented sequentially to the system (eg. ‘Sam went into a 
restaurant. He ordered a meal. He paid the bill.‘). it 
activates a set of processing elements connected to a 
number of TKUS. For example the micro-element 
corresponding to ‘he paid the bill’ would be linked to 
TKUs associated with knowledge about restaurants, shops, 
garages, etc. (see Figure 2). The active elements broadcast 
activation to their TKUs until the activation on a TKU 
passes a preset threshold. When this happens the 
thresholded TKU is switched to the ‘on’ state. The ‘on’ 
TKU then transmits a constant activation source to the 
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active and inactive micro-elements of its associated k- 
pattern in the micro-layer. Thus the k-pattern most 
relevant to the current input is completed. This enables 
BACAS to draw inferences about the likelihood of 
occurrence of other events than those which occurred. 
When the activation in a k-pattern ‘relaxes’, the activation 
on the micro-elements of a k-pattern are said to represent 
their ‘belief’ as to their relevance to the input. 

While the units in the k-pattern of the TKU that 
reached threshold are being activated, the macro-layer of 
BACAS settles into a local energy minimum which is the 
K-structure that BACAS believes* to be the most relevant 
to the input. The k-patterns of the TKUs in this K- 
structure are activated, thus completing a pattern of 
micro-elements which corresponds to a 1977 script. In this 
example, the ‘restaurant’ K-structure is completed. 

When a TKU not in the current K-structure reaches 
threshold, it pulses out the TKUs that do not share a K- 
structure with it. Continuing with our example, should 
‘Sam went to the cinema and looked at the program’ 
occur, the ‘choose-film’ TKU would fire. The pulse-out sets 
each of the TKUs in the ‘restaurant’ K-structure to the 
intermediate state. The TKUs and the corresponding 
micro-elements in their k-patterns then decay. Meanwhile, 
the macro-layer settles into the ‘going-to-the-movies* K- 
structure, and activation begins spreading to the micro- 
elements of the other k-patterns in this K-structure, for 
example, ‘buy-ticket* and ‘enter-cinema’. Evidence for these 
TKUs is also collected from the micro-layer. 

So far we have implemented the macro- and 
micro- layers separately, and the macro/micro interface has 
also been simulated. It now remains for us to put the two 
layers together. 

V CHOOSING WEIGHTS 

In this section, we discuss our procedure for choosing 
the weights on connections between the TKUs in the 
macro-layer. For BACAS the weights should ensure. 
amongst other things, the following two important 
properties. First, TKUs that never occur together in any 
K-structure should be negatively connected to guarantee 
the effective operation of the pulse-out mechanism. These 
negatively connected TKUs were all connected with a 
weight of -1. Second, each of the K-structures should be a 
stable state of the system. To ensure this, we set the 
connection between each pair of distinct TKUs which occur 
together in some K-structure to a a small positive weight, 
c. and the weight from a unit to itself is set to 0. In the 
remainder of this section, we discuss how to choose c so 
that the K-structures are local minima. 

To ensure that a given K-structure is a local 
minimum, we simply make its energy value lower than 
that of all the patterns which are a Hamming distance of 
1 away from it. These patterns are its neighbors. That is, 
two states are neighboring if the bit strings representing 
the states differ in only one bit, eg. 1101010 is a neighbor 
of 0101010. Thus, we take a K-structure of n TKUs (ie. 
the n ‘on’ TKUs that make up the K-structure). and 
derive constraints on c by considering the change in 
energy between that K-structure and its neighbors. The 
change in energy, AE,, created by altering the j’” unit in 

a pattern from 1 to 0, is given by: 

;te;Fh ?K$ either c. -1 or 0. and st is the output from 

We first discuss the case where the jt’ unit of a 
pattern changes from 1 to 0 (downward neighbor), and 
then examine its opposite, where the jtA unit changes 
from 0 to 1 (upward neighbor). First, when a TKU j 
changes from 1 to 0. (ie, the state changes from a K- 
structure with TKU j ‘on’ to one of its neighboring 
patterns), the difference in energy is (n-l>c + p . This is 
because there are n-l units in the K-structure ‘which are 
each connected to TKU with positive weight c. This 
change in energy is alwa$s positive and so the K-structure 
has a lower energy than any of its downward neighbors. 

Second, to ensure that a K-structure has a lower 
energy than any of its upward neighbors, we examine the 
difference in energy resulting from changing the j” TKU 
from 0 to 1. Since this new TKU is not in the K- 
structure. it will be negatively connected to at least one 
of the TKUs in the K-structure*. If the new TKU is 
negatively connected to i TKUs in the K-structure, the 
change in energy is (n-i >c - i + p , since i TKUs have 
weight -1 to the new TKU while t he other n-i TKUs in 
the K-structure have weight c. If we choose a c to ensure 
that this quantity is always negative, the K-structure will 
have a lower energy than all of its upward neighbors. We 
can only do this if i > 1. If this holds, the maximum 
value that the change in energy can take is when i = 2 
and the activation of the new TKU is at saturation. (ie. 
when each of n-2 TKUs in the chosen K-structure is 
contained in K-structures which also contains the new 
TKU). This maximum value is (n-2)c - 1. since the 
saturation value of a TKU is 1. To make the maximum 
negative, we choose a c so that (N-2)~ < 1. where N is 
an upper bound on the number of TKUs a K-structure 
may possess. Thus, with this choice of c. we have 
guaranteed that K-structures are local minima provided 
that if we choose any K-structure and any new TKU. 
i < 1. 

A further desirable property of BACAS is that, at all 
times, the system should have an hypothesis as to which 
K-structure is relevant. Thus with an ambiguous input 
text, the system would fix on just one of the 
interpretations of the input. The K-structure selected by 
the system as its hypothesis might, however, be dependent 
on the order of firing of the TKUs. For example, in our 
system, on being presented with ‘stand-in-line’ and ‘buy- 
ticket’, we want the machine to settle into either the 
‘going-to-the-movies*, ‘catching-a-train’ or ‘taking-the- 
subway’ K-structure, rather than some other pattern. 

The main obstacle to BACAS’s achieving a single 
hypothesis with ambiguous input is that the union of two 
K-structures could be a local minimum. The system could 
settle into such a state when a TKU from a new K- 
structure comes on and the pulse-out leaves the machine 
in a state which is a shorter Hamming distance from the 
union of the new and the old K-structures than from 
either of the K-structures. We avoid this by choosing a c 
so that the union of any two K-structures has a higher 
energy than any of its downward neighbors. Since our 
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pattern completion mechanism only makes moves to lower 
energy states. we can guarantee that the union of two K- 
structures can never be reached from below. The 
calculation is as follows. Suppose the two patterns contain 
m and n TKUs. Let the union of the K-structures and its 
downward neighbor differ in TKU , which is a member of 
the tist K-structure. If i is the ‘number of TKUs in the 
second K-structure that do not share K-structures with 
TKU, (ie. those which are negatively connected to TKU,). 
the change in energy from the K-structure to the 
neighboring pattern is (m-l+n-i)c - i + p . An upper 
bound on this quantity (where i > 1) is (A-l+n-2)c - 1. 
Thus. the change in energy is always negative if we 
choose c such that (N-l)c < 0.5. where N. as above, is 
an upper bound on the number of TKUs in a K-structure. 

In consequence, when a shared TKU is the first to 
reach threshold, the macro-layer settles into one of the 
K-structures containing the shared TKU. So even if it 
turns out to be the wrong K-structure, a small amount of 
activation will have flowed to the elements in its k- 
patterns. 

If the very unusual situation occurred where two 
TKUS from different K-structures thresholded 
simultaneously, the system would settle into one of the 
K-structures, thus resolving this ‘contradiction’ by ignoring 
some of the evidence it collects. 

The 10 K-structures we have used to test BACAS are 
based on empirically collected norms, (Galambos. 1982). 
For these K-structures, only two TKUs, ‘stand-in-line’ and 
‘buy-ticket’, are shared. The maximum number, N, of 
TKUs per K-structure is 6. Thus choosing c to be 0.2, so 
that (N-2)c < 1. results in the K-structures being local 
minima with the desired behavior. 

VI CONCLUSION 

Our aim here has been to present a content- 
addressable memory retrieval mechanism for using 
‘knowledge of the world’ in a natural language 
understander. Simplicity was our goal and we have left 
out a lot of what is important to language understanding. 
There is no representation of causality in BACAS, nor a 
mechanism for the temporal ordering of units. nor for role 
binding. Although these are obvious necessities. we are 
trying to get the retrieval mechanism correct before 
tackling these problems. 

We have demonstrated the usefulness of combining 
two types of connection system and we have described a 
technique to enable a connection system to move from one 
pattern to the next in response to external input. Our 
pulse-out mechanism replaces the Boltxmann Machine in 
creating energy leaps without the need for locked input. 
Our current research is geared towards both developing a 
learning mechanism for BACAS and building the natural 
language front-end. 

* A K-stmcture cannot be a subset of another K-structure. 
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