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ABSTRACT 

This paper describes the Structure-Mapping Engine (SME), a 
cognitive simulation program for studying human analogical 
processing. SME is based on Gentner’s Structure-Mapping theory of 
analogy, and provides a “tool kit” for constructing matching 
algorithms consistent with this theory. This flexibility enhances 
cognitive simulation studies by simplifying experimentation. 
Furthermore, SUE is very efficient, making it a candidate component 
for machine learning systems as well. We review the Structure- 
Mapping theory and describe the design of the engine. Next we 
demonstrate some examples of its operation. Finally, we discuss our 
plans for using SME in cognitive simulation studies. 

1. INTRODUCTION 

This paper describes the Structure-Mapping Engine (HE), a 
cognitive simulation program we have built to explore the 
computational aspects of Gentner’s Structure-Mapping theory of 
analogical processing. SME is both flexible and efficient. It provides 
a “tool kit,, for constructing matchers consistent with the kinds of 
comparisons sanctioned by Gentner’s theory. A matcher is specified 
by a collection of rules. The rules can include strengths of evidence, 
and the program uses these weights and a novel procedure for 
combining the local matches constructed by the rules to efficiently 
produce and weigh all consistent global matches. The efficiency and 
flexibility of this matching algorithm suggests it would also be a 
viable component for machine-learning systems. 

Cognitive simulation studies can offer important insights for 
understanding the human mind. Unfortunately, cognitive simulation 
programs tend to be complex and computationally expensive (c.f. 
[Anderson, 1983; Van Lehn, 19831). Being complex makes the 
relationship between the program and the theory obscure. In 
addition, it is harder to make computational experiments and 
account for new data if the only way to change the program’s 
operation is surgery on the code. Being computationally expensive 
means performing fewer experiments, and thus exploring fewer 
possibilities. There have been several important AI programs that 
study the computational aspects of analogy, but they were not 
designed to satisfy the above criteria (e.g. Burnstein, 1983; Winston, 
1980, 1982). 

The next section briefly reviews Gentner’s Structure-Mapping 
theory. Section 3 describes SME’s organization and its novel 
matching algorithm. Section 4 illustrates SME’s operation on several 
examples, and Section 5 describes our plans for future development 
and for using it in psychological experimentation. 

2. THE STRUCTURE-MAPPING THEORY 

The theoretical framework for this research is the Structure- 
Mapping theory of analogy (Gentner, 1980, 1982, 1983; Gentner & 
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Gentner, 1983). Th is theory describes the set of implicit rules by 
which people interpret analogy and similarity. The central intuition 
is that an analogy is a mapping of knowledge from one domain (the 
base) into another (the target) which conveys that a system of 
relations known to hold in the base also holds in the target. The 
target objects do not have to resemble their corresponding base 
objects. Objects are placed in correspondence by virtue of their like 
roles in the common relational structure. 

Given collections of objects {bi}, {t,} in the base and target 
representations, respectively, the tacit rules for constructing the 
analogical mapping M can be formalized as follows:** Objects in the 
base are placed in correspondence with objects in the target: 

M: b, --> t, 
Predicates are mapped from the base to the target according to the 
following mapping rules: 

(1) Attributes of objects are dropped: 
e.g. RED (b,) -f> RED (t,> 

(2) Relations between objects in the base tend to be mapped 
across: 

e.g. COLLIDE (bl, bj > --> COLLIDE (tl, tl> 

(3) The particular relations mapped are determined by 
systematicity, as defined by the existence of higher-order*** 
constraining relations which can themselves be mapped: 

e.g.CAUSE [PUSH(b,, bl>, COLLIDE (bj, b,)] --> 
CAUSE [PUSH (ti , tJ> , COLLIDE (tl, t,> 1 

For example, consider the analogy between heat-flow and 
water-flow. Figure 1 shows a water-flow situation and an analogous 
heat-flow situation. Figure 2 shows the representation a learner 

ICE 
CUBE 

WARM COFFEE 

Figure I Two Physical Situations Involving Flow 
(adapted from Buckley, 1979, pp 15-25). _ _-~~ 

** Besides analogy, other kinds of similarity can be characterized by the distri- 
bution of relational and attributional predicates that are mapped. In anelogy, only re- 
lational predicates are mapped. In lateral simrlarity, both relational predicates and 
object-attributes are mapped. In mere-appearance matches, it is chiefly object- 

attributes that are mapped. 

*** We define the order of an item in a representation as follows: Objects and 
constants are order 0. The order of a predicate is one plus the maximum of the order 
of its arguments, Thus GREATER-THAN(x, y) is first-order if x and y are objects, 

and CAUSE[GREATER-THAN(X, y), BREAK(x) ] is second-order. Examples of 
higher-order relations include CAUSE and IMPLIES. 
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Water Flow 

CAUSE 

GREATER FLOW(beaker,vial,water,pipe) 

A 

PRESSU&(beaker) PRE&JRE(vial) GREATER 
B4 

LIQUID(water) 
FLAT-TOP(water) 
CLEAR( beaker) 

DIA-METER(beaker) DIAMETER(via1) 

Heat Flow 

The Structure-Mapping theory has received a great deal of 
convergent theoretical support in artificial intelligence and 
psychology. Although there are differences in emphasis, there is 
widespread agreement on the basic elements of one-to-one mappings 
of objects with carryover of predicates (Burstein, 1983; Carbonell, 
1983; Hofstadter,l984; Kedar-Cabelli, 1985; Reed, 1985; Rumelhart 
& Norman, 1981; Winston, 1982). Moreover, all these researchers 
have adopted something like the systematicity principle, or a special 
case of systematicity. For example, Carbonell focuses on plans and 
goals as the high-order relations that give constraint to a system, 
and Winston focuses on causality. Also, some models combine a 
structure-mapping component, which generates possible 
interpretations of a given analogy, with a pragmatic component 
which chooses the relevant interpretation (e.g., Burstein, 1983; 
Kedar-Cabelli, 1985). 

Empirical psychological studies have borne out the prediction 
that systematicity is a key element of people’s implicit rules for 
analogical mapping. Adults focus on shared systematic relational 
structure in interpreting analogy. They tend to include relations and 
omit attributes in their interpretations of analogy, and they judge 
analogies as more sound and more apt if base and target share 
systematic relational structure (Gentner, 1980; Gentner & Landers, 
1985; Gentner & Stuart, 1983). Finally, in developmental work we 
have found that children are better at performing difficult mappings 
when the base structure is systematic (Gentner & Toupin, in press). 

Given the existing theoretical and empirical psychological 
support, we have decided that cognitive simulation is needed to 
allow us to explore the theory still more deeply. 

GREATER 

A 

TEMPERi%JRE(coffee) TEMPER&JRE(ice cube) 

FLOW(ice cube,coffee,heat,bar) 

LIQUID(coffee) 
FLAT-TOP(coffee) 

Figure 2. 
Simplified Water Flow and Heat Flow Descriptions 

might have of these situations (simplified for clarity). 

In order to comprehend the analogy “Heat is like water” a 
learner must: 

(1) Set up th e object correspondences between the two domains: 

a. THE STRUCTURE-MAPPING ENGINE: DESIGN 

Given the descriptions of a base and a target, SME constructs 
all syntactically consistent analogical mappings between them. As 

heat--> water, tube --> metalbar, noted above, the mappings consist of pairwise matches between 
beaker --> coffee, vial--> Ice cube predicates and objects in the base and target, plus a list of predicates 

(2) Discard object attributes, such as CYLINDRICAL (beaker). which exist in the base but not the target. This list of predicates is 

(3) Map base relations such as the set of candidate inferences sanctioned by the analogy. SME also 

GREATER-THAN [PRESSURE (water, beaker) , 
provides a syntactic evaluation of each mapping. In accordance with 

PRESSURE (water, vial) ] 
Structure-Mapping theory, no domain information beyond the 
representation of the target is used in SME to evaluate the candidate 

(4) Observe systematicity: i.e., keep reIations belonging to a 

to the corresponding relations in the target domain. 

systematic relational structure in preference to isolated 
relationships. In this example, 

CAUSECGREATER-THAN[PRESSURE(water, beaker), 

FLOW(water, 

is mapped into 

PRESSURE (water, vial) 1 , 
Pipe I beaker, Vial>> 

The base and target representations provided to SME are 
collections of facts called description groups. Domain objects and 

inferences ~ that is the job of other modules. 

constants are collectively referred to as entities. The construction of 
the analogy is guided by match rules which specify which facts and 
entities in the base and target might match and estimate the 
believability of each possible component of a match. Importantly, to 
build a new match function one simply loads a new set of match 
rules. These rules are the key to SME’s flexibility. 

CAUSECGREATER-THAN[TEMPERATURE(heat, coffee), 
TEMPERATURE (heat, Ice cube) 1 , 

FLOW(heat, bar, coffee, Ice cube)) 

while isolated relations, such as 
GREATER-THAN [DIAMETER (beaker) , DIAMETER (vial) ] 

are discarded. 

An analogy is processed in three steps. First, all potential 
pairings between items in the base and target are constructed and 
individually evaluated. Second, all sets of consistent combinations of 
these pairings are constructed to form the possible globa matches 
and their corresponding candidate inference sets. Finally, the global 
matches are evaluated syntactically to provide a score. We now 
describe these computations in detail. 

8.1. Step 1: Construct local match hypotheses 

SME begins by finding for each entity and predicate in the base 
the set of entities or predicates in the target that could plausibly 
match that item. Plausibility is determined by match hypothesis 
constructor rules, which take the form 

The systematicity principle is central to analogy. Analogy 
conveys a system of connected knowledge, not a mere assortment of 
independent facts. Prefering systems of predicates that contain 
higher-order relations with inferential import is a syntactic 
expression of this tacit preference for coherence and deductive power 
in analogy. It is the higher-order relational structure that determines 
which of two possible matches is made. For example, suppose in the 
previous example we were concerned with objects differing in specific 
heat, such as a metal ball-bearing and a marble of equal mass, 
rather than temperatures. Then DIAMETER becomes relevant, since 
(in a more complete model than we have space for) DIAMETER affects 
the capacity of a container, the analog to specific heat. 

(MHCrule <condition> <body>) 

The body of these rules is run on each pair of items (one from the 
base and one from the target) that satisfy the condition and installs 
a ?netch hypothesis which represents the possibility of them 
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matching. For example, we state that all predicates whose predicate 
name is identical could potentially match with the rule 

(MHCrule (equal-functors? *base-fact* *target-fact*) 
(install-MH *base-fact* *target-fact*)) 

The likelyhood of each match hypothesis is found by running 
match evidence rules and combining their results. The evidence rules 
provide support for a match hypothesis by examining the syntactic 
properties of the items matched. For example, the rule 

(MHErule (and (equal (mh-type *MH*) fact) 
(equal-functors? (mh-base-Item *MH*) 

(mh-target-Item *MH*))) 
(MHevidence *MH* 0.5 0.0)) 

states “If the two items are facts and their functors are the same, 
then supply 0.5 evidence in favor of the match hypothesis.“* The 
rules may also examine match hypotheses associated with the 
arguments of these items to provide support based on systematicity. 
This causes evidence for a match hypothesis to increase with the 
amount of higher-order structure supporting it. We use the 
Dempster-Shafer formalism for probabilities (Shafer, 1976) and 
combine evidence with a simplified form of Dempster’s rule of 
combination (Prade, 1983; Ginsberg, 1984). By using the simplified 
formula we are assuming independence among the match hypotheses, 
but this is not a problem because we are only using it to produce 
scores for ordering candidates rather than estimating probabilities. 

The state of the match between the water flow and heat flow 
descriptions of Figure 2 after running these first two sets of rules is 
shown in Figure 3. The weights shown in the figure are the support 
for each match hypothesis. Internally the program stores a Shafer 
interval, consisting of the support for the match and the maximum 
plausible support (i.e., one minus the support against it). The water 
flow - heat flow analogy is made possible by the program being able 
to match predicates with different names, such as matching 

Match Hypothesis 
Base Node Target Node 

GREATERPltllllre GREATERTWUpcrh”rc 
GREATERDiamcter GREATERT.mprr.ture 

PRESSUREbc,ker TEMPERATUREcalIle 

PRESSUREYi,, TEMPERATURE,* rubs 

D1*ETERbd~r TEMPERATUREcome 

DIAMETER,., TEMPERATURE,ee c~br 

*Low”.te* *Lowhrrl 

FLAT*.,e* *LATcoffrc 

LIQU?dW LIQulDcollrc 
vial ice cube 

beaker coffee 
water coffee 
water heat 
pipe bar 

Evidence 
0.650 

0.650 

0 712 

0.712 

0.712 

0.712 

0.790 

0.790 

0.790 

0.932 

0.932 
0.804 

0.632 

0.632 

Figure 3. 
Water Flow - Heat Flow Match After Running Local Rules 

PRESSURE and TEMPERATURE. This behavior is caused by the 
particular set of rules we are using. In these rules, relational 
predicates such as GREATER are limited to matching predicates 
having the same name, while functional predicates such as 
TEMPERATURE can match other functional predicates. Note that at 
this stage, SME is entertaining a number of matches that will later 

* Evidence is attributed to a match hypothesis in the form of two numbers. The 
first number corresponds to evidence in favor of the match and the second number in- 
dicates evidence against the match. The sum of these number8 must be less than or 
equal to one. 

be discarded, such as LIQUID(water) ++ LIQUID (cof fee) and 
DIAMETER (vial) H TEMPERATURE (ice cube). 

8.2. Step 2: Global Match Construction 

Once the individual match hypotheses have been constructed 
and analyzed, SME builds a set of analogical mappings between the 
base and target. Each mapping is a maximal set of consistent match 
hypotheses plus the candidate inferences supported by those 
hypotheses. Consistency is enforced by insisting that a match 
hypothesis MH is in the analogy only if the mapping includes other 
match hypotheses that pair up all the arguments of the base and 
target items of MH. The mappings are maximal in that adding 
another match hypothesis would lead to a contradiction, as indicated 
by a base item being matched to two target items or vice versa. 

The key to forming the mappings is constructing the sets of 
entity correspondences (called Emaps). Mappings are constructed in 
four steps. First, find all entity justifiers. An entity justifier is a 
match hypothesis that directly justifies one or more Emaps, in that 
some of its arguments are entities. Second, associate with each 
match hypothesis the set of Emaps that it implies. This step is 
accomplished by propagating Emaps upwards from entity justifiers. 
The set of Emaps that a match hypothesis supports is simply the 
union of all Emaps supported by its descendents. Third, create a 
collection of globally consistent matches, called Gmaps. Call a match 
hypothesis that is not the descendent of any other match hypothesis 
a root. Notice that if the Emaps supported by a root are consistent, 
then the entire structure under it is consistent. In the simplest case, 
the entire collection of descendents may be collected together to form 
a globally consistent match. However, if the root is not consistent, 
then the same procedure is applied recursively to each descendent. 
The result is a collection of sets of match hypotheses, within which 
all Emaps are consistent. The final step is to generate all consistent 
combinations of these sets, keeping those combinations that are 
maximal. This is done by first combining Gmaps which are part of 

Gmap #l: ( (GREATER,, ++ GREATER,,) (FLOW +-+ FLOW) 

(PRESSURE,, ++ TEMPERATURE,,) 
(PRESSURE,, ++ TEMPERATURE,,) ) 

Emaps ( (beaker ++ coffee) (vial c-t ice cube) 
(water ++ heat) (pipe e, bar) ) 

Weight: 0.9800 
Candidate Inferences: [ (CAUSE GREATER,, FLOW) ) 

Gmap #2: ( (GREATER,, ++ GREATER,,) 

(DIAMETER,, H TEMPERATURE*,) 

(DIAMETERn, ++ TEMPERATWRETP) 1 

Emaps. { (beaker ++ coffee) (vial t-) ice cube) ) 
Weight: 0 0195 
Candidate Inferences: ( ) 

Gmap #3: ( (LIQUID t--* LIQUID) (FLAT-TOP ++ FLAT-TOP) 1 
Emaps: { (water CI coffee) j 
Weight: 0.0004 
Candidate Inferences: { ) 

(b) 

Figure 4. Gmap Construction 
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the same base structure (e.g. the Gmap for the pressure inequality 
would combine with the Gmap for the flow relation to form a single 
Gmap) and then making any further combinations which are 
consistent. Figure 4(a) shows how the initial set of Gmaps is formed, 
while Figure 4(b) shows the final Gmaps created for the water flow - 
heat flow analogy. 

Associated with each Gmap is a (possibly empty) set of 
candidate inferences. Candidate inferences are base predicates that 
would fill in structure which is not in the Gmap (and hence not 
already in the target). In Figure 4(b), for example, Gmap #l has the 
top level CAUSE predicate as its sole candidate inference. If the 
FLOW predicate was not present in the target, then the candidate 
inferences for a Gmap corresponding to the pressure inequality 
would be both CAUSE and FLOW. All candidate inferences must be 
consistent with known target facts. In addition, they must be 
consistent with the Gmap’s structure and supported by some 
member of it. For example, GREATER-THAN [DIAMETER (cof f ee) , 

DIAMETER(1ce cube)] is not a valid candidate inference for the 
first Gmap because it does not intersect the existing Gmap structure. 

8.3. Step 8: Global Match Selection 

Several factors must be taken into account when deciding 
which Gmap is the best analogy . . We have identified three factors as 
particularly important: 

(1) The evidence for the individual match hypotheses in the 
Gmap. 

(2) The candidate inferences sanctioned by the Gmap. 

(3) The graph-theoretic structure of the Gmap, e.g., the number 
and relative size of connected components. 

Exploring the relative importance of these and other factors is 
part of the desiderata for SME, hence we have made the criteria 
programmable. Gmap evidence rules, whose form is much the same 
as the other kinds of rules mentioned previously, can provide 
evidence for a Gmap based on whatever factors are deemed 
appropriate. To make an appropriate selection, evidence for Gmaps 
is combined under strict adherence to Dempster’s rule for combining 
probabilities. Thus the set of Gmaps is treated as a set of mutually 
exclusive choices, and evidence in favor of one Gmap implicitly 
counts as evidence against the others. Dempster’s rule automatically 
normalizes the weights so that the sum of the weights supporting 
each Gmap will always be less than or equal to one. In Figure 4(b), 
the Gmap which maps the PRESSURE relation is believed more than 
the Gmap which maps the DIAMETER relation. This conclusion is 
based on two rules. The first rule simply permits the evidence for a 
match hypothesis in a Gmap to count as evidence for that Gmap. 
The second rule gives evidence of 0.3 to a Gmap for each candidate 
inference it sanctions. 

We suspect tnat the ability to “tune” the criteria for choosing 
a Gmap will be important for modeling individual differences in 
analogical style and a subject’s domain knowledge. For example, a 
conservative strategy might favor taking Gmaps with some 
candidate inferences but not too many, in order to maximize the 
probability of being right. 

4. EXAMPLES 

The Structure-Mapping engine has been tested on a number of 
examples drawn from a variety of domains. We discuss a few 
examples to further demonstrate SME’s flexibility and generality. 
Our first example is taken from Rutherford’s analogy between the 
solar system and the hydrogen atom. The second example 
demonstrates how the program reasons about complicated 
descriptions of water flow and heat, flow which were generated by a 
qualitative reasoning program before the inception of SME. 

4.1. Solar System - Rutherford Atom Analogy 

The Rutherford model of the hydrogen atom was based on the 
well-understood behavior of the solar system. Given the 
descriptions shown in Figure 5, the Structure-Mapping engine 
constructed three possible interpretations. The most, preferred 

Solar System 

CAUSE 

AND Revolve-Around(planet,sun) 

ATTRnCe;TER 

J32 B3 
GREATER MASS(sun) MASS(planet) 

A YELLOW(sun) 

1’EMPERJ%JRE(sun) TEMPER?TURE(planet) 

Figure 5 

Rutherford Atom 

GREATER 
m. 

-3 
MASS(~~cleus) MASS(electron) 

ATTRACT(nucleus,electron) 

REVOLVE-AROUND(electron,nucleus) 

Solar System - Rutherford Atom Analogy 

mapping (given a weight of 0.99) pairs up the nucleus with the sun 
and the planet with the electron. This mapping is based on the mass 
inequality in the solar system playing the same role as the mass 
inequality in the atom. It sanctions the inference that the inequality, 
together with the mutual attraction of the nucleus and the electron, 
causes the electron to revolve around the nucleus. The other major 
Gmap (given a weight of 0.01) has the same entity correspondences, 
but is based on the solar system’s temperature inequality mapping to 
the atom’s mass inequality. There is much less belief in this 
interpretation because the temperature and mass predicates are 
different and because this Gmap does not allow any candidate 
inferences. The third Gmap is a spurious collection of match 
hypotheses which imply that the mass of the sun and planet should 
correspond to the mass of the electron and nucleus, respectively. 
There is no higher-level structure to support this interpretation and 
so the final belief is 1x10-s. This example demonstrates how SME is 
able to generate all syntactically plausible interpretations of a 
potentially analogous situation. It also show that, our rules have a 
preference for matching predicates of the same name (e.g. MASS with 
MASS), but is able to match predicates with different names (e.g. 
TEMPERATURE with MASS). 

4.2. Water Flow - Heat Flow Analogy 

The Structure-Mapping engine has applications beyond 
cognitive simulation. For example, we could use this program in 
conjunction with a qualitative reasoning program to model the way 
people use analogy to reason about the physical world. Figure 6 (a) 
shows a domain description for water flow which was used in an 
actual qualitative reasoning program (Forbus 1984; Forbus & 
Gentner, 1983). Figure 6 (b) h s ows a greatly reduced version of the 
same program’s description of heat, flow. 

As with the earlier, simplified descriptions of water flow and 
heat flow, SME was able to make the correct analogical 
correspondences, creating all of the possible candidate inferences in 
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LCB cube 

Figure 6. Water Flow (a) and Heat Flow (b) 

the process. Interestingly, only one consistent interpretation arose. 
All other match hypotheses were eliminated because they had no 
descendants to support their existence. The candidate inferences 
made were the correct ones, namely that a difference in temperature 
and an aligned heat path implies an instance of heat flow and that 
the rate of heat flow between two objects is proportional to the 
difference in their temperatures. 

4.8. Summary 

Space limitations forbid a detailed account of our experiments 
to date; we summarize two here. First, we have analyzed short 
stories described in predicate calculus to compare mere appearance, 
surface matches with true analogy. Second, we have begun exploring 
a number of match algorithms. For example, one set of rules focuses 
on object attributes (mere-appearance matches), thus mimicking 
how children tend to treat potentially analogous situations (see 
below). These rules, when run on the water flow - heat flow 
descriptions of Figure 2, choose the water to coffee correspondence as 
the best interpretation due to their surface similarity and fail to 
notice the relational structure which implies that the role of water 
actually corresponds to the role of heat in the water flow and heat 
flow situations. 

6. CONCLUSIONS 

SME has significant advantages over more traditional matching 
algorithms. Methodologically, the advantage of producing all 
possible mappings is that one can easily see syntactically consistent 
alternatives to the best match. Yet SME’s matching algorithm is 
very efficient, avoiding the extensive backtracking normally 
associated with pattern-matching systems.* On our large water flow 
- heat flow example, the program took only 0.7 seconds to perform 
the entire match on a Symbolics 3640. This includes everything 
from the construction of local match hypotheses to the gathering of 
candidate inferences and Gmap construction. The smaller examples 
average 0.4 seconds. The current program needs to be expanded to 
properly handle predicates which are commutative (e.g. SUM) or take 
a variable number of arguments (e.g. AND), In addition, we would 
like to add the ability to introduce new entities when required by the 
analogical mapping through the use of Skolem functions. 

The results of SME’s operation on the examples above provides 
suggestive evidence concerning a currently debated issue in analogy. 
Th e question concerns how much a purely syntactic account of 
analogy can do. Although many researchers have adopted variants 
of the systematicity principle, often specific domain knowledge or 
pragmatic information is used as well. For example, Carbonell 
(1981, 1983) focuses on plans and goals as the relevant higher-order 
relations for analogical mapping. Winston’s (1982) system uses 
causal relations in its importance-guided matching algorithm. 
Winston [personal communication, November 19851 has also 
investigated goal-driven importance algorithms. The extreme view 
is taken by Holyoak (1985), whose account of analogical mapping 
relies solely on the relevance of predicates to the current plan. 
Among the claims of these researchers are (1) purely syntactic 
information is insufficient to guide analogical mapping and (2) even 
if it were sufficient, such a system would be inefficient (e.g. 
Burnstein, 1986, p.358). The evidence from SME so far suggests 
otherwise, since it generates intuitively plausible answers and does so 
rapidly. We intend to explore this issue more fully by using a 
variety of examples to see if and when the purely syntactic approach 
breaks down. Clearly content knowledge must be invoked at some 
point to evaluate whether the candidate inferences from a given 
analogy are appropriate. This suggests a model which uses a 
context-sensitive, expectation-driven system to evaluate the output 
of SME. This extension is compatible with the combination models 
proposed by Burstein (1983) and Kedar-Cabelli (1985). 

In addition to tests of the basic algorithm, we plan several 
cognitive simulation studies of analogical reasoning and learning. 
We mention only one here. P syc o ogical research shows a marked h 1 
developmental shift in analogical processing. Young children rely on 
surface information in analogical mapping; at older ages, systematic 
mappings are preferred (Gentner & Stuart, 1983; Gentner & Toupin, 
in press; Holyoak, Juin & Billman, 1985; Vosniadou, 1985). Further, 
there is some evidence that a similar shift from surface to systematic 
mappings occurs in the novice-expert transition in adults (Chi, 
Glaser & Reese 1982; Larkin, 1985; Novick, 1985; Reed, 1985; and 
Ross, 1984). 

In both cases there are two very different interpretations for 
this analogical shift: (1) acquisition of knowledge; or (2) a change in 
the analogy algorithm. The knowledge-based interpretation is that 
children and novices lack the necessary higher-order relational 
structures to guide their analogizing. The second explanation is that 
the algorithm for analogical mapping changes, either due to 
maturation or learning. In h uman learning it is difficult to decide 
this issue, since exposure to domain knowledge and practice in 
analogy and reasoning tend to occur simultaneously. SME gives us a 
unique opportunity to vary independently the analogy algorithm and 
the amount and kind of domain knowledge. For example, we can 
compare identical evaluation algorithms operating on novice versus 

* While we have not yet explored this possibility, It appears that a variant of 
this matching algorithm could be very useful for connectionist architectures 
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expert representations, or we can compare different analogy 
evaluation rules operating on the same representation (see summary 
above). The performance of SME under these conditions can be 
compared with novice versus expert human performance. 

ACKNOWLEDGEMENTS 

The authors wish to thank Janice Skorstad for invaluable 
assistance in encoding domain models. 

REFERENCES 

Anderson, J., The Architecture of Cognition, Harvard University 
Press, Cambridge, Mass, 1983. 

Buckley, S., Sun up to sun dozen, McGraw-Hill Company, New 
York, 1979 

Burstein, M. H., Concept formation by incremental analogical 
reasoning and debugging. Machine Learning: An Artificial 
Intelligence Approach Vol. 11, R.S.Michalski, J.G.Carbonell, and 
T.M.Mitchell (editors), Morgan Kaufmann, 1986. 

Carbonell, J. G. Learning by analogy: Formulating and generalizing 
plans from past experience. Machine Learning, Michalski, R. S., 
Carbonell, J., and Mitchell, T. (Eds.), Tioga Publishing 
Company, Palo Alto, California, 1983. 

Carbonell, J. G., Derivational analogy in problem solving and 
knowledge acquisition. Proceedings of the Second International 
Machine Learning Workshop, University of Illnois, Monticello, 
Illinois, June, 1983. 

Chi, M. T. H., Glaser, R., & Reese, E. Expertise in problem solving. 
In R. Sternberg (Ed.), Ad vances in the psychology of human 
intelligence (Vol.1). Hillsdale, N.J., Erlbaum, 1982. 

Forbus,K.D., Qualitative Process Theory. MIT Artificial Intelligence 
Laboratory Technical Report No. 789, July, 1984. 

Forbus,K.D., and D.Gentner, Learning Physical Domains: Towards a 
Theoretical Framework. Machine Learning: An Artificial 
Intelligence Approach Vol. 11, R.S.Michalski, J.G.Carbonell, and 
T.M.Mitchell (editors), Morgan Kaufmann, 1986. 

Gentner, D., The structure of analogical models in science. BBN 
Tech. Report No. 4451, Cambridge, MA., Bolt Beranek and 
Newman Inc., 1980 

Gentner, D., Are scientific analogies metaphors?. In Miall, D., 
Metaphor: Problems and perspectives, Harvester Press, Ltd., 
Brighton, England, 1982 

Gentner, D., Structure-mapping: A theoretical framework for 
analogy. Cognitive Science 7(2), 1983 

Gentner D., & Gentner, D. R., Flowing waters or teeming crowds: 
Mental models of electricity, In D. Gentner & A. L. Stevens, 
(Eds.), Mental Models, E r aum Associates, Hillsdale, N.J., 1983 lb 

Gentner, D., & Landers, R. Analogical reminding: A good match is 
hard to find. In Proceedings of the International Conference on 
Systems, Man and Cybernetics. Tucson, Arizona, 1985. 

Gentner, D., & Stuart, P. Metaphor as structure-mapping: What 
develops. Bolt Beranek and Newman Technical Report No. 5479, 
Cambridge, Massachusetts, 1983. 

Gentner, D. & Toupin, C. (in press). Systematicity and surface 
similarity in the development of analogy. Cognitive Science. 

Ginsberg,M.L., Non-Monotonic Reasoning Using Dempster’s Rule. 
Proceedings AAAI, August, 1984. 

Hofstadter, D. R. The Copycat project: An experiment in 
nondeterministic and creative analogies. M.I.T. A.I. Laboratory 
memo 755. Cambridge, Mass: M.I.T., 1984. 

Holyoak, K. J. The pragmatics of analogical transfer. In G. 
H.Bower (Ed.) The psychology of learning and motivation. Vol.1. 

New York: Academic Press, 1984. 

Holyoak, K. J., Juin, E. N. & Billman, D. 0. (in press). Development 
of analogical problem-solving skill. Child Development. 

Kedar-Cabelli, S. (1985). Purpose-directed analogy. Proceedings of 
the Seventh Annual Conference of the Cognitive Science Society, 
Irvine, CA. 

Larkin, J. H. Problem representations in physics. In D. Gentner & 
A. L. Stevens (Eds.) Mental Models. Hillsdale, N. J., Lawrence 
Erlbaum Associates, 1983. 

Novick, L. R. Transfer and expertise in problem solving: A 
conceptual analysis. Stanford University: Unpublished manuscript, 
1985. 

Prade,H., A Synthetic View of Approximate Reasoning Techniques. 
Proceedings of the 8th International Joint Conference on Artificial 
Intelligence, 1983. 

Reed, S. K. A structure-mapping model for word problems. Paper 
presented at the meeting of the Psychonomic Society, Boston, 
1985. 

Ross, B. H. Remindings and their effects in learning a cognitive skill. 
Cognitive Psychology, 16, 371-416, 1984. 

Rumelhart, D. E., & Norman, D. A. Analogical processes in 
learning. In J. R. Anderson (Ed.), Cognitive skills and their 
acquisidion, Hillsdale, N.J. Erlbaum, 1981. 

Shafer,G., A Mathematical Theory of Evidence, Princeton University 
Press, Princeton, New Jersey, 1976. 

Van Lehn, K. & Brown, J. S. Planning nets: A representation for 
formalizing analogies and semantic models of procedural skills. In 
R. E. Snow, P. A. Federico & W. E. Montague (Eds.), Aptitude, 
learning and instruction: Cognitive process analyses. Hillsdale, N. 
J. Erlbaum, 1980. 

Van Lehn, K., Felicity Conditions for Human Skill Acquisition: 
Validating an AI-based Theory. Xerox Palo Alto Research Center 
Technical Report CIS-21, 1983. 

Vosniadou, S. On the development of metaphoric competence. 
University of Illinois: Manuscript submitted for publication, 1985. 

Winston, P. H. Learning and reasoning by analogy. 
Communications of the ACM, 23(12), 1980. 

Winston, P. H. Learning new principles from precedents and 
exercises. Artificial Intelligence, 19, 321-350, 1982. 

~~GNITI~EM~DELLINGANDEDUCATION 1 277 


