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ABSTRACT 

In the absence of specific relevance information, the tradi- 
tional assumption in the study of analogy has been that the 
most similar analogue is most likely to provide the correct so- 
lutions; a justification for this assumption has been lacking, as 
has any relation between the similarity measure used and the 
probability of correctness of the analogy. We show how a sta- 
tistical analysis can be performed to give the probability that 
a given source will provide a successful analogy, using only 
the assumption that there are some relevant features some- 
where in the source and target descriptions. The predicted 
variation of the probability with source-target similarity corre- 
sponds closely to empirical analogy data obtained by Shepard 
for human and animal subjects for a wide variety of domains. 
The utility of analogy by similarity seems to rest on some very 
fundamental assumptions about the nature of our representa- 
tions.* 

I INTRODUCTION 

Analogical reasoning is usually defined as the argument 
from known similarities between two things to the existence 
of further similarities. Formally, we can define it as any infer- 
ence following the schema 

w, w, W,~), S(S,Y> * QKY) 

(see [Russell 86b]) h w ere T is the target, about which we wish 
to know some fact Q (the query); S is the source, the ana- 
logue from which we will obtain the information to satisfy Q 
by analogy; P represents the known similarities given by the 
shared attribute values W. P and Q can be arbitrary predicate 
calculus formulae. 

An innumerable number of inferences have this form but 
are plainly silly; for example, both today and yesterday oc- 
curred in this week (the known similarity), yet we do not infer 
the further similarity that today, like yesterday, is a Friday. 
The traditional approach to deciding if an analogy is reason- 
able, apparently starting in [Mill 731, has been to say that each 
similarity observed contributes some extra evidence to the con- 
clusion; this leads naturally to the assumption that the most 
suitable source analogue is the one which has the greatest sim- 
ilarity to the target. Thus similarity becomes a measure on 
the descriptions of the source and target. However we define 
the similarity measure, it is trivially easy to produce coun- 
terexamples to this assumption. Moreover, Tversky’s studies 

* This work was performed while the author was supported 
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[Tversky 731 show that similarity does not seem to be the sim- 
ple, two-argument function this nai’ve theory assumes. One 
can convince oneself of this by trying to decide which day is 
most similar to today. 

The theory of determinations ([Davies & Russell 861, [Rus- 
sell 86b]) gives a first-order definition to the notion of the rele- 
Vance of one fact to another. given that the known similarities 
are (partially) relevant to the inferred similarities, the analogi- 
cal inference is guaranteed to be (partially) justified. The fact 
that P is relevant to Q is encoded as a determination, written 
as P(:, z) > Q(g, y) and defined as 

~(a.~) A &i A Q(:,$ * Qk, y). 

With this information, the overall similarity becomes irrele- 
vant . 

When the similarity is insufficient to determine the query 
at hand, i.e., we have no idea which of the known facts might 
be relevant, the theory does not apply. However, it still seems 
plausible that the most similar source is the best analogue. 
What has been lacking in previous theories of analogy by sim- 
ilarity is any attempt to justify this assumption; the analysis 
in this paper hopes to rectify this situation. Since an inference 
by analogy is still an inference, the justification must take the 
form of in argument as to why a conclusion from similarity is 
any better than a random guess; better still, the theory should 
be able to assign a probability to the conclusion given the truth 
of the premises. The object of this paper is thus to compute 
(or at least sketch) the relationship between the measure of 
similarity between two objects, and the probability that they 
share a further, specified similarity. 

The principal problems which need to be solved before such 
a theory can be constructed are: 

1) k reasonable way must be found to circumscribe the 
source and target descriptions. Without this, the sets 
of facts to be compared are essentially without limit. 

2) A similarity measure must be defined in such a way as to 
be (as far as possible) independent of the way in which 
the source and target are represented. 

3) We must identify the assumptions needed to relate the 
similarity measure to the desired probability. 

The precise similarity measure itself is not important; in fact, 
it is essentially meaningless. If we have a different similarity 
measure, we simply need to relate it in a different way to the 
probability of correctness of the analogy. Thus we will not be 
attempting to define a similarity measure that is more plausible 
than those proposed previously. 

The essence of our approach is to show that analogy to 
a maximally similar source can be justified in the absence of 
any applicable determination by showing that such a source is 
the most likely to match the target on the properties which 
are relevant to the query (even though the identity of these 
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properties is unlcnozon). If a source matches the target on all 
relevant features, an analogy from that source is assumed to 
be correct. 

We first calculate the probability of such a match for the 
simple case of an attribute-value representation in which the 
relevance of any attribute is equally likely a priori; initially this 
is done assuming a fixed number of relevant features, and then 
we incorporate the assumption of a probability distribution for 
the number of relevant features. The result of the analysis is a 
quantitative prediction of the probability of correctness of an 
analogy to a given source as a function of the overall similarity 
of that source to the target. The prediction bears a very close 
resemblance to the empirical ‘stimulus generalization probabil- 
ity’ (the psychological term for the probability we are trying 
to calculate) measured in animal and human experiments. 

In a subsequent section we attempt to relax the simple rep- 
resentational assumptions to allow the theory to apply to the 
general case. We conclude with a discussion of the difficulties 
inherent in such a task, and an indication of how similarity 
can be combined with determination-based reasoning to cre- 
ate a more general theory of analogy. 

II THE SIMPLE MODEL 

A simplified model for analogy in a database is this: we have 
a target T described by m attribute-value pairs, for which we 
wish to find the value of another attribute Q. We have a num- 
ber of sources Sr . . . S, (analogues) which have values for the 
desired attribute Q as well as for the m attributes known for 
the target. 

Define the similarity s as the number of matching attribute 
values for a given target and source. The difference d = m - s. 

\ The parameter attached to each curve 
Is the number of relevant attributes. r. 

Number of nonmstching attributes. d = (m-s) I 

Fig. 1 p(d, r) for T = 1,3,5,10,20 

Assume that there are T attributes relevant to ascertaining 
the value of Q, and that the relevant attributes are all included 
somewhere in the target descriptions. This is equivalent to say- 
ing that the conjunction of all the attributes in the description 

is sufficient to determine the query (but since not all the at- 
tribute values match we cannot use this to conclude the desired 
similarity with certainty). Thus the solution to the problem 
of circumscribing the source and target descriptions is to limit 
them to the attributes contained in the left-hand side of the 
least specific determination available for the query at hand. 

Define p(d, r) to be the probability that a source S, differing 
from the target on d attributes, matches it on the r relevant 
attributes. In the first instance, we assume that aEZ attributes 
are equally likely to be relevant. We can thus calculate p(d, r) 
using a simple combinatoric argument: the number of choices 
of which attributes are relevant such that S matches T on those 
attributes is (m - d) choose r; the total number of choices of 
which attributes are relevant is m choose r; the value of p(d, r) 
is the ratio of these two numbers: 

p(d, T> = (“,“)/(y) b-21) 
For any r, this function drops off with d (= m-s), monotonically 
and concavely, from 1 (where d=O) to 0 (where d > m-r). Thus 
the most similar analogue is guaranteed to be the most suitable 
for analogy. Figure 1 shows p(d, T) for values of T of 1, 3, 5, 
10, 20 with the total number of attributes m = 30. As we 
would expect, the curve narrows as T increases, meaning that 
a higher number of relevant attributes necessitates a closer 
overall match to ensure that the relevant similarities are indeed 
present. 

III ALLOWING T TO VARY 

The assumption of a fixed value for the number of relevant 
features seems rather unrealistic. The most general assump- 
tion we can make is that T follows a probability distribution 

Q(T) = constant Q(T)CX e+ 

Q(T)o: Te-' Q(T) = Nt4,2> 
Figure 2 p(d) g’ lven various assumptions about q(r) 
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QQ(T) which depends on the type of the query Q. Thus, for 
example we could assume that there are equally likely to be 
any number of relevant features, or that three or four seems 
reasonable whilst 25 is unlikely. Although this introduces an 
extra degree of freedom into the theory, we find that the results 
are almost independent of what we assume about q. We cal- 
culate the probability of successful analogy now as a function 
of the source-target difference d only: 

p(d) = &clP(4r) 
r=o 

using the above formula for p(d, r). For any reasonable as- 
sumption about the shape of q(r), the variation of p(d) with d 
remains approximately the same shape. 

For q(T) = constant, p(d) N l/(d+ 1) 
For q(r) CC emr, p(d) N emd for low d 

For q(T) LX re-‘, p(d) N esd except at large d 
For q(T) = NormaZ(~ = 4,a = 2), p(d) - emd 

The first two assumptions are somewhat unrealistic in that 
they assign significant probability to there being no relevant 
features. When this possibility is discounted, the curves come 
much closer to being exponential. In figure 2 we show values of 
p(d) (plotted as dots) computed using these four assumptions 
of q(T), with a simple exponential decay (p(d) o( eed, solid 
line) superimposed. 

IV EMPIRICAL DATA ON 
STIMULUS GENERALIZATION 

Psychological experiments on stimulus generalization are 
highly relevant to the study of analogy by similarity. In these 
experiments, a (human or animal) subject is given an initial 
stimulus, to which it makes a response. If necessary, the correct 
response is confirmed by reinforcement. This original stimulus- 
response pair is the source in our terms. Then a second stim- 
ulus is given, which differs from the original. This represents 
the target situation, for which the subject must decide if the 
original response is still appropriate. The empirical probability 
that the subject makes the same response (generalizes from the 
original stimulus) is measured as a function of the difference 
between the stimuli. This probability is essentially what we 
are predicting from rational grounds in the above analysis. 

Early results in the field failed to reveal any regularity in 
the results obtained. One of Shepard’s crucial contributions 
([Shepard 581) was to realize that the similarity (or difference) 
between the stimuli should be measured not in a physical space 
(such as wavelength of light or pitch of sound) but in the sub- 
ject’s own psychological space, which can be elicited using the 
techniques of multi-dimensional scaling ([Shepard 621). Using 
these techniques, Shepard obtained an approximately expo- 
nential stimulus generalization gradient for a wide variety of 
stimuli using both human and animal subjects. Typical re- 
sults, reproduced, with kind permission, from Shepard’s APA 
presidential address ([Shepard Sl]), are shown in figure 3. His 
own recent theory to explain these results appears in [Shepard 
841, and has a somewhat similar flavour to that given here. 

V GENERALIZING THE MODEL 

In principle, we can make the simple model analyzed above 
applicable to any analogical task simply by allowing the ‘at- 
tributes’ and ‘values’ to be arbitrary predicate calculus formu- 
lae and terms. The assumption that each of these new ‘at- 

tributes’ is equally likely to be relevant is no longer tenable, 
however. In this section we will discuss some ways in which 
the similarity measure might be modified in order to allow this 
assumption to be relaxed. The idea is to reduce each attribute 
to a collection of uniform mini-attributes; if the original as- 
sumptions hold for the mini-attributes, our problem will be 
solved. Unfortunately, the task is non-trivial. 

The first difficulty is that we can only assume equal rele- 
vance likelihood if the a priori probabilities of a match on each 
attribute value are equal; in general, this will not be the case. 
In the terms of (Carnap 711, the widths of the regions of possi- 
bility space represented by each attribute are no longer equal. 
Accordingly, the simple notion of similarity as the number of 
matching attributes needs to be revised. If the cardinality of 
the range of possible values for the ith attribute is Ici, then the 
probability pi of a match (assuming uniform distribution) is 
l/&. Although L will vary, we can overcome this by reducing 
each attribute to log, b mini-attributes, for which the proba- 
bility of a match will be uniformly 0.5. If the original distri- 
bution is not uniform (for example, a match on the NoOfLegs 
attribute with value 2 is much more likely than a match with 
value l), a similar argument gives the appropriate contribution 
as - log, pi mini-attributes. This refinement may underlie the 
intuition that ‘unusual’ features are important in metaphorical 
transfer and analogical matching ([Winston 781, [Ortony 791). 

In [Russell 86b], the notion of one value ‘almost matching’ 
another is taken into account by supposing that determina- 
tions are expressed using the ‘broadest’ attributes possible, so 
that precise attributes are grouped into equivalence classes ap- 
propriate to the task for which we are using the similarity.In 
other words, similarities are re-expressed as commonalities. In 
the current situation, however, we will not know what the ap- 
propriate equivalence classes are, yet we still want to take into 
account inexact matches on attribute values; for example, in 
heart disease prognosis a previous case of a 310-lb man would 
be a highly pertinent analogue for a new case of a 312-lb man. 
If the weight attribute was given accurate to 4 lbs, these men 
would weigh the same; thus in general an inexact match on 
a scalar attribute corresponds to an exact match on less fine- 
grained scale, and the significance of the ‘match’ is reduced 
according to the log of the accuracy reduction (2 bits in this 
case). 

A consequence of this view of the significance of an at- 
tribute leads to a constraint on the possible forms of q(r): if 
we assume that the relevant attributes must contain at least 
as much information as the attribute Q whose value they com- 
bine to predict, then we must have q(r) = 0 if T is less than the 
significance value of Q. Here T, as well as the total ‘attribute 
count’ M and the similarity s, are all measured on a scale 
where a one-bit attribute has a significance of 1. At first sight, 
it seems that we have succeeded in breaking down our complex 
features into uniform elements, all of which are equally likely 
to be relevant, so all the earlier results should still apply. 

However plausible this may seem, it is simply false. The 
base of the logarithms chosen is of course totally arbitrary - 
we would still have uniform mini-attributes if we used log*. 
This would mean halving our values for m, T and s; but the 
formula for p(d, r) contains combinatoric functions, so it will 
not scale. Hence our predicted probability will depend on the 
base we choose for the logarithms! This is clearly unsatisfac- 
tory. What we have done is to neglect an important assump- 
tion made in using the combinatorial argument, namely that 
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the relevant information consisted of a set of whole features. If 
we allow it to consist of a collection of sub-elements of various 
features, then clearly there are many more ways in which we 
can choose this set. The plausibility of the simple model rests 
in our unstated assumption that the attributes we use carve 
up the world in such a way as to correctly segment the various 
causal aspects of a situation. For example, we could represent 
the fact that I own a clapped-out van by saying 

OwnsCar(SJR, 73DodgeSportsmanVanB318) 

using one feature with a richly-structured set of values; but 
for most purposes a reasonable breakdown would be that I 

l’r 

h A. CIRCLES VARYING IN 
SIZE 
S: McGuire (195411961) 
0: Shepard (1955/1962) 

. n 0. SOUARES VARYING IN 
SIZE AND LIGHTNESS 

D 

1 
G. TR!ANGLES VARYING IN 

SIZE AND SHAPE 
S: Attneave (1950) 
0: Shepa rd (1958a) 

. J. FREE-FORMS VARYING 
IN SHAPE 
S: Shepard & Cermak 

0: Shepard & Cermak 

own a van (for other people’s moving situations), that it’s very 
old (for long-distance trip situations), that it can seat lots of 
people (for party situations), that it’s a Dodge (for frequent 
repair situations) and that it’s virtually worthless (for selling 
situations). Few situations would require further breakdown 
into still less specific features. In some sense, therefore, we 
will require a theory of natural kinds for features as well as for 
objects. 

If it is the case that humans have succeeded in developing 
such well-tuned representations, then it is indeed reasonable for 
us to assume that the relevant information, which corresponds 
to the part of the real-world situation which is responsible for 

I 
, 

\ B. COLORS VARYING IN 
LIGHTNESS 8 SATURATtON 
S: Shepard (195511958b) 1 
0: Shepard (195511962) 

S 

. 
R E. COLORS VARYING IN 

HUE (pigeon data) 
e S: Guttman 8 Kelish a 

0 (1956) 
0 0: Shepard (1965) 

0 H. 

\ 

COLORS VARYING iN 
HUE (pigeon data) 

l S: Blough (1961) 
0: Shepard (1965) 

C. POSITIONS VARYING IN 
A LINEAR SLOT 
S: Shepard (1958 b) 
0: Shepard (1958a) 

F. CONSONANT PHONEMES 
S: Miller & Nicely (1955) 

\ 

0: Shepard (1972) 

1 
I. VOWEL PHONEMES 

S: l%errpn & Barney 

0: Shepard (1972) 

I n l L. MORSE CODE SIGNALS 
l 

: 
S: Rothkopf (19.57) 
0: Cunningham 8 

a. Shepard (1974) 

Fig. 3 Plots of analogical response probability (S) g a ainst source-target difference (D) from [Shepard 811. 
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determining the queried aspect, will consist of a set of discrete 
features corresponding to the various possible causal factors 
present. This of course raises a vast throng of questions, not 
least of which is that of how an AI system is to ensure that its 
representation has the appropriate properties, or even it can 
know that it does or doesn’t. The subject of the semantic im- 
plications of using a particular representation is also touched 
upon in [Russell 86a], where we tie it in to the process of vo- 
cabulary acquisition; a real understanding is still far beyond 
our reach, but an appreciation of the problem, and the areas 
on which it impinges, is a first step. 

VI CONCLUSIONS 

The first steps toward a quantitative analysis of the proba- 
bility of correctness of an analogy as a function of the source- 
target difference have been presented, giving the first justi- 
fication for the maximal similarity heuristic. Although sev- 
eral difficult problems remain, it may be possible to define a 
representation-independent similarity measure on reliably cir- 
cumscribed object descriptions. The empirical verification of 
the theory by Shepard’s results is extremely good, in the sense 
that it shows that humans and animals possess a rational abil- 
ity to judge similarity which has evolved, presumably, because 
of the optimal performance of its predictions given the avail- 
able information. Shepard’s explanation of the results and our 
own are somewhat complementary in that he deals with unan- 
alyzed stimuli whereas our model assumes a breakdown into 
features. Given the usual nature of AI representations, this 
is well-suited for our purpose of constructing a computational 
theory of analogy and a generally useful analogy system for 
AI. We intend to further explore the implications and loose 
ends of the theory by performing large numbers of analogies 
in an AI database of general knowledge (Lenat’s CYC system; 
see [Lenat et al 861). A further goal is to integrate analogy by 
similarity with the determination-based analogical reasoning 
theory. We anticipate three forms of integration: 

overconstrained determinations will circumscribe broad 
classes of potentially relevant features; we reason by 
similarity within these constraints if no exact match can 
be found; 
probabilistic determinations can add weights to the con- 
tributions of individual attributes to the overall similar- 
ity total; 
observation of an unexpectedly high similarity can ini- 
tiate a search for a hitherto unknown regularity to be 
encoded as a new determination. 

When intelligent systems embodying full theories of limited 
rationality are built, an ability to perform analogical reason- 
ing using both determinations and similarity will be essential 
in order to allow the system to use its experience profitably. 
Analogy by similarity also seems extremely well suited to the 
task of producing reliably fast, plausible answers to problems, 
particularly in a parallel environment. It is hoped that the 
ideas in this paper have gone some way towards realizing this 
possibility, although it is clear that more questions have been 
raised, some of them for the first time, than have been an- 
swered. 
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