
Debugging User Conceptions of Interpretation Processes

M. J. Coon&*, R. T. Hartley* and J. G. Stellt

*Computing Research Laboratory, New Mexico State University
TDepartment of Computer Science, Manchester University, U.K.

ABSTRACT

The use of high level declarative languages has been ad-
vocated since they allow problems to be expressed in
terms of their domain facts, leaving details of execution
to the language interpreter. While this is a significant
advantage, it is frequently difficult to learn the pro-
cedural constraints imposed by the interpreter. Thus,
declarative failures may arise from misunderstanding
the implicit procedural content of a program. This pa-
per argues for a constructive approach to identifying
poor understanding of procedural interpretation, and
presents a prototype diagnostic system for Prolog.

i. Procedural Interference with Problem
Specification

Specification (“declarative”) languages have arisen out
of different considerations from conventional “procedur-
al” languages. Advocates of the former are concerned
with the structure of problems, whereas those support-
ing the latter are concerned with the structure of solu-
tions (Kowalski, 1979). Thus, declarative languages re-
quire constructs for problem decomposition and pro-
cedural ones for decomposing solutions.

While the declarative approach to programming is at-
tractive, there are difficulties in keeping the concept
pure. First, although applications which fit neatly into
the control structure underlying a particular language
will be easy to express, it will not be easy to write pro-
grams of any complexity outside its scope. To do this, a
clear understanding of the constraints imposed by the
inference engine on the expression of domain facts and
rules will be required (see Sauers, 1985 concerning the
effects of production system control schemes on
knowledge representation). Secondly, where ambiguity
exists in the user’s mind over the procedural semantics
of the language, it will be difficult for him (or an au-
tomated debugging aid) to separate errors in
specification from procedural errors. This will reduce
the vaIue of the language as a tool for programming
with domain knowledge, in which all errors should be

explained in terms of an omitted case or an incorrect
representation.

The logic language Prolog, for example, solves problems
by repeatedly decomposing them into simpler ones
which must be finally solved by matching facts in a da-
tabase. Decomposition is achieved by matching problem
statements to rule conclusions, the conditions necessary
for those conclusions representing sub-problems. If
some sub-problem fails, Prolog backtracks to the last
successful solution and seeks some alternative.
Although this backtracking is conceptually simple, its
effects can be complex and therefore difflcult to antici-
pate.

However, a Prolog program may produce an unexpected
result by successfully applying the first of two related
rules on backtracking, rather than moving on after
failure to apply the second rule. To understand this
behaviour, the user must know that all possible instan-
tiations of a given rule are tried before going on to an
alternative. Lacking such knowledge, it is unlikely that
the user will be able to induce the principle from the
program text by symbolic execution because the poor
procedural syntax provides few landmarks to help him
mentally test hypotheses concerning backtracking. He
may thus try to correct the program by re-writing the
rules, so changing the specification, when all that is re-
quired is to re-order them to allow the desired rule to be
taken first.

Since the text of a declarative language has to carry
both specification and procedural functions for the user,
errors in programs when viewed a.s specifications are
difficult to isolate due to confusion with procedural er-
rors. This difficulty is not found in conventional
languages where a separate specification can exist in-
dependent of the program. This paper thus advocates a
programming aid to help isolate procedural difficulties
with declarative languages (particularly those arising
from misconceptions), allowing specification errors to
remain for independent treatment.

COGNITIVE MODELLING AND EDUCATION / 30.3

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

2. A Consultant for Debugging User Conceptions
of Prolog Processes

The authors are developing a prototype consultancy sys-
tem for debugging user conceptions of Prolog interpreta-
tion processes (Coombs and Alty, 1984). Prolog was
selected because its predicate logic foundation promised
to make it especially suitable for specification program-
ming, yet considerable skill is actually required to mas-
ter the procedural constraints imposed by the inter-
preter. Moreover, contrary to our expectations, experts
continue to make similar errors to novices, although not
with the same frequency.

Many of the major problems of understanding Prolog
execution are related to backtracking. Even a simple
program of two or three clauses may backtrack in com-
plex ways which, if represented in full, would occupy
many pages of trace. Such behaviour may be difficult
to predict without a detailed mental model of process-
ing. However, mental execution is difficult to perform
accurately, given the lack of syntactic markers in Prolog
text to serve as signposts and the need to relate infor-
mation widely distributed in the sequence of execution
events (Green et al., 1981).

During learning, users develop a variety of different con-
ceptions concerning Prolog execution. These conceptions
have a procedural component and a memory com-

ponent. The latter forms a data structure, representing
the current state of a problem solution, upon which the
procedural component is formulated. In conventional
textbook descriptions, the memory component tends to
be an OR or an AND/OR tree of goals. We have
found, however, that novice Prolog programmers do not
use these simple tree structures (Coombs, 1985; McAlles-
ter, 1985). Instead, novices build their procedural
models based upon classification of program entities
(e.g. goals and clauses) as succeeded, failed and under
evaluation. This formally amounts to generating a se-
quence of mental AND trees, with subtrees added and
deleted with satisfaction and failure of goals. This ap-
proach results in a different class of procedural problems
from those following from textbook descriptions. The
two types of misconception described below - “try-
once-&-pass” and “redo-body-from-left” - have the
same underlying model, that of left-to-right execution of
conjunctive goals corresponding to the sequential
matching of nodes (goals) at a given level of an AND
tree.

‘LTry-once-&-pass77 and “redo-body-from-left”, which we
will use as examples in the rest of the paper, are the two
most common backtracking misconceptions. With the
former, a rule is (incorrectly) failed completely after the
failure of a single instantiation; with the latter, back-
tracking into a rule is (incorrectly) seen as proceeding
left-to-right, taking the first subgoal to succeed rather

than the last. These contrast with the correct pro-
cedure, in which all possible instantiations of a rule are
tried before progressing to an alternative clause, with
the rule subgoals being retried from right-to-left.

For example, with the failure of the goal “c(1)” in figure
1, given the success of “h(1,2)” and “i(2)“, “try-oRce-
&-pass” would cause the second “b” rule to be tried,
and “redo-body-from-left” would cause “d(X)” to be re-
tried in the first “b” clause (followed by “e(2)“). Under
correct execution, however, “d” and “e” would be re-
tried from “e(l)“; only after all matches had been made
would the second clause be taken.

1. a(X):-b(X),c(X).
2. b(X):-d(X),e(X).
3. b(X) :-f(X).
4. d(1).
5. d(2).
6. e(1).
7. e(2).
8. f(3).
9. c(3).

Figure 1. A simple Prolog’ program.

The consultant system is designed to be employed when
the user has doubts about his view of program execu-
tion. The system’s task is to explain such user miscon-
ceptions by building a modified interpreter (a “mal-
interpreter”) which reproduces the user’s account of exk-
cution. This mal-interpreter is constructed by replacing
the correct backtracking procedures with incorrect ones,
using evidence obtained from comparing the system’s
account of execution with that of the user.

A typical interaction with the system would be as fol-
lows. The user runs his faulted program on the correct
interpreter, which generates an internal system trace.
Using the same “trace language”, the user describes a
symbolic execution of the program. The system then
seeks discrepancies between the user’s trace and the sys-
tem trace and, requesting the user to give more detailed
accounts where necessary, arrives at the identity of
misapplied or misunderstood interpreter concept.

3. The Symbolic Execution Language

The model is described in a conceptual representation
language adapted from the conceptual graphs of Sowa

(S owa, 1984; Hartley, 1985). This is summarised in
figure 2 a.s a procedural net (Sacerdoti 1977). However,
in the complete representational scheme, the edges in
the network become actors and the nodes become sub-
types of the type GOAL. Each actor is triggered in-
dependently when all of its inputs concepts are instan-
tiated. The concept graph provides a framework for or-
ganizing erroneous interpreter elements (figures 3 and 4)

304 / SCIENCE

(LLmal-rules”) and for creating statements for the trace
language.

USER <GOAL>

1
FAIL-OUT CALL <GOAL>

MARK-CLAUSE

REJECT<CLAUSE”>

Figure 2. The correct interpreter.

The trace is based upon the familiar box model, with
states CALL, EXIT, FAIL and REDO. The model
describes a range of operations, the most central of
which are the “matching” of goals to clauses and crea-
tion of new goals both forwards (“goal-gen”) and on
backtracking (“back-goal-gen”).

4. Bug Diagnosis as Alternative Interpreter Gen-
eration

The diagnostic procedure is based on the assumption
that discrepancies between the system trace and user
trace are generated by discrepancies between the correct
interpreter and a hypothetical interpreter. The task of
the system is to identify these second discrepancies,
which may be seen as user misconceptions concerning
Prolog procedural semantics.

These hypothetical interpreters and the correct Prolog
interpreter are seen as instantiations of a generic inter-
preter, organized hierarchically into modules. The gener-
ic slots in the interpreters are instantiated by particular
procedures for Prolog semantic concepts. A Prolog se-
mantic concept is, for example, “backtracking” or
“unification”; these concepts are defined in different
ways in actual interpreter modules. In order to simplify
our task, we have only fully specified the backtracking
module.

************x**

N&E: backtrack(ProofTree,.X)

PAR&f: <<clean(X,Y)>
<back_goal_gen(ProofTree,X)>>

EDDY: backtrack(ProofTree,X) :-
back_goal_gen(ProofTree,Y),
clean(Y,X),
trace-rep(redo(X)).

Figure 3. The backtracking module.

proof trees are of the form:

[Goal ,Clause-no,List-of-Subgoals]
e.g. for a in 1. a:-b,c.

2. b.
3. c:-d.

tree is [af;,y.]b,Z, []]) IcAl bb4Jl1 11 I 1

/* correct rule */

backxoalsen([Goal,-,Sub],BkGoal) :-
last(Sub,L),
back_goal_gen(L,BkGoal),

back_goal_gen([Goal ,N, []] ,Goal) .

/* mal-rule 1 - redo-body-from left */

back_goal_gen([Goal ,-,Sub] ,BkGoal) : -
Sub = [L,-,[[B~al,X,IEs]lT]],
last([[B~al,X,~lITl,[~,-,[]~),
t ree-unmark(T) .

/* tree-unmark(T) unrmrks all of the */
/* clauses in the list of sub-trees T */

back_goal_gen([Goal ,-,Sub] ,BkGoal) : -
last(Sub,L),
back_goal_gen(L,BkGoal).

back_goal_gen([Goal ,N, []] ,Goal) .

Figure 4. An example mal-rule.

The module selection process involves the following
stages:

i) locate sequentially first trace line discrepancy;

ii) generate list of possible wrong atomic inter-
preter modules [using “trace pattern/module”
pairs];

iii) run possible interpreters - if no wrong module
specified in above list, use the correct module;

iv) select interpreter accounting for largest sec-

COGNITIVE MODELLING AND EDUCATION / 30 j

tion of incorrect trace;

4 communicate misconception to the user, in-
viting him to explore it via the tutoring module
and to make the appropriate corrections to his
symbolic execution;

vi) repeat at i) - wrong modules may be plugged
in where the correct module is used in the inter-
preter (we make the simplifying assumption in
the prototype that misconceptions are consistent
throughout a single symbolic execution).

5. An Example of a Debugging Interaction

The example illustrates the debugging of a symbolic ex-
ecution which predicts the correct solution for a pro-
gram run but which the user suspected was faulty. The
program is the same as in figure 1. It implements a
standard “generate-and-test” sequence, a state generat-
ed by the “h” predicate being tested by the “i” predi-
cate, and the result of the “b” predicate being tested by
the “c” predicate. A summary of the diagnostic process
is given below.

The system first runs the program and generates the
trace labeled SYl (figure 5). The user is then invited to
give his account of execution in summary form (trace
TJl). Taking the two traces, the system first identifies

the discrepancy noted by the arrow pointing to “REDO
b(X)” in Ul and then seeks to explain it in terms of
modifications to the correct interpreter.

ST1
C4LL a(X)

C4LL b(X)
CALL h(X,Y)
CWL i(2)

CALL c(1)
REDO i(2)

- h(X,-f)
C4LL i(4)

- h(X,Y)

- b(X)
C4LL h(Y,X)
CALL i(1)

- h(Y,W
C4LL i(3)
CALL c(4)

C&Pa(X)

CALL b(X)
CALL h(X,Y)
CALL i(2) u2

CALL c(1) CALL c(1)

- b(X) FAIL c(1)
CALL h(Y,X) - b(X)
CALL i(1) reject r2
CALL h(X,Y) CALL h(Y,X)
CALL i(4) MIT h(1,2)
CALL h(Y,X) sY2
CALL i(3) CALL c(1)
CALL c(4) FAIL c(1)

- b(X)
reject r2
match r3

CALL h(Y,X)
EXIT h(l,2)

u3

CALL c(1)
FAIL c(1)

- h(X,Y)
reject f4
MIT h(3,4)

sY3
CALL c(1)
FAIL c(1)

- h(X,Y)
reject f4
match f5

EXIT h(3,4)

C‘ZC(1)

FAIL c(1)
FEIXI i(2)
continue r2
reject f6
FAIL i(2)

- h&Y)
match f5
MIT h(3,4)

s-Y5 PJl I
C4LL a(X) CALL a(X)
C4LL b(X) CALL b(X)
CALL h(X,Y) CALL h(X,Y)

CALL i(2) CALL i(2)
c4LdL c(1) CALL c(1)

- b(X) - b(X)
CALL h(Y,X)
C&EL i(1)

CALL h(Y,X)
G4LL i(3)
CALL c(4)

CALL h(Y,X)
CALL i(1) CALiT i(1)

CALL h(X,Y) FAIL i(1)
CALL i(4) CALL h(X,Y)
CALL h(Y,X) mtch r2

CALL i(3) EXIT h(3,4)
CALL c(4) CALL i(4)

FAIL i(4)
sY6

CALL i(1)
FAIL i(1)
CALL h(X,Y)

U6
CALL i(1)
FAIL i(1)

CALL h(X,Y)
reject r3

match r2

EXIT h(3,4)

CALL i(4)

FAIL i(4)

sY7
- a(X)
- b(X)
CALL h(X,Y)
CALL-i (2)

- c(l)
- b(X)
- h(Y,X)
CALL i(l)
CALL h(X,Y)

CALL i(4)

- h(Y,X)
C4LL i(3)
CALL c(4)

reject r3

Having identified a work area, taken as the discrepant
match r2
MIT h(3,4)

item with a context of one item either side, the system
attempts to match the trace pattern to the database of
patterns which index the incorrect interpreter rules.
Failing to find such a match, the system requests a more
detailed account of the work area. Increasing detail is
requested until a match is found to one or more mal-
rules. The more detailed user trace for this example is
given by U2.

CALL i(4)
FAIL i(4)

~**

Figure 6. Trace interpretation.

Having identified possible mal-rules (the single rule
“try-once-&-pass” in the present case), the Prolog inter-
preter is modified to include this rule and run on the
user’s program. The trace generated from this (trace
SY2) is compared with the user’s trace (U2) and, in the
present case, found to give an acceptable match. The
nature of the bug LLtry-once-&-pass” is then communi-
cated to the user, and he is invited to run and inspect
traces from tutoring programs designed to highlight
differences between the erroneous interpreter rule and
the correct rule.

Following the tutoring phase, the user is invited to
correct the trace. The user’s modified trace segment is
given in U3, and it may be seen that his account still
fails to correspond to the correct system trace ($71).

306 / SCIENCE

The old error proved to hide a further misunderstand-
ing, which must now be identified and corrected. The
same procedure is adopted as before, it being found this
time that additionally the user does not understand that
subgoals are backtracked into from the right (the mal-
rule “redo-body-from-left”). Tutoring is accordingly un-
dertaken, and the misconceptions within the current
work area are corrected. This is demonstrated by the
user trace U4.

At this point, the system has identified two mal-rules
present within the user’s view of Prolog execution and
has constructed a mal-interpreter to include these rules.
On the assumption that these misconceptions will apply
throughout the trace, the system proceeds to seek the
next bug. This is achieved by first executing the user’s
program with the mal-interpreter to generate a further
trace (SY5), and then comparing this trace with the
user’s original account of execution modified by the re-
vised segment. In the example, this identifies a further
work area (detailed in U5) which is finally explained by
a further mal-rule (LLfast~rule~cycle”), the interpreter
for which produces SY6. This is similar to “try-once-
&-pass”, where a given set of rules are all tried on a sin-
gle fact, only moving on to the next fact after failure.
Tutoring is undertaken for this misconception, which
results in a correction to the trace - U6. A further at-
tempt is made to find another work area. In the present
case, the three misconceptions account for the user trace

(compare Ul and SY7), SO the consultation is terminat-
ed.

6. Conclusions

The present prototype system is able to diagnose 6
backtracking misconceptions. These are all “primitive”
misconceptions in that they do not form a part of some
error model and are assumed to be composed sequential-
ly within the mal-interpreter. Some experimental work
has indicated that this is not necessarily true of Prolog
misunderstandings, some being clearly nested in others.
Further, it is not clear that users are necessarily con-
sistent in their errors of understanding nor that the
failure to generate a trace error implies that the user
correctly understands an interpreter concept; the user
may have a “loose” concept of the interpretation pro-
cess which is nevertheless adequate for a particular
problem.

These limitations do affect the range of misconceptions
capable of being diagnosed and corrected. However, the
approach has proved robust on the typical problems
presented in basic Prolog courses, which is when it is
important that learners should develop a correct image
of bhe interpretation process to employ for symbolic exe-
cution. Moreover, the modular approach to building
our interpreter makes the progressive improvement of
the system relatively easy.

The current system is a prototype and as such contains
only a novice conception of Prolog based on the goal
structure of successive AND trees (searches through pro-
gram text). However, when a Prolog user gains experi-
ence both his goal structures and their related pro-
cedures change. At an advanced stage of learning for ex-
ample, users employ an OR tree of goal stacks which
greatly simplifies the backtracking rule. A realistic con-
sultant would have to be able to represent transitions
between such successive conceptualizations. This would
require considerable additional knowledge including
strategies for reducing the model’s complexity.

Although considerable further research is required into
the origin of Prolog misconceptions, their diagnosis and
correction, we are confident that the present method of
analysing, representing and simulating symbolic execu-
tion will accommodate the new knowledge.

References

Coombs, M.J. (1985). Internal and external semantics
for Prolog: debugging the user interpreter. Invited
talk, CRL, NMSU, Las Cruces.

Coombs, M.J. and Alty, J.L. (1984). Expert systems: an
alternative paradigm. International Journal of
Man-Machine Studies, 20, 21-43.

Green, T.R.G., Sime, M.E. and Fitter, M.J. (1981). The
art of notation. In M.J. Coombs and J.L. Alty (eds),

Computing Skills and the User Interface. London:
Academic Press.

Hartley R.T. (1985). Representation of procedural
knowledge for expert systems. 2nd. IEEE confer-
ence on AI applications.

Kowalski, R. (1983). Logic for Problem Solving. New
York: North-Holland.

McAllester, K. (1985). A debugging system for Prolog
programs by user query. Technical Memorandum,
Computer Science, University of Strathclyde.

Sacerdoti, E.D. (1977). A St ructure for Plans and
Behaviour. New York: Elsevier.

Sauers, R. (1986). Controlling expert systems. In L. Bolt
and M.J. Coombs (Eds.), Computer Expert Systems.
Springer-Verlag - in production.

Sowa, J.F. (1984). C onceptual Structures. Addison Wes-
ley.

COGNITIVE MODELLING AND EDUCATION / 307

