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ABSTRACT 

The use of high level declarative languages has been ad- 
vocated since they allow problems to be expressed in 
terms of their domain facts, leaving details of execution 
to the language interpreter. While this is a significant 
advantage, it is frequently difficult to learn the pro- 
cedural constraints imposed by the interpreter. Thus, 
declarative failures may arise from misunderstanding 
the implicit procedural content of a program. This pa- 
per argues for a constructive approach to identifying 
poor understanding of procedural interpretation, and 
presents a prototype diagnostic system for Prolog. 

i. Procedural Interference with Problem 
Specification 

Specification (“declarative”) languages have arisen out 
of different considerations from conventional “procedur- 
al” languages. Advocates of the former are concerned 
with the structure of problems, whereas those support- 
ing the latter are concerned with the structure of solu- 
tions (Kowalski, 1979). Thus, declarative languages re- 
quire constructs for problem decomposition and pro- 
cedural ones for decomposing solutions. 

While the declarative approach to programming is at- 
tractive, there are difficulties in keeping the concept 
pure. First, although applications which fit neatly into 
the control structure underlying a particular language 
will be easy to express, it will not be easy to write pro- 
grams of any complexity outside its scope. To do this, a 
clear understanding of the constraints imposed by the 
inference engine on the expression of domain facts and 
rules will be required (see Sauers, 1985 concerning the 
effects of production system control schemes on 
knowledge representation). Secondly, where ambiguity 
exists in the user’s mind over the procedural semantics 
of the language, it will be difficult for him (or an au- 
tomated debugging aid) to separate errors in 
specification from procedural errors. This will reduce 
the vaIue of the language as a tool for programming 
with domain knowledge, in which all errors should be 

explained in terms of an omitted case or an incorrect 
representation. 

The logic language Prolog, for example, solves problems 
by repeatedly decomposing them into simpler ones 
which must be finally solved by matching facts in a da- 
tabase. Decomposition is achieved by matching problem 
statements to rule conclusions, the conditions necessary 
for those conclusions representing sub-problems. If 
some sub-problem fails, Prolog backtracks to the last 
successful solution and seeks some alternative. 
Although this backtracking is conceptually simple, its 
effects can be complex and therefore difflcult to antici- 
pate. 

However, a Prolog program may produce an unexpected 
result by successfully applying the first of two related 
rules on backtracking, rather than moving on after 
failure to apply the second rule. To understand this 
behaviour, the user must know that all possible instan- 
tiations of a given rule are tried before going on to an 
alternative. Lacking such knowledge, it is unlikely that 
the user will be able to induce the principle from the 
program text by symbolic execution because the poor 
procedural syntax provides few landmarks to help him 
mentally test hypotheses concerning backtracking. He 
may thus try to correct the program by re-writing the 
rules, so changing the specification, when all that is re- 
quired is to re-order them to allow the desired rule to be 
taken first. 

Since the text of a declarative language has to carry 
both specification and procedural functions for the user, 
errors in programs when viewed a.s specifications are 
difficult to isolate due to confusion with procedural er- 
rors. This difficulty is not found in conventional 
languages where a separate specification can exist in- 
dependent of the program. This paper thus advocates a 
programming aid to help isolate procedural difficulties 
with declarative languages (particularly those arising 
from misconceptions), allowing specification errors to 
remain for independent treatment. 
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2. A Consultant for Debugging User Conceptions 
of Prolog Processes 

The authors are developing a prototype consultancy sys- 
tem for debugging user conceptions of Prolog interpreta- 
tion processes (Coombs and Alty, 1984). Prolog was 
selected because its predicate logic foundation promised 
to make it especially suitable for specification program- 
ming, yet considerable skill is actually required to mas- 
ter the procedural constraints imposed by the inter- 
preter. Moreover, contrary to our expectations, experts 
continue to make similar errors to novices, although not 
with the same frequency. 

Many of the major problems of understanding Prolog 
execution are related to backtracking. Even a simple 
program of two or three clauses may backtrack in com- 
plex ways which, if represented in full, would occupy 
many pages of trace. Such behaviour may be difficult 
to predict without a detailed mental model of process- 
ing. However, mental execution is difficult to perform 
accurately, given the lack of syntactic markers in Prolog 
text to serve as signposts and the need to relate infor- 
mation widely distributed in the sequence of execution 
events (Green et al., 1981). 

During learning, users develop a variety of different con- 
ceptions concerning Prolog execution. These conceptions 
have a procedural component and a memory com- 

ponent. The latter forms a data structure, representing 
the current state of a problem solution, upon which the 
procedural component is formulated. In conventional 
textbook descriptions, the memory component tends to 
be an OR or an AND/OR tree of goals. We have 
found, however, that novice Prolog programmers do not 
use these simple tree structures (Coombs, 1985; McAlles- 
ter, 1985). Instead, novices build their procedural 
models based upon classification of program entities 
(e.g. goals and clauses) as succeeded, failed and under 
evaluation. This formally amounts to generating a se- 
quence of mental AND trees, with subtrees added and 
deleted with satisfaction and failure of goals. This ap- 
proach results in a different class of procedural problems 
from those following from textbook descriptions. The 
two types of misconception described below - “try- 
once-&-pass” and “redo-body-from-left” - have the 
same underlying model, that of left-to-right execution of 
conjunctive goals corresponding to the sequential 
matching of nodes (goals) at a given level of an AND 
tree. 

‘LTry-once-&-pass77 and “redo-body-from-left”, which we 
will use as examples in the rest of the paper, are the two 
most common backtracking misconceptions. With the 
former, a rule is (incorrectly) failed completely after the 
failure of a single instantiation; with the latter, back- 
tracking into a rule is (incorrectly) seen as proceeding 
left-to-right, taking the first subgoal to succeed rather 

than the last. These contrast with the correct pro- 
cedure, in which all possible instantiations of a rule are 
tried before progressing to an alternative clause, with 
the rule subgoals being retried from right-to-left. 

For example, with the failure of the goal “c(1)” in figure 
1, given the success of “h(1,2)” and “i(2)“, “try-oRce- 
&-pass” would cause the second “b” rule to be tried, 
and “redo-body-from-left” would cause “d(X)” to be re- 
tried in the first “b” clause (followed by “e(2)“). Under 
correct execution, however, “d” and “e” would be re- 
tried from “e(l)“; only after all matches had been made 
would the second clause be taken. 

1. a(X):-b(X),c(X). 
2. b(X):-d(X),e(X). 
3. b(X) :-f(X). 
4. d(1). 
5. d(2). 
6. e(1). 
7. e(2). 
8. f(3). 
9. c(3). 

Figure 1. A simple Prolog’ program. 

The consultant system is designed to be employed when 
the user has doubts about his view of program execu- 
tion. The system’s task is to explain such user miscon- 
ceptions by building a modified interpreter (a “mal- 
interpreter”) which reproduces the user’s account of exk- 
cution. This mal-interpreter is constructed by replacing 
the correct backtracking procedures with incorrect ones, 
using evidence obtained from comparing the system’s 
account of execution with that of the user. 

A typical interaction with the system would be as fol- 
lows. The user runs his faulted program on the correct 
interpreter, which generates an internal system trace. 
Using the same “trace language”, the user describes a 
symbolic execution of the program. The system then 
seeks discrepancies between the user’s trace and the sys- 
tem trace and, requesting the user to give more detailed 
accounts where necessary, arrives at the identity of 
misapplied or misunderstood interpreter concept. 

3. The Symbolic Execution Language 

The model is described in a conceptual representation 
language adapted from the conceptual graphs of Sowa 

(S owa, 1984; Hartley, 1985). This is summarised in 
figure 2 a.s a procedural net (Sacerdoti 1977). However, 
in the complete representational scheme, the edges in 
the network become actors and the nodes become sub- 
types of the type GOAL. Each actor is triggered in- 
dependently when all of its inputs concepts are instan- 
tiated. The concept graph provides a framework for or- 
ganizing erroneous interpreter elements (figures 3 and 4) 
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(LLmal-rules”) and for creating statements for the trace 
language. 

USER <GOAL> 

1 
FAIL-OUT CALL <GOAL> 

MARK-CLAUSE 

REJECT<CLAUSE”> 

Figure 2. The correct interpreter. 

The trace is based upon the familiar box model, with 
states CALL, EXIT, FAIL and REDO. The model 
describes a range of operations, the most central of 
which are the “matching” of goals to clauses and crea- 
tion of new goals both forwards (“goal-gen”) and on 
backtracking (“back-goal-gen”). 

4. Bug Diagnosis as Alternative Interpreter Gen- 
eration 

The diagnostic procedure is based on the assumption 
that discrepancies between the system trace and user 
trace are generated by discrepancies between the correct 
interpreter and a hypothetical interpreter. The task of 
the system is to identify these second discrepancies, 
which may be seen as user misconceptions concerning 
Prolog procedural semantics. 

These hypothetical interpreters and the correct Prolog 
interpreter are seen as instantiations of a generic inter- 
preter, organized hierarchically into modules. The gener- 
ic slots in the interpreters are instantiated by particular 
procedures for Prolog semantic concepts. A Prolog se- 
mantic concept is, for example, “backtracking” or 
“unification”; these concepts are defined in different 
ways in actual interpreter modules. In order to simplify 
our task, we have only fully specified the backtracking 
module. 

************x********************************************** 

N&E: backtrack(ProofTree,.X) 

PAR&f: <<clean(X,Y)> 
<back_goal_gen(ProofTree,X)>> 

EDDY: backtrack(ProofTree,X) :- 
back_goal_gen(ProofTree,Y), 
clean(Y,X), 
trace-rep(redo(X)). 

*********************************************************** 

Figure 3. The backtracking module. 

*********************************************************** 
proof trees are of the form: 

[Goal ,Clause-no,List-of-Subgoals] 
e.g. for a in 1. a:-b,c. 

2. b. 
3. c:-d. 

tree is [af;,y.]b,Z, [] ] ) IcAl bb4Jl1 11 I 1 

/* correct rule */ 

backxoalsen([Goal,-,Sub],BkGoal) :- 
last(Sub,L), 
back_goal_gen(L,BkGoal), 

back_goal_gen( [Goal ,N, [ ] ] ,Goal) . 

/* mal-rule 1 - redo-body-from left */ 

back_goal_gen( [Goal ,-,Sub] ,BkGoal) : - 
Sub = [L,-,[[B~al,X,IEs]lT]], 
last([[B~al,X,~lITl,[~,-,[]~), 
t ree-unmark(T) . 

/* tree-unmark(T) unrmrks all of the */ 
/* clauses in the list of sub-trees T */ 

back_goal_gen( [Goal ,-,Sub] ,BkGoal) : - 
last(Sub,L), 
back_goal_gen(L,BkGoal). 

back_goal_gen( [Goal ,N, [ ] ] ,Goal) . 

*********************************************************** 

Figure 4. An example mal-rule. 

The module selection process involves the following 
stages: 

i) locate sequentially first trace line discrepancy; 

ii) generate list of possible wrong atomic inter- 
preter modules [using “trace pattern/module” 
pairs]; 

iii) run possible interpreters - if no wrong module 
specified in above list, use the correct module; 

iv) select interpreter accounting for largest sec- 
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tion of incorrect trace; 

4 communicate misconception to the user, in- 
viting him to explore it via the tutoring module 
and to make the appropriate corrections to his 
symbolic execution; 

vi) repeat at i) - wrong modules may be plugged 
in where the correct module is used in the inter- 
preter (we make the simplifying assumption in 
the prototype that misconceptions are consistent 
throughout a single symbolic execution). 

5. An Example of a Debugging Interaction 

The example illustrates the debugging of a symbolic ex- 
ecution which predicts the correct solution for a pro- 
gram run but which the user suspected was faulty. The 
program is the same as in figure 1. It implements a 
standard “generate-and-test” sequence, a state generat- 
ed by the “h” predicate being tested by the “i” predi- 
cate, and the result of the “b” predicate being tested by 
the “c” predicate. A summary of the diagnostic process 
is given below. 

The system first runs the program and generates the 
trace labeled SYl (figure 5). The user is then invited to 
give his account of execution in summary form (trace 
TJl). Taking the two traces, the system first identifies 

the discrepancy noted by the arrow pointing to “REDO 
b(X)” in Ul and then seeks to explain it in terms of 
modifications to the correct interpreter. 

ST1 
C4LL a(X) 

C4LL b(X) 
CALL h(X,Y) 
CWL i(2) 

CALL c(1) 
REDO i(2) 

- h(X,-f) 
C4LL i(4) 

- h(X,Y) 

- b(X) 
C4LL h(Y,X) 
CALL i(1) 

- h(Y,W 
C4LL i(3) 
CALL c(4) 

C&Pa(X) 

CALL b(X) 
CALL h(X,Y) 
CALL i(2) u2 

CALL c(1) CALL c(1) 

- b(X) FAIL c(1) 
CALL h(Y,X) - b(X) 
CALL i(1) reject r2 
CALL h(X,Y) CALL h(Y,X) 
CALL i(4) MIT h(1,2) 
CALL h(Y,X) sY2 
CALL i(3) CALL c(1) 
CALL c(4) FAIL c(1) 

- b(X) 
reject r2 
match r3 

CALL h(Y,X) 
EXIT h(l,2) 

u3 

CALL c(1) 
FAIL c(1) 

- h(X,Y) 
reject f4 
MIT h(3,4) 

sY3 
CALL c(1) 
FAIL c(1) 

- h(X,Y) 
reject f4 
match f5 

EXIT h(3,4) 

C‘ZC(1) 

FAIL c(1) 
FEIXI i(2) 
continue r2 
reject f6 
FAIL i(2) 

- h&Y) 
match f5 
MIT h(3,4) 

s-Y5 PJl I 
C4LL a(X) CALL a(X) 
C4LL b(X) CALL b(X) 
CALL h(X,Y) CALL h(X,Y) 

CALL i(2) CALL i(2) 
c4LdL c(1) CALL c(1) 

- b(X) - b(X) 
CALL h(Y,X) 
C&EL i(1) 

CALL h(Y,X) 
G4LL i(3) 
CALL c(4) 

CALL h(Y,X) 
CALL i(1) CALiT i(1) 

CALL h(X,Y) FAIL i(1) 
CALL i(4) CALL h(X,Y) 
CALL h(Y,X) mtch r2 

CALL i(3) EXIT h(3,4) 
CALL c(4) CALL i(4) 

FAIL i(4) 
sY6 

CALL i(1) 
FAIL i(1) 
CALL h(X,Y) 

U6 
CALL i(1) 
FAIL i(1) 

CALL h(X,Y) 
reject r3 

match r2 

EXIT h(3,4) 

CALL i(4) 

FAIL i(4) 

sY7 
- a(X) 
- b(X) 
CALL h(X,Y) 
CALL-i (2) 

- c(l) 
- b(X) 
- h(Y,X) 
CALL i(l) 
CALL h(X,Y) 

CALL i(4) 

- h(Y,X) 
C4LL i(3) 
CALL c(4) 

reject r3 

Having identified a work area, taken as the discrepant 
match r2 
MIT h(3,4) 

item with a context of one item either side, the system 
attempts to match the trace pattern to the database of 
patterns which index the incorrect interpreter rules. 
Failing to find such a match, the system requests a more 
detailed account of the work area. Increasing detail is 
requested until a match is found to one or more mal- 
rules. The more detailed user trace for this example is 
given by U2. 

CALL i(4) 
FAIL i(4) 

*******************************************************~***** 

Figure 6. Trace interpretation. 

Having identified possible mal-rules (the single rule 
“try-once-&-pass” in the present case), the Prolog inter- 
preter is modified to include this rule and run on the 
user’s program. The trace generated from this (trace 
SY2) is compared with the user’s trace (U2) and, in the 
present case, found to give an acceptable match. The 
nature of the bug LLtry-once-&-pass” is then communi- 
cated to the user, and he is invited to run and inspect 
traces from tutoring programs designed to highlight 
differences between the erroneous interpreter rule and 
the correct rule. 

Following the tutoring phase, the user is invited to 
correct the trace. The user’s modified trace segment is 
given in U3, and it may be seen that his account still 
fails to correspond to the correct system trace ($71). 
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The old error proved to hide a further misunderstand- 
ing, which must now be identified and corrected. The 
same procedure is adopted as before, it being found this 
time that additionally the user does not understand that 
subgoals are backtracked into from the right (the mal- 
rule “redo-body-from-left”). Tutoring is accordingly un- 
dertaken, and the misconceptions within the current 
work area are corrected. This is demonstrated by the 
user trace U4. 

At this point, the system has identified two mal-rules 
present within the user’s view of Prolog execution and 
has constructed a mal-interpreter to include these rules. 
On the assumption that these misconceptions will apply 
throughout the trace, the system proceeds to seek the 
next bug. This is achieved by first executing the user’s 
program with the mal-interpreter to generate a further 
trace (SY5), and then comparing this trace with the 
user’s original account of execution modified by the re- 
vised segment. In the example, this identifies a further 
work area (detailed in U5) which is finally explained by 
a further mal-rule (LLfast~rule~cycle”), the interpreter 
for which produces SY6. This is similar to “try-once- 
&-pass”, where a given set of rules are all tried on a sin- 
gle fact, only moving on to the next fact after failure. 
Tutoring is undertaken for this misconception, which 
results in a correction to the trace - U6. A further at- 
tempt is made to find another work area. In the present 
case, the three misconceptions account for the user trace 

(compare Ul and SY7), SO the consultation is terminat- 
ed. 

6. Conclusions 

The present prototype system is able to diagnose 6 
backtracking misconceptions. These are all “primitive” 
misconceptions in that they do not form a part of some 
error model and are assumed to be composed sequential- 
ly within the mal-interpreter. Some experimental work 
has indicated that this is not necessarily true of Prolog 
misunderstandings, some being clearly nested in others. 
Further, it is not clear that users are necessarily con- 
sistent in their errors of understanding nor that the 
failure to generate a trace error implies that the user 
correctly understands an interpreter concept; the user 
may have a “loose” concept of the interpretation pro- 
cess which is nevertheless adequate for a particular 
problem. 

These limitations do affect the range of misconceptions 
capable of being diagnosed and corrected. However, the 
approach has proved robust on the typical problems 
presented in basic Prolog courses, which is when it is 
important that learners should develop a correct image 
of bhe interpretation process to employ for symbolic exe- 
cution. Moreover, the modular approach to building 
our interpreter makes the progressive improvement of 
the system relatively easy. 

The current system is a prototype and as such contains 
only a novice conception of Prolog based on the goal 
structure of successive AND trees (searches through pro- 
gram text). However, when a Prolog user gains experi- 
ence both his goal structures and their related pro- 
cedures change. At an advanced stage of learning for ex- 
ample, users employ an OR tree of goal stacks which 
greatly simplifies the backtracking rule. A realistic con- 
sultant would have to be able to represent transitions 
between such successive conceptualizations. This would 
require considerable additional knowledge including 
strategies for reducing the model’s complexity. 

Although considerable further research is required into 
the origin of Prolog misconceptions, their diagnosis and 
correction, we are confident that the present method of 
analysing, representing and simulating symbolic execu- 
tion will accommodate the new knowledge. 
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