
An Analysis of Tutorial Reasoning

About Programming Bugs

David C. Littman, Jeannine Pinto & Elliot Soloway

Cognition and Programming Project

Department of Computer Science

Yale University

Abstract
New Haven, CT 06620

what knowledge to teach a student who makes a bug nor
about how to teach the knowledge. In a sense, all the tutorial
knowledge possessed by such systems is ‘compiled”. The
three step model may be appropriate for tutoring students
when their bugs do not reflect deep misunderstandings, or
when one bug always should get the same intervention.
However, it seems unlikely to be effective in domains such as
computer programming where students’ bugs are often related
and may reflect deep misconceptions about how to solve
problems or about the constructs of the programming
language. In complex domains such as programming, tutors
seem to engage in extensive reasoning about how to tutor
students who make serious bugs. As an example of the kinds
of issues a tutor reasons about when tutoring students in
complex domains, consider the ostensibly simple problem of
&en to deliver tutorial interventions. Two opposite
strategies been proposed:

A significant portion of tutorial interactions revolve around
the bugs a student makes. When a tutor performs an
intervention to help a student fix a programming bug, the
problem of deciding which intervention to perform requires
extensive reasoning. In this paper, we identify five tutorial
considerations tutors appear to use when they reason
about how to construct tutorial interventions for students’
bugs. Using data collected from human tutors working in
the domain of introductory computer programming, we
identify the knowledge tutors use when they reason about
the five considerations and show that tutors are cottsistent
in the ways that they use the kinds of knowledge to remon
about students’ bugs. In this paper we illustrate our
findings of tutorial consistency by showing that tutors are
consistent in how they reason about bug criticality and
bug categories. We suggest some implications of these
empirical findings for the construction of intelligent
tutoring systems.

1 Introduction: The Problem of Tutorial
Consistency
A key issue for designers of Intelligent Tutoring Systems is

how to treat students’ bugs.
Collins and Stevens (1976))

Both the research of others (e.g.,
and our own work (Littman,

Pinto, and Soloway (1985)) suggest, that bugs play a central
role in tutoring. In a sense, tutors use bugs to drive the
tutorial process: bugs help the tutor understand what the
student does not understand and they provide a ready forum
for communication with students since all students want to
fix their bugs. Though most tutors try to help students fix
bugs, the skill of expert tutors, and therefore effective
Intelligent Tutoring Systems, lies in how they use bugs in
their tutorial interven?ions. A simple first-order model for
using bugs in tutoring would have three steps:

l ident.ify the bug

l look up an appropriate response to the bug in a
database of tutorial responses

l deliver the appropriate response to the student.

This three step model of tutorial intervention, which is
essentially the model used by CA1 systems (Carbonell (1970)),
does not require the tutoring system to reason either about

The research reported in this paper was cosponsored by the
Personnel and Training Division Research Groups,
Psychological Sciences Division, Office of Naval Research and
the Army Research Institute for the Behavioral and Social
Sciences, under Contract No. NOOO14-82-k0714, Contract
Authority Identification Number 154-492.

l The LISP tutor of John Anderson’s group (cf.
Anderson, Boyle, Farrell, and Reiser (1984))
provides immediate feedback to the student on all
bugs the student makes.

l The WEST tutor of Brown and Burton (1982)
plays a very conservative “coaching” role with the
goal of minimizing interruptions of the student’s
problem solving. WEST takes a ‘<wait-and-see”
attitude to interrupting the student, trying to
collect diagnostic information from patterns of
bugs.

Since the three step model seems inappropriate for the
Intelligent Tutoring Systems that will have to be built for
complex domains, and since there appears to be considerable
controversy about the generation of tutorial interventions, we
decided that it would be useful to study human tutors in an
effort to determine how they reason about tutorial
interventions for students who make bugs.

Our general approach to studying how tutors reason about
bugs was to identify several issues that we believe tutors
reason about to generate their interventions. From interviews
with tutors, and videotapes of interactive tutoring sessions,
we identified five main issues tutors reason about when they
generate their tutorial interventions. Each of these issues,
called a tutorial consideration, influences the tutor’s decisions
about which bugs to tutor, when to tutor them, and how to
tutor them. The five tutorial considerations are:

1. How critical the bugs are

2. What category the bugs fall into

3. What caused the bugs

4. What tutorial goals are appropriate for tutoring
the bugs

320 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

5. 12’hat tutorial interventions would achieve the
tutorial goals

i$*ith this very genera! set of tutorial considerations in mind
we designed a variant of a protocol study (Newel! and Simon
(1972)) that was intended to present tutors with situations
that would lead them to reason about the five tutoria!
considerations. Tutors were presented with buggy programs
actually written by students in an introductory PASCAL
programming class and asked to answer questions designed to
elicit reasoning about, the five tutorial considerations. For
example, we asked tutors w-by they thought the student who
wrote each program made the bugs, what goals they had for
tutoring the student, and what they would actually do to
tutor the student.

During our initial analysis of the data set, we have had the
goal of simply identifying and describing the kinds of
knowledge tutors have and the factors that tutors take into
account when they reasoned about the five tutorial

considerations. By abstracting the responses of many tutors
to the same questions, we have begun to identify different
kinds of knowledge tutors use and the factors that they weigh
when they make decisions about the tutorial considerations.
Our initial description of the data, therefore, is in terms of:

l tutorial considerations

l kinds of knowledge tutors use in reasoning about
tutorial considerations

l factors that comprise the knowledge tutors use

Though we do not yet have a computer program that
implements our findings about human tutors, we definitely
plan to use the information we acquire from this study to
guide our development of Intelligent Tutoring Systems. Since
at this point we are trying to develop a descriptive vocabulary
that permits us to express tutorial knowledge and reasoning,
and to describe such knowledge and reasoning, our current
research is more appropriately viewed as theory b&f&g than
as theory application. Hence, in this paper we present part of
the vocabulary and use it to show that tutors are consistent
when reasoning about tutoring students’ bugs.

One of the major concerns of our research has been the
problem of consistency of tutorial reasoning. Because tutors
use so many kinds of information to decide how to tutor a
student’s bug, it seems plausible to hypothesize that different
tutors would be inconsistent in the ways they reason about
either identical bugs or different bugs. The problem of
tutorial consistency is important to designers of Intelligent
Tutoring Systems since, if human tutors were entirely
inconsistent in their generation of tutorial interventions, using
human tutors as models for machine tutors would not be
useful. Absence of tutorial consistency would imply that
there is no reason to prefer any one method of generating
tutorial interventions over any other method on the grounds
that human tutors find one method especially effective.
Fortunately, t,here are at least two sources of evidence for
tutorial consistency. First, Collins and Stevens (1976), in a
study of “super-teachers”, identified several Socratic tutorial
strategies that their teachers used; many of the strategies
identified by Collins and Stevens (1976) found their way int,o
the Socratic 1iI!E* tutor (Stevens, Collins, and Goldin (1982)),
LVoolf’s programming tutor for students in introductory
programming courses (1Yoolf (1985)), and Clanccy’s GUIDON
program for teaching the ski!! of medical diagnosis (Clancey
(1983)). Second, our analyses of the data we gathered from
human tutors suggest that tutors are consistent in the ways in
which they reason about how to tutor st,udents who make
bugs.

This paper is organized as follows:

l First, in Section ‘2, we describe the experiment we
conducted to collect data about tutorial
consistency.

l Second, in Section 3, we present an example which
illustrates how two tutors reason in the same way
about the same bug.

l Third, in Sections 4 and 5, we describe bug
criticality and bug categories and present
statistical evidence that tutors are consistent in
reasoning about both.

l Finally, in Section 0, we draw some conclusions

and implications of our study.

Though we do not present analyses of a!! of the five
considerations tutors take into account in deciding how to
tutor students’ bugs, the analyses of bug criticality and bug
categories illustrate our genera! findings which apply equally
to bug categories, the causes of bugs, tutorial goals, and
tutorial interventions. A complete analysis of the consistency
of a!! five types of knowledge is presented in Littman, Pinto,
and Soloway (1986).

2 Methods

2.1 Subjects
Eleven Yale University graduate and advanced

undergraduate students participated in this study. Each had
extensive tutoring experience. The range in tutorial
experience was from 150 to over 2000 hours. Each subject
could program competently in PASCAL as we!! as in a
variety of ot,her languages.

2.2 Task
Subjects received five buggy programs actually written by

introductory programming students along with the same
questionnaire about each program. The programs were
written in response to the Rainfall Assignment, which was
assigned during the fifth week of class. The assignment is
shown in Figure 1 and a program that correctly solves the
assignment is shown in Figure 2. To reproduce the typical
situation a programming tutor faced in introductory PASCAL
programming courses, the buggy programs contained an
average of 6 bugs. For each st,udent’s program, tutors were
asked to imagine themselves tutoring the student who wrote
the program and to answer each of the questions in the
quest ionnnire. The questionnaires were displayed side-by-side
with the buggy programs on an Apollo DN300 multi-window
workstation. Subjects typed their answers to each question,
pressed a preassigned key to go to the next question, and
continued until they were finished. Subjects were allowed to
work at their own pace. Most subjects needed at least four
hours to complete a!! the questionnaires.

The questionnaire was designed to prompt the tutors for
their thoughts as t,hey considered how they would tutor the
student who wrote the program. For example, subjects
decided whether a bug would be tutored alone or in a group
with other bugs. They also indicated the order in which they
would tutor the groups of bugs as we!! the goals they had for
tutoring each bug and the methods they would use to achieve
the goals.

COGNITIVE MODELLING AND EDUCATION / 32 1

While we realize that our experimental design presented
subjects with a somewhat artificial situation, we were very
encouraged by how engaging our subjects found the task.
Subjects took the task seriously, spending as much as 15
hours to complete it. Informal debriefing interviews further
convinced us that the tutors felt their responses were valid
and would have been essentially the same in a real tutoring
session.

The Noah Problem: Noah needs to keep track of the rainfall in the
New Haven area to determine when to launch his ark. Write a program
so he can do this. Your program should read the rainfall for each day,
stopping when Noah type “QQQOO”, which is not a data value, but a
sentinel indicating the end of input. If the user ty
the program should reject it, since negative rainfal P-

en in a negative value

program should
IS not possible. Your

of rainy days,
rint out the number of valid daya typed InI the number

t e average rainfall per day over the perrod, and the 52
maximum amount of rainfall that fell on any one day.

Figure 1: The Rainfall Assignment

Program Rainfall in
Var Dail Rainfa I,

ut,output ;

Rainy 6
If $ otalRain all,MaxRainfall,Average : Real;

ays,TotalDays : Integer;
- -0’; Rain

Max R
Days:= 0; TotalDays:= 0;
ainfall:= O- TotalRainfall:= 0;.

Writeln{~~;~;i~n~~; Amount of Rainfall’);
Readln
While (b ailyRainfall i > 00000) Do

Be in‘ -
I? DailvRainfall >= 0 Then

Rainfall;

End;
Else Writeln (‘Rainfall Must Be Greater Than 0’);

Read(DailyRainfall)
End;
If TotalDaysCounter > 0 Then Be in

Averasze := TotalRainfall/Total 5, avs:
e: 02); ’

w ainfall: 022).
Number of Days is: ‘, TotaiDays);
Number of Ramy Days is: ‘, RainyDays)

End;
Else Writeln(‘No Valid Days Entered.‘);

End.

Figure 2: Sample Correct Rainfall Program

2.3 Choice of Bugs for Analysis
For this paper, we analyzed 16 of the 36 bugs in the five

programs. The 16 bugs represent the range of bugs in the
experiment. Criteria for including bugs in the analyses were:

l Each bug represented a type of bug tutors
frequently encounter.

l No more than one of each type of bug was
included unless the same bug appeared in two
very different contexts.

l Both mundane bugs and interesting bugs were
chosen. An example of a mundane bug is failing
to include an initialization of a counter variable.
An example of an interesting bug is employing a
complex IF-THEN construct for what should be a
simple update of a counter variable.

l Bugs were included that produce both obvious
effects on the behavior of the program (e.g., a
missing READLN of the loop-control variable) and
bugs that produce subtle effects on the behavior of
the program (e.g., initialization of a counter
variable to one more than its correct initial value.)

2.4 Data Scoring and Reliability of Scoring
Each response of each tutor was evaluated to identify

knowledge relevant to each of the five tutorial considerations.
In tbis section we illustrate the scoring of protocols with an
example of a tutor’s crit#ica!ity considerations; we also present
the criteria for protocol scoring reliability.

Scoring the Data: We illustrate the scoring of the
protocol data by showing 1) how Tutor l's bug criticality
rating is derived and 2) h ow we score the factors the tutor
identified in reasoning about bug criticality. Figure 3 shows a
bug made by a student who was attempting to solve the
Rain fa!I Assignment. The st)udent spuriously assigned 0 to
the variable intended t,o contain the value of rainfall entered
by the user immediately after the user has entered a value
for DailyRainfall. Our analysis of each tutor’s reasoning
about bug criticality is in terms of two measures:

l The tutor’s criticality rating assigned to the bug
based on the tutor’s statements and

l the bug criticality factors the tutor identified in
reasoning about the bug.

Figure 4 shows the template used to score each tutor’s
reasoning about bug criticality. The template consists of two
parts, a field for the Tutor's Overall Criticality Rating
and a list of the factors associated with reasoning about bug
criticality.’ The following quotation shows the statements

Tutor 1 made that are relevant to the bug criticality
consideration.

Tutor 1: “(1,) [This is a] trivia! error . . . that must be
fixed to get good output. (2.) Simple mistake. (3.)
Forgetting that Ra i nfa I I was losing its value n

The first part of Tutor l's first sentence and the entire second
sentence show that he does not believe that the spurious
initialization bug is very critical. As shown in Figure 4, the
tutor’s response to the bug was coded as LOU CRITICAL, the
lowest value on the three point scale we used to score tutors’
evaluations of bug criticality. Sentence three shows that
Tutor 1 does not believe a deep problem of the Student's
Understanding was responsible for the bug; the student
simply forgot. Thus, the scoring template contains an “X” in
the column for Student's Understanding to show that the
tutor identified this factor. Finally, in the second half of the
first sentence the tutor says that the bug must be fixed to get
good output. This identifies the factor of Program Behav ior
Precond it ions since the bug must be fixed for the program
to output correct values.

‘A description of the meanings of each of the factors is presented in
Figure 6 in Section 4.

322 / SCIENCE

-

3 Tutorial Consistency: An Illustration

Program Rainfall(input,output);
. . .
TotalRainfall .= 0.
Wr i teln (‘ENT’ER kOUNT OF RAINFALL’);
Readln(DailyRainfalI);
DailyRainfall := 0; BUG: Aneignment 01 Uto DailyRainfall

In this section, we present an example of two tutors
reasoning about the same bug. Our intent is to illustrate for
the reader the kind of data tutors generated in our study and
to provide some intuitions about how we analyzed our
protocol dat,a.

While
Clobberr Initial Value

(DailyRainfall < > 00000) Do
Begin

Ed;

Figure 3: Bug: Assignment of 0 to Da i I y Ra i nfa I I
Clobbers Initial Value

Reliability of Scoring: The data we analyze in this paper
are based on subjective interpretation of tutors’ responses.
They are not, for example, reaction times or numbers of
errors. Rather, the statements tutors made in response to the
questionnaires were interpreted in order to produce the data.
To assess whether the data derived from the prot,ocol
statements accurately reflect the cognitive processes which
generated them, such data are normally subjected to
reliability analysis. If the interpretations of the protocol
responses are sufficiently reliable, then they are judged to
reflect cognitive processes of the subjects who produced them.
Reliability of encodings of t,he protocol responses was assessed
by two rules:

l If the coder of a response had any question about

the correct label for the response, the response
jointly encoded by more than one coder.

l A response was eliminated from the analysis if it
could not be encoded, or two or more coders
disagreed on the appropriate encoding.

A random sample of approximately 30% of encodings of
each kind of knowledge was evaluated by more than one
coder. The random sampling of mutually evaluated responses
resulted in less than five percent of the data being shifted
from one encoding to another.

3.1 Two Tutors Reason About the Same Bug
Figure 3 shows the spurious initialization bug we considered

in Section 2. To illustrate similar reasoning of two tutors
about the five tutorial considerations, we present and discuss
quotations from their protocols as they reasoned about how to
tutor the bug.

Tutorial Consideration 1: Bug Criticality
Neither Tutor 2 nor Tutor 3 felt that the bug shown in
Figure 3 was very critical. The following quotations show
why both tutors were coded as having the same bug criticality
rating:

Tutor 2:
problem . ..”

“It’s a small but annoying and pervasive

Tutor 3: “... this does seem like a relatively trivial bug.”

Even t.hough the bug interferes seriously with the behavior of
the student’s program, neither tutor believed it is a “serious”
bug; we will see why when we discuss the tutors’ reasoning
about the causes of the bug.

Tutorial Consideration 2: Bug Category
Both tutors believed that the student who made the bug
failed to translate correctly the conceptual object for some
variable into its correct name in the program. Instead of
initializing the intended variable to 0, the failure to translate
the conceptual object into its corresponding code caused the
student to initialize the wrong variable, Da i I yRa i nfa I I. The
following quotations were the basis of our encoding of the
tutors’ categorizations of the bug as a failure to translate
correctly from conceptual objects to code:

Tutor 2: “Syntactic similarity of the two variable names
. . .

Tutor 3: “Just mixed up variable names . ..”

The reason the tutors believed the student made the bug
Tutor's Overall CrltlcalIty Rating LOW CRITICAL identifies the category of bug: namely those bugs that arise

FACTORS IDENTIFIED BY TUTOR
from failures to translate conceptual objects correctly to the
code that instantiates the conceptual objects.

Name of Factor Factora Present

Student's UnderstandIng

Impact on the Tutorial Plan

Knowledge Precondltlons

Program Behavior Precondltlons

@ug Dependencies

Student's AblIIty to Find
and FIX Bug Alone

Student's Motlvatron

Diagnostic flpportunlttes

Tutorial Consideration 3: Bug Cause
Tutor 2 and Tutor 3 identified essentially the same cause for
the bug.

Tutor 2: “... mixing up the purpose of the variables . ..”

Tutor 3: “I think the student
Tota I Ra i nfa I with Dai I yRainfal I . ..”

was confusing

The tutors attributed the cause of the bug to the student’s
confusing the variable Da i I yRa i nfa I I with another, similarly
named, variable. Evidently they felt that the student had
correctly identified the conceptual purpose of the two
variables, had given them appropriate names, and then
confused the two names because they were so similar. We
will see evidence for this view in the next quotations which
illustrate the tutors’ goals in tutoring the bug.

Figure 4: Scoring Tutor l’s Bug Criticality Consideration Tutorial Consideration 4: Tutorial Goals
Both tutors were interested in teaching the student to use
variables names that prevent confusion when code. The

COGNITIVE MODELLING AND EDUCATION / 323

following auotations show that both tutors wanted to teach
the

v .

student the variable-naming heuristic.

Tutor 2: “I would explain that there seems to be a name
confusion ...n

Tutor 3: “Be careful that you name your variables
distinctly enough so that you do not get confused about
which role they are serving.”

Notice that the tutorial goals identified by Tutor 2 and Tutor
3 are reasonable in light of their explanations of the cause of
the bug.

Tutorial Consideration 6: Tutorial Interventions
The following quotations show that both tutors wanted to
draw the student’s attention to the mismatch between the
goal the student had for the variable Tota IRa i nf a I I and
what actually happens to it.

Tutor 2: “One could ask a leading
asking him to justify his coding . ..”

‘WHY” question . .

Tutor 3: “I could ask them i/ they meant to be
initializing Totz I Ra i nf a I I instead of Da i I y Ra i nf a I I n

Both tutors selected the strategy of juxtaposing for the
student the student’s intentions, or goals, with the actual
code in the program. This general kind of tutorial
intervention was extremely popular with our tutors and
appears to serve the purpose of forcing the student to identify
conflicts between intentions and actions.2

The tutors’ responses to the bug shown in Figure
3 illustrate how two tutors can have essentially the same
“perspective” on the same bug. In the next section of the
paper, we identify the factors that tutors take into account
when they reason about bug criticality show, statist,ically,
that tutors are consistent in the ways they reason about bug
criticality.

4 Bug Criticality
In planning tutorial sessions, tutors make decisions about

which bugs to focus on explicitly and which bugs to tutor
only as opportunities arise. When our tutors identified bugs
that they intended to focus on in their tutorial sessions, they
gave reasons that made it clear that they felt that those bugs
were more critical than others. As we analyzed tutors’
responses to the buggy-program scenario questionnaires, we

identified several factors that seemed to play a role in their
decisions about which bugs to focus on. For example, tutors
focused on bugs that might, have been caused by serious
misconceptions, bugs that suggested the student lacked
important knowledge or skills, and bugs that interfered with
the behavior of the program so much that the student would
be unable to debug it.

In this section of the paper we describe the main factors
that our tutors used to reason about bug criticality. As
examples of critical and noncritical bugs, suppose a student
writes a solution to the Rainfall A88ignment in which the
update for the variable containing the total amount of
rainfall, Tota I Ra i n, is like the fragment of code labelled as
BUG 1 in Figure 5. Instead of simply updating the variable

*This strategy was identified by Collins and Stevens (1976)
technique of the

as a central
“Socratic Method” and formed the basis of the tutorial

strategies implemented in the WHY tutor.

Tota I Ra i n by adding in t,he value of Da i I yRa i nfa I I, the
student has written the update using a very strange,
malformed, IF-THEN statement to “guard” the update.
Virtually every one of the tutors in our study judged the
malformed update bug to be very critical because the bug
could be symptomatic of a deep misconception about how to
update variables. On the other hand, most novice
programmers leave output variables unguarded against the
case of no valid input: BUG 2 in Figure 5 is an unguarded
output bug. Our tutors uniformly considered BUG 2 to be
uncritical because it does not suggest the student who wrote
the program has any deep misunderstandings about
programming. The student probably just forgot to test this

. . .
WrItelI ('ENTER AMOUYT OF 44INFALL').
Read(DallyRa,nfall)
Whle (il1ljRa1nf311 <> Sentlnell Do

eeg I n
WrlteIn('ENTLR Af4OUNT OF R~IYFALL'J
. . .

BUG 1: Malformed Update
If TotalRain = Tot + DailyRainfall Of TotalRain

Then Tot := TotalRasn;
. . .

End
. . .

BNG 2: Output of TotalRain
Unguarded on No Input

\Vriteln(‘The Total Rainfall is: ‘, TotalRain);

Figure 5: Critical Bug: Severely Malformed Update

Figure 6 shows the major factors and subfactors we used to
score tutors’ reasoning about bug criticality. Our analyses of
the tutors’ data revealed two major factors tutors take into
account when reasoning about the bug criticality tutorial
consideration:

l What the bug implies about Student’s

Understanding

l The bug’s Impact on the Tutorial Plan of the
bug.

The major factor of Student’s Understanding includes
knowledge the student should already have and knowledge
the student should acquire by doing the current assignment.
For example, one tutor was scored as using this factor when
she said the following about a student who did not include a
Read In statement in the loop to get the new value of
DailyRainfall:

“The student doesna understand that the loop is driven
by input and therefore must contain an instruction to get
input.”

The major factor of Impact on the Tutorial Plan, which
is more complex than Student’s Understanding, is
comprised of six subfactors. \Ve present quotations to
illustrate two main subfactors.

l Knowledge Preconditions: used to justify
tutoring one bug after another bug
The following quotation shows the tutor reasoning
that tutoring one bug was a necessary
precondition to tutoring some other bugs.

“These [bugs] make sense to follow that [bug]
. . we can presume that now the student has

a full understanding 01 initialization [the
problem tutored first.]”

324 / SCIENCE

l Program Behavior Preconditions: used to
justify tutoring a bug first
In this quotation the tutor says that he started
with a particular bug because fixing that bug was
necessary to get the program to run even
reasonably well.

“It’s important in terms of getting the
program to r?Ln e'n any form, thus grts
precedence over later bugs.”

Further discussion of tutors’ reasoning about factors that
have an impact on the tutorial plan can be found in Lit,tman,
Pinto, and Soloway (1985).

4.1 Tutors’ Agreement on Criticality of Bugs
In this section, we identify two major findings

illustrate consistency of tutorial reasoning about the
criticality tutorial consideration.

l First,, tutors assign consistent criticality ratings to
bugs.

l Second, tutors agree on the factors and subfactors

for why bugs are critical.

that

bug

l Student’s Understanding: Mhat problem solv
programming concepts does the student knou?

ing and

. Impact on the Tutorial Plan: Hou shou Id the tutor i a I
be formulated?

Knowledge Preconditiona: Know ledge the student
must have to learn key material that the tutor
intends to teach during the tutorial session.

Program Behavior Preconditionr: Does the
program's current behavior obstruct the tutor's
plan for tutoring a bug the tutor uants to address?

Bug Dependencier: Eugs that, together, Interact
to produce program behavior.

Student’s Ability to Find and Fix Bug Alone: The
student's abilrty handle a bug rithout the tutor's
assistance.

Student’s Motivation: The tutor's assessment of
whether the student needs to be handled vlth “kid
gloves*.

Diagnostic Opportunities: Uou Id address i ng th IS
bug provide the tutor ulth useful lnforratlon about
the student's programmlng knouledge and programmlng
skills?

Figure 6: Factors Affecting Bug Criticality

If tutors did not agree on the criticality of bugs, then the
search for consistency of reasoning about bug criticality would
be compromised. Our analyses show that tutors agreed very
strongly about which of the 16 bugs were high critical, which
bugs were medium critical, and which bugs were low critical.
A Chi-squared analysis showed statistical significant; of
consistency of tutors reasoning about bug criticality (x- =
119.6, df = 30, p < .Ol).

It is possible that tutors would agree about bug criticality,
yet, would not identify the same factors and subfactors in
their reasoning. Our data, however, show that tutors agree
on the factors and subfactors, as shown in Figure 6, for why a
particular bug is of high, medium, or low criticality. Chi-
squared analysis of tutors’ consistency in identifying

pal-t,icular factors and subfactors associated with partic-ulai
bugs was statistically significant (x2 = 209, df = 140, p <
-01).

In summary, we have found that tutors see some bugs as
being more critical than others. In addition, statistical
analyses of their reasoning about bug criticality show that
tutors are consistent both with respect to the criticality of
bugs and the factors and subfactors that are associated with
the criticality of bugs.

5 Bug Categories
When students attempt to solve the Rainfall Assignment,

their first syntactically correct programs contain
approximately six bugs each (Johnson, Soloway, Cutler, and
Draper, 1983.) Instead of reasoning about each bug
individually, tutors appear to use knowledge about kindo of
bugs to help them determine both why the student made the
bug and what to do to help the student. For example, if a
student solving the Rain fail Assignment does not protect the
calculation of the average against division by zero and also
neglects to protect the output of the average against the case
of no input data, a tutor might categorize both bugs as
“missing boundary guards” . Tutors appear to categorize bugs
according to a coarse model of the program generation
process and make a gross distinction between bugs that arise
during program generation and bugs that arise during
program verification; furthermore, they break the program
generation phase into three subphases. We now identify the
three subphases of the generation category and present a
quotation for each that shows the sort of statement that
would be scored as referring to the subphase.

l Decomposition: Figuring out what to do to
solve problem.
In the following quotation the tutor shows he
t,hinks the student failed to decompose correctly
the problem of getting values of the rainfall
variable into the two components of getting an
initial value and getting each new value in the
loop.

“I think the student knew they had read in
Da i IyRa i nfa I I once and thought that would
be enough.”

l Mapping: Translating one level of problem
analysis into another level (e.g., translating
problem goals into plans to achieve the goals.)
The next quotation illustrates a tutor responding
to a student who failed to protect the accumulator
for Tota I Ra i nf a I I against adding in the sentinel
value, 99999. To compensate for adding in 99999,
the student subtracted 99999 from Tota I Ra i nfa I I
just before calculating Ave rageRa i nf a I I.

“The student plans to add in the sentinel
(MXZI) and then remove it later. I think this
is very bad.”

l Composition: Coordinating eolutiono for
different goals.
This quotation shows that the tutor believed the
student failed to compose the main loop correctly
with other actions the student wanted the

3While tutors did identify some subphases of the Verification category,
subcategories of Verification were not stable and so we do not report them
here.

COGNITIVE MODELLING AND EDUCATION / 325

program to take. The student’s bug was to place
below the loop the update of the variable

Second, when we have identified tutorial patterns that are

accumulating the total amount of rainfall.
educationally effective, we can build ITS’s which incorporate
them and avoid ineffective patterns. We will then be in a

“Common problem - Things outside the loop
which should be inside [the loop.)”

position to provide the same high quality tutorial experiences
to every student who has access to a computer.

5.1 Tutors’ Agreement on Bug Categorization
In this section, we present two main findings for bug

categorization:

l First, tut’ors agree in categorizing bugs as
Generation or Verification bugs.

l Second, tutors agree in categorizing bugs as either
Decomposition, Mapping, or Composition
bugs.

Tutors were consistent in their categorization of bugs as
arising during program generation or program verification,
which constitutes the coarsest distinction of the bug category
system. The consistency of tutors’ categorizations of bugs as
generation or verification bugs is demonstrated by- the
statistically significant Chi-square value for the test (x2 =
25.9, df = 15, p < .05).

Our plans for the immediate future focus on identifying the
patterns of tutorial reasoning that are educationally effective
and building an Intelligent Tutoring System for programming
which makes use of them. Our long range plans are directed
toward empirically evaluating the effectiveness of the ITS for
programming and using the tutorial principles we discover
from our studies of human tutors to build ITS’s for other
domains.

7 References
Anderson, J., Boyle, C., Farrell, R., and Reiser,

B. Cognitive principles in the design of computer tutors.
Technical Report, Advanced Computer Tutoring Project,
Carnegie-Mellon University, 1984.

R. Burton and Brown, J.S. An investigation of computer
coaching for informal learning activities. In Intelligent
tutoring systems. D. Sleeman and J. S. Brown (eds.),

The major cat,egory, program Generation, is composed of
three subphases: Deco&p&ition, the attempt to determine
how to solve the problem, Mapping, translating one level of
problem solution into a more concrete level, and
Composition, recombining the parts of a problem solution.
The statistically significant C&square value shows that
tutors agreed in cate orizing bugs in these three phases of

Q- program generation (x - 162.3, df = 30, p < .Ol).

In summary, tutors appear to categorize bugs into groups
according to a coarse model of program generation and
verification. When tutors’ statements about bugs are
analyzed to see how they categorized the bugs, we find that
tutors consistently describe bugs in terms of a coarse model of
program generation.

Academic Press, London, 1982.

Carbonell, J. AI in CAI: An artificial intelligence approach
to computer assisted instruction. IEEE Transactions on Man-
Machine Systems, MMS-M, 4, 1970.

Clancey, W. Guidon. Journal of computer-based
instruction, Summer 1983, Vol. 10, NOS. 1 & 2, 8 - 15.

Collins, A. and Stevens, A. Goals and strategies of
interactive teachers. Technical Report #3518, 1976 Bolt,
Beranek, and Newman, Cambridge, MA.

Johnson, L., Soloway, E., Cutler, B., and Draper, S. Bug
catalogue: I. Technical Report #286, 1983, Department of
Computer Science, Yale University, New Haven CT.

6 Conclusions, Implications and Future
Directions
In this paper we have identified five tutorial considerations

that tutors take into account when they reason about how to
tutor students’ bugs and we have provided vocabulary that

permits us to describe and analyze patterns in tutors’
reasoning about bug criticality and bug categories. In
addition, we have presented statistical analyses that show
that tutors are consistent in how they reason about bug
criticality and bug categories.

’

There are two main implications of our ability to identify
and describe consistency of tutorial reasoning. First, our data
showing consistency of reasoning about individual
considerations, such as bug criticality, suggest that we will be
able to identify and describe consistent pattern8 of tutorial
reasoning that coordinate several tutorial considerations. If
we can identify and describe such patterns then we can test
their educational effectiveneatr by selectively including
various combinations of patterns into the same basic ITS,
providing tutorial intervention to students with the modified
ITS’s, and empirically evaluating the effectiveness of the
modified ITS’s Since intervention would be given to all
students by the same basic ITS, differences in performance
would be attributable to the specific tutorial patterns
included in the ITS.

Littman, D., Pinto, J., Soloway, E. Observations on tutorial
expertise. Proceedings of IEEE Conference on Expert
Systems in Government, Washington, D.C. 1985.

Littman, D., Pinto, J., Soloway, E. Consistency of tutorial
reasoning. In preparation.

Newell, A. and Simon, H. Human problem solving.
Prentice-Hall Englewood Cliffs, NJ, 1972.

Spohrer, J. and Soloway, E. Analyzing the high-frequency
bugs in novice programs. To appear in: Workshop on
empirical studies of programmers, E. Soloway and S. Iyengar
(eds.), Ablex, Inc., 1986.

Stevens, A., Collins, A., and Goldin, S. Misconceptions in
students’ understanding. In Intelligent tutoring systems.
D. Sleeman and J. S. Brown (eds.), Academic Press, London,
1982.

Woolf, B. Context dependent planning in a machine tutor.
Doctoral Dissertation, University of Massachusetts, Amherst,
MA 1984.

326 / SCIENCE

