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ABSTRACT 

A semantic net system in which knowled; ge is topically or- 
ganized around concepts has been under development at the 
University of Alberta for some time. The system is capable of 
automatic topical classification of modal logic input sentences, 
concept and topic oriented retrieval, and property inheritance 
of a general sort. This paper presents an inference method 
which efficiently determines yes or no answers to relatively sim- 
ple questions about knowledge in the net. It is a deductive, 
resolution based method, enhanced by a set of special inference 
methods, and relies on the classification and retrieval mecha- 
nisms of the net to maintain its effectiveness, unencumbered by 
the volume or diversity of knowledge in the net. 

I INTRODUCTION 

In 1975, Scott Fahlman and Drew McDermott discussed the 
so-called “symbol-mapping problem” (Fahlman 1975, McDer- 
mott 1975). In essence, this is the problem of making simple 
inferences quickly in a system with a potentially very large, var- 
ied knowledge base. Among the examples they discussed were 
the inference that Clyde is grey, given that Clyde is an elephant 
and elephants are grey, and the inference that Clyde does not 
live in a teacup or play the piano, given standard knowledge 
about elephants, teacups, and pianos. What makes the prob- 
lem hard is not the complexity of the requisite knowledge or 
reasoning, which are quite modest, but the fact that the right 
knowledge may be very hard to find: we have a “needle-in-a- 
haystack” problem. 

More than a decade later, the problem cannot be considered 
satisfactorily solved. Progress has been made in “customized” 
understanding and reasoning systems - systems that can make 
a wide range of inferences in a circumscribed domain (e.g., the 
divorce story domain of BORIS, described in Lehnert et al. 
(1983), or the various domains of expertise of expert systems 
in medicine, computer configuration, prospecting, and so on). 
However, the problem of scaling up to systems with a large 
amount of knowledge about a wide variety of subjects is still 
very much with us. 

The work reported here is part of a continuing effort to de- 
velop a question-answering and English conversational system 
(ECOSYSTEM) h* h w ic is unencumbered by the volume or di- 
versity of its knowledge. Our approach to efficient question- 
answering for large knowledge bases was first sketched in Schu- 
bert et al. (1979). This sketch motivated the design of a 3-level 
semantic net organization: at the highest level, knowledge re- 
sides in a main net (for real world knowledge) and in arbitrarily 
nested subnets (primarily for “mental worlds” and “narrative 
worlds”); the next level is the level of concepts, which are 
used in each subnet as access points for knowledge directly in- 
volving them; and the third level is the level of topics, which 
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into topically related subsets of facts (Coving ton & Schu bert, 

1980). This organization allows highly selective retrieval of 
knowledge relevant to a query. For example, the question “Is 
the wolf in the story of Little Red Riding Hood grey?’ (posed 
in logical form) would prompt access of the Little Red Riding 
Hood subnet, followed by access within that subnet of the node 
for the wolf, followed by access of ‘colouring’ information about 
the wolf and its superordinate concepts. (Additional informa- 
tion may be accessed during the inference attempt - see Sec- 
tion III.) The implementation provides for input of modal logic 
sentences which are automatically converted to clause form, 
topically classified, and inserted at appropriate concept nodes. 
In addition, special inference methods have been developed to 
short-cut taxonomic reasoning and reasoning about colours and 
time. The new deductive algorithm builds on this work; it ef- 
ficiently determines yes or no answers to the sorts of questions 
discussed by Fahlman and McDermott, relying upon the clas- 
sification and retrieval mechanisms of the knowledge base. 

In some respects, the method has goals that are similar to 
those of automatic theorem provers. However, the domains of 
natural language understanding and theorem-proving are dif- 
ferent, and two fundamental differences distinguish this method 
from a theorem-prover: 

Size of the knowledge base. Theorem provers work on prob- 
lems in well defined logical or mathematical domains. These 
systems are artificial and are usually axiomatized by some 
small set of statements. This is not true of the semantic 
net, which will incorporate a very large body of knowledge, 
sufficient at least to carry on an intelligent conversation. 

Deductive ability. Theorem provers are judged mainly by 
their deductive ability - better provers solve logically more 
complex problems. People require minutes or even hours to 
solve these problems, and yet, they are able to perform the 
inference needed for natural language understanding almost 
immediately. It is not unreasonable to suppose that natural 
language inference is shallower (i.e., requires fewer steps) 
than that required for mathematical theorem proving. 

II THE SEMANTIC NET 

To understand how the inference method works, it is im- 
portant to understand how the semantic net represents and or- 
ganizes knowledge. The representational scheme is essentially 
that as described in Schubert (1976), incorporating changes de- 
scribed in Schubert et al. (1979) and Covington (1980). The 
syntax of the net provides for the representation of formulae 
in higher-order modal logic,* with constants, functions, ex- 
istentially and universally quantified variables, and the usual 
truth function connectives (negation, implication, disjunction 
and conjunction). 

* Although the net is able to represent and organize modal 
propositions, the current inference method is restricted to the 
first order predicate calculus. 
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(concept, topic) pairs. For example, the predicate EAT indi- 
cates the topic ‘feeding’ with respect to its first argument and 
the topic ‘consumption’ with respect to its second argument. 
Hence, the clause [ WOLF1 EAT GRANDMA]* is assigned the 
pairs ( WOLF1 ‘feeding) and (GRANDMA, consumption), and 
is indexed accordingly in the TAS’s of the concepts WOLF1 
and GRANDMA. Similarly, the predicate GREY indicates the 
topic ‘colouring’, so the clause ~[z WOLF] v [z GREY] is as- 
signed the pair ( WOLF, colouring), and the clause is indexed 
under the colouring topic in the TAS for the concept WOLF. 
Subsequent queries about the colouring of wolves would be able 
to directly access this clause. Queries about the appearance of 

Figure 1. Topic hierarchy (TH) 

Within the main net and each subnet, a dictionary provides 
direct (hashed) access to named concepts. Facts about these 
concepts are then organized using a topical hierarchy (TH). 
Using the TH, it becomes possible to directly access clauses 
which topically pertain to a concept and to ignore all the rest 
(which can potentially be a large number of clauses). The struc- 
ture of the TH also defines relationships among topics, so it is 
possible to broaden an access to sub-topics or super-topics of a 
given topic. Figure 1 illustrates a simplified topical hierarchy 
for concepts which are physical objects. 

It is not likely that we know something about all topics for 
all concepts, and to duplicate the entire TH for every concept 
would waste storage space and increase traversal time across 
empty topics. To solve this problem, topic access skeletons 
(TAS) are used. Each TAS is a minimal hierarchy based on 
the complete TH, and only includes topics about which there 
is some knowledge, or topics which are needed to preserve the 
structure of the hierarchy. 

Figure 2 illustrates simple TAS’s for the specific concept 
WOLF1 and for the generic concept WOLF. Using pre- 
defined topical indicators for predicates, a classification algo- 
rithm automatically assigns to each asserted clause particular 

I generalization: [ WOLF1 WOLF] 

WOLF1 --I 

behavior 

i 

feeding: [ WOLF1 EAT GRANDMA] 
[ WOLF1 EAT LRRH] 

communication: 
[ WOLF1 TALK- WITH LRRH] 

WOLF- 

generalization: ~[z WOLF] V [zz MAMMAL] 

specialization: [ WOLF1 WOLF] 

i 

colouring: -I[Z WOLF] V [z GREY] 

appearance 

shape: . . . 

wolves would also be able to quickly get 
colouring is a sub-topic of appearance. 

to the clause, because 

The special topic ‘major implication’ is used to classify fun- 
damental properties of predicates that characterize their mean- 
ing.** For example, a major implication of the predicate IN 
might be that if A is in B, then A is smaller that B, and that 
B is a container or enclosure of some sort. Similarly, an ‘ex- 
clusion’ topic is used to classify clauses which explicitly define 
such a relationship (e.g., + CREATURE] v + PLANT]). 

For the main net and all of its subnets, there is also a hier- 
archical organization of the concepts within each net. Concepts 
are organized using a structure called a concept hierarchy (CH), 
which is essentially a type hierarchy for physical objects. It is 
used in two ways: (1) for quick associative access to groups 
of concepts with the same type (just as the TH provides quick 
access to clauses about the same topic) ; and (2) to guide a prop- 
erty inheritance mechanism in its search for generalizations or 
specializations of a given 
CH for physical objects. 

concept. Figure 3 presents a simplified 

To repeat the CH for every subnet is also waste of resources, 
so a concept access skeleton (CAS) is maintained for each sub- 

* To improve readability, the syntax places the first argument 
of a literal before the predicate. 
** Major implications were linguistically motivated in Schubert 
et al. (1979). They are related to Schank’s ACT-based in- 
ferences, as well as to “terminological facts” in systems like 
KRYPTON and KL-ONE. 
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Figure 4. Concept access skeleton (CAS) 

net. Just as a TAS is a minimal hierarchy based on the TH, a 
CAS is a minimal hierarchy based on the CH. Figure 4 presents 
a CAS which associatively organizes some of the constant con- 
cepts in the story of Little Red Riding Hood* (LRRH). The 
classification algorithm automatically places clauses which are 
assigned a (concept, generalization) pair into a CAS whenever 
concept is an instance. 

III THE INFERENCE METHOD 

As mentioned above, we were led to adopt clause form as 
the most convenient logical form for the purposes of automatic 
topical classification. It was therefore natural to choose reso- 
lution as our basic inference method. Our deductive algorithm 
employs certain familiar strategies, such as set-of-support and 
preference for simple resolvents. What makes the algorithm 
unique, however, are the following three features. (1) The set of 
potential inference steps considered at any one time is severely 
limited by use of both the concept hierarchy and the topic hi- 
erarchy (as reflected in each concept’s TAS); (2) there is an on- 
going decision-making process which trades off inference steps 
against retrieval steps; and (3) resolution is “generalized”, per- 
mitting use of special inference methods for specific domains. 

* Most examples in this paper are loosely based on this story. 

We will elaborate on the last point first, and then discuss (1) 
and (‘2) under the heading “Resolution control”. 

A. Generalized resolution and evaluation 

Resolving two clauses is usually done by resolving on liter- 
als from each clause which have the same predicate but op- 
posing signs. For example, [.LRRH GIRL] resolves against 
l[LRRH GIRL]. G iven the existence of a special inference 
method which quickly infers relationships among ‘type’ pred- 
icates, it is also possible to reduce long inference chains to 
a single resolution step. For example, (LRRH GIRL] di- 
rectly resolves against ~LRRH CREATURE], without US- 

ing the intermediary clauses ~[z GIRL] V [z CHILD] . . . 
~[z PERSON] V [z CREATURE]. Or, given a special infer- 
ence method for colour, it becomes possible to directly resolve 
[ WOLF1 BROWN] against [ WOLF1 GREY] (Papalaskaris & 
Schubert 1982, Schubert et al. 1983, Brachman et al. 1983, 
Stickel 1983, Vilain 1985). This method of “generalized” re- 
solving can similarly be used for factoring and subsumption 
(Stickel 1985, Schubert et al. 1986). A crucial advantage of 
our topical retrieval mechanism is that it allows candidates for 
generalized resolving to be found as efficiently as candidates for 
ordinary resolving, on the basis of their classification under the 
same topic (e.g., [ WOLF1 GREY] and [ WOLF1 BROWN] are 
both classified as colouring propositions for WOLFl). 

Evaluation is another means by which the resolution process 
can be considerably shortened. Every clause from the original 
question or generated during the proof goes through an eval- 
uative attempt, to try to achieve an immediate proof (if the 
clause is false), or to remove the clause from consideration (if 
it is true). If the clause cannot be evaluated, each of its literals 
is tried, to try to prove the whole clause true (if the literal is 
true), or to remove it from the clause (if it is false). The sim- 
plest evaluative method is to match a clause or literal against 
previously asserted clauses (the normal form ensures that the 
input form of a formulae has no affect on the matching process). 

Generalized resolution and evaluation can be used for any 
class of predicates for which there exists a special inference 
method. Currently, the inference algorithm uses special infer- 
ence methods for types and colours; however, methods for time 
and part-of relationships have been developed as well (Schu- 
bert 1979, Papalaskaris & Schubert 1982, Schubert et al. 1983, 
Schubert et al. 1986, Taugher 1983). 

B. Resolution control 

A great many resolution control strategies have appeared in 
the literature, but none of them has been completely success- 
ful in containing the usual combinatorial explosion of generated 
clauses and the ensuing difficulty in finding the ‘right’ ones to 
resolve with. Nevertheless, resolution proved to be well-suited 
to our purposes, for two reasons: (1) Proofs required for nat- 
ural language understanding and ordinary question-answering 
are generally short (at least when special ‘shortcut’ methods 
are available) ; and (2) Th e “needle-in-a-haystack” problem is 
solved in our system by the access organization we have de- 
scribed. 

The examination of most resolution proofs that have gone 
astray soon reveals a large number of resolutions where the 
unification process made some substitution that did not seem to 
be semantically valid. For example, it is syntactically possible 
to resolve jz WOLF] v [Z GREY] against l[LRRH GREY]. 
However, we intuitively realize that the first clause (knowledge 
about wolves) can not really be applied to LRRH, and that this 
resolution is fruitless. To express it another way: the universal 
variable z is typed to represent WOLF, and should not by 
substituted by a concept which is of type GIRL. 
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Briefly, our algorithm avoids fruitless inferences by restrict- 
ing its search for potential resolving candidates against a given 
clauses to clauses connected to it by a path (of length 0 or 
more) in the concept hierarchy, and classified under the same 
topic. The confinement of resolution to paths in the concept 
hierarchy is comparable to approaches based on sortal logics 
(e.g., McSkimin & Minker 1979, Walther 1983). However, our 
method does not require explicit typing of predicates and ‘sort’ 
checks during unification. The topical confinement of resolu- 
tion readily picks out clause pairs containing resolvable literals, 
either in the ordinary sense or in the generalized sense. 

The inference algorithm maintains an agenda of potential 
actions. Each action is relevant to a single clause, and is either a 
possible resolution that can be performed with that clause, or a 
retrieval action which might lead to possible resolution actions. 
Retrieval actions are based directly on the classification of a 
clause, and are specific to the same kind of (concept, topic) pairs 
that the classification procedure derives for asserted clauses. 
Six kinds of retrieval actions can appear on the agenda: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

clause f-+ (cone, topc, super) is the notation for the action 
which would retrieve all clauses stored at concept cone and 
its superconcepts, under topic topc, and form all potential 
resolutions between clause and the retrieved clauses, placing 
them on the agenda. 

clause t+ (cone, topc, sub) is similar to (l), but uses the 
subconcepts of cone only, excluding instances. 

clause +-+ (cone, topc, inst) is also similar to (l), but uses 
instances of cone only. 

clause et (cone, major-imp) denotes the action which would 
retrieve all major-implications of concept cone, and form 
all potential resolutions between clause and the retrieved 
clauses. 

clause et (cone, ezcl) is similar to (4), but uses exclusion 
propositions of concept cont. 

clause +-+ (cone, inst) denotes the action which would re- 
trieve all clauses specifying instances of cone and form po- 
tential resolutions between clause and these clauses. 

The CH is used to quickly determine the super or subcon- 
cepts of a given concept, and 
instances of a given concept. 

the CAS is used to quickly find 

The agenda is ordered by the estimated cost of the actions, 
and the inference method always chooses to do the action with 
the least cost first. The cost of a possible resolution is high 
to the extent that the resolvent is expected to be complex (ef- 
fectively implementing a ‘least complex resolvent’ preference 
strategy). The cost of a possible retrieval, clause +-+ (cone, . ..). 
is high to the extent that clause is complex, and the expected 
number of clauses to be retrieved is high. 

Each clause c which is to be considered for 
tion is “loaded” into the network, as follows: 

1. Simplify ( evaluate) c, if possible. 
is false, report a “disproof”. 

2. Classify c for insertion and, if not 
as if it were an asserted clause). 

possible refuta- 

If c is true, discard it; if c 

yet present, 

3. If c was classified twice w.r.t the same (cone 
to factor it; if successful, load the factor(s). 

insert it (i.e., 

, topc) pair, try 

4. Generate the following possible 
ing them on the agenda: 

retrievals relevant to c, plac- 

(a) if c was classified under ( cone, topc) generate the retrieval 
c i-+ (cone, topc, super) > and, if coflc is not a constant, 

P4 

(4 

the additional retrievals c tt (cone, topc, sub) and c t) 
(cone, top, inst). 
if c contains a positive predicate P then generate the 
retrievals c t) (P, major-imp) and c +-+ (P, ezcl). 

if c contains a type predicate P with variable argument 
and c was not classified under any (cone, topc) pair, gen- 
erate c t+ (P, inst). 

The complete inference algorithm can now be described: 

1. Load the clauses to be refuted. This might yield an imme- 
diate disproof, but more likely it will put a set of potential 
retrievals on the agenda. 

2. Carry out the potential action with the least cost. If it was 
a retrieval, this results in a set of potential resolutions being 
placed on the agenda. If the action was a resolution with 
resolvent c, then load c. If c evaluates to false when it is 
loaded, or if c is the null clause, then report a “disproof”. 

3. If some predefined resource limit has been 
return “unknown”, else repeat from Step 2. 

exceeded, then 

The method also concurrently searches for a proof, using 
the dual of the original question. Note that a set-of-support 
strategy is used, as only clauses from the original set to be 
refuted, or one of their descendants, is ever considered for a 
resolution action, 

IV EXAMPLES 

1. To answer the question “Is there a creature (in the story 
of LRRH)?” , the clause to be refuted for a “yes” answer is 
~[z CREATURE] (called ‘c’ for brevity). Loading this clause 
generates the retrieval c t--t (CREATURE, inst). Using the 
CAS, the clauses [LRRH GIRL], [ WOLF1 WOLF], . . . are re- 
trieved, any of which gives an immediate null resolvent by gen- 
eralized resolution. 

2. To answer the question “Is the Wolf grey?“, the clause 
to be refuted for a “yes” answer is l[ WOLF1 GREY] 
(=c). Loading this clause generates the retrieval c t--t 
( WOLF1 , colouring, super). Using the CH to get from WOLF1 
to the generic WOLF concept, the clause ~[z WOLF] V 
[Z GREY] is retrieved. Resolving against the orginal clause 
yields -[ WOLF1 WOLF], which immediately evaluates to false 
when it is loaded. 

3. To answer the question “Are all creatures pink?” the 
clause to be refuted for a “no” answer is ~[z CREATURE] V 

~;,~y (= 4 * Loading this clause generates the re- 
t) (CREATURE, colouring, super) and c f--t 

(CREATURE, colouring, sub). The sub retrieval yields 
--I[z WOLF] v [z GRE Y] (=c’). Using generalized resolution 
(for colours) yields ~[z CREATURE] v ~[z WOLF]. General- 
ized factoring on this clause yields l[z WOLF] (= c”). A re- 
trieval for this clause is c” ++ ( WOLF, inst). The CAS is used 
to find the clause [ WOLF1 WOLF], which resolves against c” 
to complete the disproof. 

4. To answer the question “Does the Wolf live in LRRH’s 
basket?” (cf. Fahlman’s Clyde-in-the-teacup problem), the 
clause to be refuted is [ WOLF1 LIVE-IN B.4SKETl] (=c). 
One of the retrievals generated for this clause is c t+ 
(LIVE-IN, major-imp). A major implication of LIVE-IN 
indicates that the WOLF1 would have to be smaller than 
BASKET1 to live in it.* Further inference is then needed to 

Alternatively, a major implication of LIVE-IN could merely 
indicate that if z lives in y, then z is in y (at some time). The 
knowledge that z is smaller than y would then be retrieved from 
a major implication for IN. 
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establish that the WOLF1 is not smaller than the basket, and 
therefore cannot live in it. The best way of establishing the 
relative sizes of WOLF1 and BASKET1 would be via a special 
inference method for relationships among physical objects, but 
the current implementation does not include such a method and 
instead resorts to explicitly asserting these relationships in the 
knowledge base. 

The above questions were chosen to illustrate technical points. 
More natural questions are also easily handled, such as “Did 
an animal eat someone?,, and “Is there anything in LRRH’s 
basket that she likes to eat?“. 

V DISCUSSION AND FUTURE WORK 

An implementation of the inference method, written in Berkeley 
PASCAL, was able to answer a test set of 40 questions in about 
15 seconds CPU time on a VAX 11/780, using a knowledge base 
of over 200 clauses (general and specific knowledge about the 
story of LRRH). Doubling the size of the knowledge base had 
no effect on the question-answering time. 

The successful implementation of the method vindicates the net 
organization developed earlier, showing that it provides quick 
selective access to the knowledge needed for simple question- 
answering. Furthermore, the organizational structure proved 
useful in guiding and constraining deduction steps. Proofs are 
confined to vertical paths through the concept hierarchy, and 
are topically focused, and as a result are very direct, avoiding 
“meaningless,, deductions, regardless of the amount of knowl- 
edge stored. Thus, we have made significant progress towards 
solving the “symbol-mapping” problem. 

Recent knowledge representation systems somewhat similar in 
aim to ours include KRYPTON (Brachman et al., 1983)) KL- 
TWO (Vilain, 1985) and HORNE (Allen et al., 1984). Like 
ECOSYSTEM, these systems are intended to provide a domain- 
independent logical representation, and general and special in- 
ference methods (such as taxonomic methods) applicable to a 
variety of domains. However, ECOSYSTEM’s concept-centred, 
topically focused retrieval mechanism, and its use in guiding 
deduction, appear to be unique. Further, rather than provid- 
ing alternative inference “tools”, such as forward and backward 
chaining, we have tried to provide a single, efficient algorithm 
for deductive question-answering. Also, our overall philosophy 
has been to provide a perfectly general representation and infer- 
ence mechanism, which we then seek to accelerate by special 
methods, as opposed to providing an initially restrictive.rep- 
resentation and inference mechanism, to be subsequently ex- 
tended by special inference methods. 

Numerous extensions to ECOSYTEM are planned. These in- 
clude extensions to handle temporal information (the tempo- 
ral system is nearly operational), equality, arithmetic, sets, 
modalities (including causation), generics (using the approach 
of Pelletier & Schubert, 1984)) and special methods for “naive 
physics”. Work on wh-question-answering and on the natural 
language front end are also under way (Schubert 1984, Schubert 
& Watanabe 1986). 
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