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ABSTRACT 

This paper uncovers the axiomatic basis for the 
probabilistic relation “x is independent of y , given z ” 
and offers it as a formal definition of informational 
dependency. Given an initial set of such independence 
relationships, the axioms established permits us to infer 
new independencies by non-numeric, logical manipula- 
tions. Additionally, the paper legitimizes the use of infer- 
ence networks to represent probabilistic dependencies by 
establishing a clear correspondence between the two rela- 
tional structures. Given an arbitrary probabilistic model, 
P, we demonstrate a construction of a unique edge- 
minimum graph G such that each time we observe a ver- 
tex x separated from y by a subset S of vertices, we can 
be guaranteed that variables x and y are independent in 
P, given the values of the variables in S . 

1. INTRODUCTION 

Any system that reasons about knowledge and be- 
liefs must make use of information about dependencies 
and relevancies. If we have acquired a body of 
knowledge z and now wish to assess the truth of proposi- 
tion x, it is important to know whether it would be 
worthwhile to consult another proposition y , which is not 
in z. In other words, before we examine y , we need to 
know if its truth value can potentially generate new infor- 
mation relative to x, information not available from z. 
For example, in trying to predict whether I am going to 
be late for a meeting, it is normally a good idea to ask 
somebody on the street for the time. However, once I es- 
tablish the precise time by listening to the radio, asking 
people for the time becomes superfluous, and their 
responses would be irrelevant. Similarly, knowing the 
color of x ‘s car normally tells me nothing about the color 
of Y ‘s. However, if X were to tell me that he almost mis- 
took Y’s car for his own, the two pieces of information 
become relevant to each other -- whatever I learn about 
the color of X’s car will have bearing on what I believe 
the color of Y’s car to be. What logic would facilitate 
this type of reasoning? 

In probability theory, the notion of relevance is 
given precise quantitative underpinning using the device 
of conditional independence. A variable x is said to be 
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independent of y given the information z if 

PhY Iz)=W lz)wY 14 
However, it is rather unreasonable to expect people or 
machines to resort to numerical verification of equalities 
in order to extract relevance information. The ease and 
conviction with which people detect relevance relation- 
ships strongly suggest that such information is readily 
available from the organizational structure of human 
memory, not from numerical values assigned to its com- 
ponents. Accordingly, it would be interesting to explore 
how assertions about relevance can be inferred qualita- 
tively from various models of memory and, in particular, 
whether the logic of such assertions coincides with that of 
probabilistic dependencies. 

Since models of human memory are normally por- 
trayed in terms of semantic networks of concepts and re- 
lations [Woods 19751, a natural question to ask is wheth- 
er the notion of probabilistic dependency can be captured 
by a network representation, in the sense that all depen- 
dencies and independencies in a given probabilistic 
model could be detected from the topological properties 
of some network. For a given probability distribution P 
and any three variables x, y and z , while it is fairly easy 
to verify whether knowing z renders x independent of y, 
P does not dictate which variables should be regarded as 
direct neighbors. Thus, the topology of networks which 
display the underlying dependencies is not explicitly 
given by the numeric representation of probabilities. 

This paper accomplishes two tasks. First, it un- 
covers the axiomatic basis for the probabilistic relation 
‘ ‘x is independent of y , given z ” and offers it as a for- 
mal definition for the qualitative notion of informational 
dependency. Given an initial set of such independence 
relationships, the axioms established permit us to infer 
new independencies by non-numeric, logical manipula- 
tions. Second, the paper legitimizes the use of networks 
to represent probabilistic dependencies by establishing a 
clear correspondence between the two relational struc- 
tures. Given an arbitrary probabilistic model, P, we 
demonstrate a construction of a unique edge-minimum 
graph G such that each time we observe a vertex x 
separated from y by a subset S of vertices, we can be 
guaranteed that variables x and y are independent in P, 
given the values of the variables in S. This correspon- 
dence provides a semantic for the topology of proposi- 
tional inference networks like those used in expert sys- 
tems [Duda, Hart and Nilsson 19761. 
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2. AN AXIOMATIC BASIS 
FOR PROBABILISTIC DEPENDENCIES 

KG z,y) c=-> uy, z,x) 
Symmetry @.a) 

Let u = {a, p, * * . J be a finite set of discrete- 
valued variables (i.e., partitions) characterized by a joint 
probability function P (a), and let x, y and z stand for any 
three subsets of variables in U. We say that x and y are 
conditionally independent given z if 

W&Y Iz)=W lww Id whenP(z) > 0 (1) 

Eq. (1) is a terse notation for the assertion that for any in- 
stantiation zk of the variables in z and for any instantia- 
tions Xi and yi of x and y , we have 

P (X=Xi and y=yj 1 Z=Zk) = 

P(X=Xi IZ=Zk) PCy"yj IZ=Zk) (2) 

The requirement P (z )>O guarantees that all the condi- 
tional probabilities are well defined, and we shall hen- 
ceforth assume that P >O for any instantiation of the vari- 
ables in U. This rules out logical and functional depen- 
dencies among the variables; a case which would require 
special treatment. 

We use the notation I (x ,z ,y )P or simply I (x ,z ,y ) 
to denote the independence of x and y given z ; thus, 

W,z,y)~ ifSf%w Iz)=W IWW Id (3) 

Note that I (x , z , y ) implies the conditional independence 
of all pairs of variables sex and @y , but the converse is 
not necessarily true. 

The conditional independence relation I (x ,z ,y ) 
satisfies the following set of properties [Lauritzen 19821: 
I(x,z,y)<=->P(xly,z)=P(x)z) (4.a) 

~(x,~,y)~=~~~~,~lY~=~~~I~~~~~lY~ (4.b) 

UX, z,y) -=I=> w-,g: w,y, z)=f(x, ZMY, a4.a 

I(x,z,y)<==>P(x,y,z)=P(xIz)P(y,z) (44 

(5.a) 

~(X,Z,Y) ===) we, 4, z,y> (5.b) 

The proof of these properties can be derived by elementa- 
ry means from the definition (1). These properties are 
based on the numeric representation of P and, therefore, 
would not be adequate as an axiomatic system. 

We now ask what logical conditions, void of any 
reference to numerical forms, should constrain the rela- 
tionship I (x ,z ,y ) if it stands for the statement “x is in- 
dependent of y , given that we know z .” The next set of 
properties constitute such a logical basis: 

Theorem 1: Let x, y and z be three disjoint subsets of 
variables from U, and let I (x ,z ,y ) stand for the relation 
“x is independent of y, given z” in some probabilistic 
model P , then I must satisfy the following set of five in- 

~(x,z,y uw) => 1(x, z,y) & 1(X, z, w) 
Decomposition (6.b) 

w,z uw,y) & Q&Z uy,w)=~m,LY UN 
Exchange (6.~ 1 

ux,z,y uw> =>I(x,z uw,y) 
Expansion (6-d 1 
~(x,zyy, w~~~~~,z,y~==~~(x,z,yyw) 
Contraction (6.e 1 

For technical convenience we shall adopt the convention 
that every variable is independent of the null set i.e., 
UX, z, 0). 

The intuitive interpretation of Eqs. (6.~) through 
(6.e) follows. (6.~) states that if y does not affect x when 
w is held constant and if, simultaneously, w does not af- 
fect x when y is held constant, then neither w nor y can 
affect x . (6.d) states that learning an irrelevant fact (w ) 
cannot help another irrelevant fact (y ) become relevant. 
(6.e) can be interpreted to state that if we judge w to be 
irrelevant (to x) after learning some irrelevant facts y, 
then w must have been irrelevant before learning y . To- 
gether, the expansion and contraction properties mean 
that learning irrelevant facts should not alter the 
relevance status of other propositions in the system; 
whatever was relevant remains relevant, and what was ir- 
relevant remains irrelevant. 

The proof of Theorem 1 can be derived by elemen- 
tary means from the definition (3) and from the basic ax- 
ioms of probability theory. The exchange property is the 
only one which requires the assumption P (x)>O and will 
not hold when the variables in U are constrained by logi- 
cal dependencies. In such a case, Theorem 1 will still re- 
tain its validity if we regard each logical constraint as 
having some small probability & of being violated, and let 
~30. The proof that Eqs. (6.a) through (6.e) are logically 
independent can be derived by letting U contain four ele- 
ments and showing that it is always possible to contrive a 
subset I of triplets (from the subsets of U) which violates 
one property and satisfies the other four. 

A graphical interpretation for properties (6.a) 
through (6.e) can be obtained by envisioning a graph with 
a set of vertices U and associating the relationship 
I (A ,B ,C ) with the statement “ B intervenes between A 
and C ” or, in other words, “the removal of a set B of 
nodes would render the nodes in A disconnected from 
those in C .” The validity of (6.~) through (6.e) is clearly 
depicted by the chain x -z -y -w . 

Completeness Conjecture: The set of axioms (6.a) 
through (6.e) is complete when I is interpreted as a 
conditional-independence relation. In other words, for 
every 3-place relation I satisfying (6.a) through (6.e), 
there exists a probability model P such that 

dependent conditions: 
P(x ly, z) =P(x lz) iff W, z,y). 
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Although we have not been able to establish a gen- 
eral proof of completeness, we were not able to find any 
violating example, i.e., we could not find another general 
property of conditional independence which is not im- 
plied by (6.a) through (6.e). 

3. A GRAPHICAL REPRESENTATION 
FOR PROBABILISTIC DEPENDENCIES 

Let G be an undirected graph and let cx I S I y >G 
stand for the assertion that removing a subset S of nodes 
from G would render nodes x and y disconnected. Ideal- 
ly, we would like to display independence between vari- 
ables by the lack of connectivity between their 
corresponding nodes in some graph G. Likewise, we 
would like to require that finding <x I S I y >G should 
correspond to conditional independence between x and y 
given S, namely, <x IS Iy>G => 1(x ,S ,Y)~ and, 
conversely, 1 (x , S , y )p =, <x 1 S I y >G . This would 
provide a clear graphical representation for the notion 
that x does not affect y directly, that its influence is 
mediated by the variables in S. Unfortunately, we shall 
next see that these two requirements might be incompati- 
ble; there might exist no way to display all the dependen- 
cies and independencies embodied in P by vertex separa- 
tion in a graph. 

Definition: An undirected graph G is a dependency 
map (D -map) of P if there is a one-to-one correspon- 
dence between the variables in P and the nodes of G, 
such that for all disjoint subsets, x, y , S , of variables we 
have: 

4x 9s 9Y)P =><Klsly>G (7) 

Similarly, G is an Independency map (1 -map) of P if: 

1(x , s ,y)p <== =Z 1s IY>G 63) 
A D-map guarantees that vertices found to be connected 
are, indeed, dependent; however, it may occasionally 
display dependent variables as separated vertices. An I- 
map works the opposite way: it guarantees that vertices 
found to be separated always correspond to genuinely in- 
dependent variables but does not guarantee that all those 
shown to be connected are, in fact, dependent. Empty 
graph are trivial D -maps, while complete graphs are trivi- 
al I -maps. 

Given an arbitrary graph G, the theory of Markov 
Fields [Lauritzen 19821 tells us how to construct a proba- 
bilistic model P for which G is both a D -map and an I- 
map. We now ask whether the converse construction is 
possible. 

Lemma: There are probability distributions for which 
no graph can be both a D -map and an 1 -map. 

Proof: Graph separation always satisfies 
a Is, b-G => a IsI us2/y>(; for any two sub- 
sets S 1 and S2 of vertices. Some P ‘s, however, may in- 
duce both 1(x ,S1,y)p and ZVC)TI(X,S,~S~,~)~. 
Such P’s cannot have a graph representation which is 
both an I-map and a D -map because D -mapness forces 
G to display S l as a cutset separating x and y , while I- 

mapness prevents S +S2 from separating x and y . No 
graph can satisfy these two requirements simultaneously. 
Q.E.D. 

A simple example illustrating the conditions of the 
proof is an experiment with two coins and a bell that 
rings whenever the outcomes of the two coins are the 
same. If we ignore the bell, the coin outcomes are mutu- 
ally independent, i.e., S l=O. However, if we notice the 
bell (Sz), then learning the outcome of one coin should 
change our opinion about the other coin. The only I-map 
for this example is a complete graph on the three vari- 
ables involved. It is obviously not a D-map because it 
fails to display the basic independence of the coin out- 
comes. 

Being unable to provide a graphical description for 
all independencies, 
compromise: 

we settle for the following 
we will consider only I-maps but will in- 

sist that the graphs in those maps capture as many of P’s 
independencies as possible, i.e., they should contain no 
superfluous edges. 

Definition: A graph G is a minimal I -map of P if no 
edge of G can be deleted with destroying its I-mapness. 
We call such a graph a Markov-Net of P . 

Theorem 2: Every P has a (unique) minimal Z-map 
Go = (U,EO) produced by connecting only pairs (cx$) 
for which I (a , U-a-p , p)p is FALSE. (8) 

i.e., 
(a$)~ E0 if Ua, U-a-P, P>p (9) 

The proof is given in pearl and Paz 19851 and uses only 
the symmetry and exchange properties of I. 

Definition: A relevance sphere R,(a) of a variable 
a E U is any subset S of variables for which 

I(a,S, U-S-a) and ad S (10) 

Let R;(a) stand for the set of all relevance spheres of a. 
A set is called a relevance boundary of a, denoted B,(a), 
if it is in R,*(a) and if, in addition, none of its proper 
subsets is in R,*(a). 

B,(a) is to be interpreted as the smallest set of 
variables that “shields” a from the influence of all other 
variables. Note that RI*(a) is non-empty because 
I (x , z , 0) guarantees that the set S = U-a satisfies (10). 

Theorem 3: [Pearl and Paz 19851 Every variable 
a E U has a unique relevance boundary B/(a). B,(a) 
coincides with the set of vertices &,(a) adjacent to a in 
the Markov net Go. The proof of Theorem 3 makes use 
of the expansion property (6.d). 

Corollary 1: The set of relevance boundaries B,(a) 
forms a neighbor system, i.e., a collection 
BI*={Bl(a):aE U) of subsets of U such that 

(i) a B B/(a), and 
00 a E 4(P) iff P+(a), a& U 
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Corollary 2: The Markov net Go can be constructed by 
connecting each a to all members of its relevance boun- 
darv B,(a). 

The usefulness of this corollary lies in the fact 
that, in many cases, it is the Markov boundaries B](a) 
that define the organizational structure of human 
memory. People find it natural to identify the immediate 
consequences and/or justifications of each action or event 
fDoyle 19791, and these relationships constitute the 
neighborhood semantics for inference nets used in expert 
systems Duda, et al. 19761. The fact that Br (a) coin- 
cides with BGo(a) guarantees that many independence re- 
lationships can be validated by tests for graph separation 
at the knowledge level itself [pearl 19851. 

Thus we see that the major graphical properties of 
probabilistic independencies are consequences of the ex- 
change and expansion axioms (6.~) and (6.d). Axioms 
(6.a) through (6.d), were chosen, therefore, as the 
definition of a general class of dependency models called 
Graphoids [Pearl & Paz 19851, which possess graphical 
representations similar to those of Markov nets. 

Illustration 1 (abstract) 

To illustrate the role of these axioms, consider a 
set of four integers U = {(l, 2, 3, 4)), and let I be the set 
of twelve triplets listed below: 

I= f-(1, 2, 3), (19 39 4), (2, 3,4), 

(f-1, 219 3,4), (1,129 31,4), 

(2, {l, 3}, 4) + symmetrical images} 

It is easy to see that I satisfies (6.a)-(6.d) and thus it has a 
unique minimal I -map G 0, shown in Figure 1. 

2 

9 

3 

d 
4 

Figure 1: The Minimal I-Map, GO, of I 

This graph can be constructed either by deleting 
the edges (1,4) and (2,4) from the complete graph or by 
computing from I the relevance boundary of each ele- 

B/(2) = f 1,319 

Suppose that I contained only the last two triplets 
(and their symmetrical images): 
I’= {(l, { 2, 3 }, 4), (2, { 1, 3 }, 4) +symmetrical images} 

I’ is clearly not a probabilistic independence relation be- 
cause the absence of the triplets (1, 3, 4) and (2, 3, 4) 
violates the exchange axiom (6.~). Indeed, if we try to 
construct Go by the usual criterion of edge deletion, the 

graph in Figure 1 ensues, but it is no longer an I-map of 
I ‘; it shows 3 separating 1 from 4, while (1, 3,4) is not 
in I ‘. In fact, the only I -maps of I’ are the three graphs 
in Figure 2, and the edge-minimum graph is clearly not 
unique. 

263 2+/3 263 

4 4 4 

Figure 2: The Three I-Maps of I ’ 

Now consider the list 
I” = {( 1,2,3), (1,3,4), (2,3,4), ( {I, 2J,3,4)+ images} 

I” satisfies the tist three axioms, (6.a) through (6.c), but 
not the expansion axiom (6-d). Since no triple of the 
form (a, U-a-p, j3) appears in I“, the only I-map for 
this list is the complete graph. However, the relevance 
boundaries of I” do not form a neighbor set; e.g., 
B,pp(4) = 3, &t(2) = { 1, 3,4}, so 2 4 + (4) while 
4 E &t(2). 

Note that I does not possess the contraction pro- 
perty (6.e) of probabilistic dependencies. Therefore, 
there is no probabilistic model capable of inducing this 
set of independence relationships unless we also add the 
triplet (1, 2, 3) toI. 

Illustration 2 (application) 

Consider the task of constructing a Markov net to 
represent the belief whether or not an agent A is about to 
be late to a meeting (see Introduction, 1st paragraph). 
Assume that the agent identifies the following variables 
as having influence on the main question of being late to 
a meeting: 

1) the time shown on Person-l’s watch; 
2) the time shown on Person-2’s watch; 
3) the correct current time; 
4) the time A will show up at the meeting place; 
5) the agreed time for starting the meeting; 
6) the time A ‘s partner will actually show up; 
7) whether A will be late for the meeting 

(i.e., will arrive after his partner), 

The construction of Go can proceed by two methods: 

1) the complementary set method; and 
2) the relevance-boundary method. 

The first method requires that, for every pair of variables 
(a, p), we determine whether fixing the values of all oth- 
er variables in the system will render our belief in a sen- 
sitive to the value of p. We know, for example, that 7 
will depend on 4, no matter what values are assumed by 
all the other variables and, on that basis, we may connect 
node 7 to node 4 and, proceeding in that fashion through 
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all pairs of variables, the graph of Figure 3 may be con- 
structed. 

7 
Figure 3 

The relevance-boundary method is more direct; for 
every variable a in the system we identify the minimal 
set of variables sufficient to render the belief in a insensi- 
tive to all other variables in the system. It is a common- 
sense task, for instance, to decide that, once we know the 
current time (3), no other variable may affect what we ex- 
pect to read on Person-l’s watch (1). Similarly, once we 
know the current time (3) and that we are not about to be 
late (7), we still must know when our partner will actual- 
ly show up (6) before we can estimate our arrival time (4) 
independent of the agreed time (5). On the basis of these 
considerations, we may connect 1 to 3; 4 to 6, 7 and 3; 
and so on. After finding the immediate neighbors of any 
six variables in the system, the graph Go will emerge, 
identical to that of Figure 3. 

Once established, Go can be used as an inference 
instrument. For example, the fact that knowing 4 renders 
2 independent of 5 (i.e., 1(2,4,5)) can be inferred from the 
fact that 4 is a cutset in Go, separating 2 from 5. Deriv- 
ing this conclusion by syntactic manipulations of axioms 
(6.a) through (6.e) would probably be more complicated. 
Additionally, the graphical representation can be used to 
help maintain consistency and completeness during the 
knowledge-building phase. One need only ascertain that 
the relevance boundaries identified by the knowledge pro- 
vider (e.g., the expert) form a neighbor system. 

4. CONCLUSIONS 

We have shown that the essential qualities charac- 
terizing the probabilistic notion of conditional indepen- 
dence are captured by five logical axioms: symmetry 
(6.a), decomposition (6.b), exchange (6.c), expansion 
(6.d) and contraction (6.e). The first three axioms enable 
us to construct an edge-minimum graph in which every 
cutset corresponds to a genuine independence condition. 
The fourth axiom is needed to guarantee that the set of 
neighbors which Go assigns to each variable a is actual- 
ly the smallest set required to shield a from the effects of 
alI other variables. 

The graphical representation associated with con- 
ditional independence offers an effective inference 

mechanism for deducing, in any given state of 
knowledge, which propositional variables are relevant to 
each other. If we identify the relevance boundaries asso- 
ciated with each proposition in the system and treat them 
as neighborhood relations defining a graph Go, then we 
can correctly deduce independence relationships by test- 
ing whether the set of currently known propositions con- 
stitutes a cutset in G, . 

The probabilistic relation of conditional indepen- 
dence is shown to possess a rather plausible set of quali- 
tative properties, consistent with our intuitive notion of 
“x being irrelevant to y , once we learn z .” Reducing 
these properties to a set of logical axioms permit us to 
test whether other calculi of uncertainty also yield facili- 
ties for connecting relevance to knowledge. Moreover, 
the axioms established can be viewed as inference rules 
for deriving new independencies from some initial set. 

Not all properties of probabilistic dependence can 
be captured by undirected graphs. For example, the 
former is non-monotonic and non-transitive (see ‘coins 
and bell’ example after proof of lemma) while graph 
separation is both monotonic and transitive. It is for 
these reasons that directed graphs such as inference nets 
(Duda et al., 1976) and belief nets (Pearl, 1985) are 
finding a wider application in reasoning systems. A sys- 
tematic axiomatization of these graphical representations 
is currently under way. 
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