
On the Parallel Complexity of Some Constraint Satisfaction Problems

Simon ICasif

Department of Electrical Engineering and Computer Science

The Johns Hopkins University

ABSTRACT

Constraint satisfaction networks have been shown
to be a very useful tool for knowledge representation in
Artificial Intelligence applications. These networks often
utilize local constraint propagation techniques to achieve
global consistency (consistent labelling in vision). Such
methods have been used extensively in the context of
image understanding and interpretation, as well as plan-
ning, natural language analysis and commonsense reason-
ing. In this paper we study the parallel complexity of
discrete relaxation, one of the most commonly used con-
straint satisfaction techniques. Since the constraint pro-
pagation procedures such as discrete relaxation appear
to operate locally, it has been previously believed that
the relaxation approach for achieving global consistency
has a natural parallel solution. Our analysis suggests
that a parallel solution is unlikely to improve by much
the known sequential solutions. Specifically, we prove
that the problem solved by discrete relaxation is log-
space complete for P (the class of polynomial time deter-
ministic sequential algorithms). Intuitively, this implies
that discrete relaxation is inherently sequential and it is
unlikely that we can solve the polynomial time version
of the consistent labelling problem in logarithmic time
by using only a polynomial number of processors. Some
practical implications of our result are discussed.

1. Introduction

Constraint satisfaction networks have been shown
to be a very useful tool for knowledge representation in
Artificial Intelligence applications [Winston 841. These
networks often utilize local constraint propagation tech-
niques to achieve global consistency. Such methods have
been used extensively in the context of image

understanding and interpretation [Rosenfeld et al. 761,
[Haralick & Shapiro 791, [Mackworth 771 as well as plan-
ning, natural language analysis and commonsense reason-
ing [Winston 841.

In particular, this paradigm has been applied to
solve the consistent labelling problem (CLP) which is a
key problem in many computer vision applications. The
consistent labeling problem can be informally defined as

follows. Let S be a set of objects. Each object has a set
of possible labels associated with it. Additionally, we are
given a set of constraints that for each object s and
label x describe the compatibility of assigning the label
x to object s with assignment of any other label X’ to
any other object s’ .

Since CLP is known to be NP-complete, the discrete
relaxation method has been proposed to reduce the ini-
tial ambiguity. The Relaxed Consistent Labeling Prob-
lem (RCLP) allows an assignment of a label x to an
object s iff for any other object s’ in the domain there
exists a valid assignment of a label a! which does not
violate the constraints (a formal definition is given in the
next section). This formalization allows us to achieve
global consistency by local propagation of constraints.
Specifically, a discrete relaxation algorithm can discard a
label from an object if it is incompatible with all other
possible assignments of labels to the remaining objects.
The discrete relaxation approach has been successfully
applied to numerous computer vision applications [Waltz
75.1, [Kitchen 19801, [B arrow & Tenenbaum 761, [Brooks
811. The sequential time complexity of RCLP is dis-
cussed in [Mackworth 22 Freuder 851.

In this paper we study the parallel complexity of
RCLP. Since the constraint propagation procedures
such as discrete relaxation appear to operate locally, it
has been previously believed that the relaxation
approach for CLP has a natural parallel solution [Rosen-
feld et al. 761, [Ballard SC Brown 821, [Winston 841. Our
analysis suggests that a parallel solution is unlikely to
improve by much the known sequential solutions.
Specifically, we prove that the relaxed consistent label-
ling problem belongs to the class of inherently sequential
problems called log-space complete for P.

Intuitively, a problem is log-space complete for P ill
a logarithmic time parallel solution for the problem will
produce a logarithmic time parallel solution for any poly-
nomial time deterministic sequential algorithm. This
implies that unless P & NC (the class of problems solv-
able in logarithmic parallel time with polynomial
number of processors) we cannot solve the problem in
logarithmic time using a polynomial number of proces-
sors. This result is based on the “parallel computation
thesis” proved in [Goldschlager 781 that establishes that
parallel time computation is polynomially related to
sequential space. Specifically, the class of problems that

KNOWLEDGE REPRESENTATION / 349

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

can be solved in logarithmic parallel time with polyno-
mial number of processors is equivalent to the class of
problems that can be solved in polynomial time using
logarithmic space on a sequential machine. For length
considerations, we assume that the reader is familiar
with elementary complexity theory and log-space reduci-
bility techniques [Garey SC Johnson 701 and the literature
on discrete relaxation (network consistency algorithms).
For completeness we shall provide the necessary
definitions in the next two sections.

2. Consistent Labelling Problems and Discrete
Relaxation

The consistent labelling problem (CLP) and its less
restrictive (relaxed) version are formally defined in
[Mackworth 771 and [Rosenfeld et al. 761. For complete-
ness we give a semiformal definition here. Let

v={v,,....v,} be a set of variables. iVit,h each

variable Vi we associate a set of labels Li. Now let Yij
be a binary predicate that defines the compatibility of
assigning labels to objects. Specifically,

Pij (5 yj/)=l

iff the assignment of label x to ‘ui is compatible wit,11
the assignment of label y to ‘uuj, The Consistent Label-
ling Problem (CLP) is defined as the problem of finding
an assignment of labels to the variables that does not
violate the constraints given by Pij. More formally, a
solution to CLP is a vector (x 1, . . . , x,,) such that xi is
in Li and for each i and j, Pii (xi ,xcj) = 1.

For example, the d-queens problem can be seen as
an instance of CLP. To confirm this, associate a variable

with each column in the board and let Li = 1,2,3,4
{ >

for

15; <4. Let Pij (x ,y)=l iff positioning of a queen in -
row x at column i is ” safe ” when there is a queen in
column j and row y .

A.s mentioned in the introduction, the CLP is
known to be NP-complete. Therefore several polynomial
approximation algorithms were proposed and were shown
to perform quite well in practical applications. The most
significant class of algorithms are variations on discrete
relaxation [Rosenfeld et, al. 761 also known as network
consistency algorithms [Mackworth 771. Formally, a
solution to the relaxed version of CLP (RCLP) is a set of
sets M,, . . . , M,, such that A4i is a subset of Li and a
label x is in h4i iff for Ej%RY iMj i #j there is a

Yz. in Mj, SUCh that Pij (X YYzj) = 1. Intuitively, a
label x is assigned to a variable iff for every other vari-
able there is at least one valid assignment of a label to
that other variable that supports the assignment of label
x to the first, variable. Clearly, any solution to CLP is
also a solution to RCLP but, not vice versa. In this sense
discrete relaxation is a form of incomplete limited rea-
soning. We call a set n4,, . . . , Al, to be a maximal
solution for a RCLP iff there does not exist any other

solution S 1, . . . , S, such that n4i C Si for all
I< i < 11 . We are only interested in maximal solutions
fo7 a-RCLP. This restriction is necessary since any
RCLP has a trivial solution: the set of empty sets.
Additionally, recall that any solution for a RCLP
represents a set, of candidate solutions for the original
CLP, which will eventually be verified by a final exhaus-
tive check. Thus, by insisting on maximality we guaran-
tee that we are not loosing any possible solutions for the
original CLP. Therefore, in the remainder of this paper
a solution for a RCLP is identified with a maximal solu-
tion.

3. The Complexity of Searching AND/OR
Graphs

In this section we state several preliminary
definitions and results that will be used in the following
section to analyze the complexity of RCLP. We begin
by defining AND/OR graphs [Nilsson 711.

An AND/OR graph is a G-tuple (A ,0 ,E ,S ,S ,r)
where A is a set, of AND-nodes, 0 is a set of OR-nodes,
E is a set of directed edges connecting nodes in

A UO US UF , s is a unique start node in A , S is a
set of success nodes and F is a set of failure nodes. The
solvability of a node in an ,4ND/OR graph is defined
recursively:

- If x is a S-node, it is solved.

- If x is is an AND-node, then it is solved iff all its
successors (defined by the direction of the edges of
E) are solved.

- If x is an OR-node then it is solved iff one of its suc-
cessors is solved.
An AND/OR graph has a solution iff s is solved.

Proposition 3.1: (Jones & Laaser)
Finding a solution for an AND/OR graph is log-space
complete.
Proof:

This result can be obtained by observing that
GAME studied in [Jones SC Laaser 771 is an instance of
the problem of AhrD/OR solvability.

We now define the class of propositional Horn
clauses.

A propositional formula H is said to be a proposi-
tional Horn clause iff one of the following holds

- H is a propositional atom of the form Q, called an
assertion.

- H is a propositional formula of the form P +
P,&)...) 8 P,, denoted by P +
p,, *. ., P, and called an implication.

- H is a propositional negative atom (literal) of the
form 1 P , denoted by +- P and called a goal.

We note that our slightly restrictive definition of
Horn clauses (not allowing multiple literals in the goal)
does not, restrict the expressiveness of the language.

350 / SCIENCE

A Propositional Logic Program is a set of proposi-
tional Horn clauses with a single goal. We define the
unsatisfiability of a set of propositional Horn clauses s as
a solvability relation on the set of propositional names in
S. The definition is recursive:

- If P is an assertion in S then it is solvable.

- If P appears on the left hand side in a set of impli-
cations of the form

P+P,,...,P,

then P is solvable iff each one of the Pi s is solvable
in at least one of the implications,
A propositional logic program is unsatisfiable iff the
propositional name that appears in the single nega-
tive atom is solvable. The problem of testing
whether a propositional logic program is
unsatisfiable will be referred to as the Propositional
Horn Satisfiability Problem (PHSP).

Example:

The following set of Horn clauses is unsatisfiable
since P is solvable:

+P
P + Q,R.
P +- ST.
R t S.
T + P.
Q.
S.

The next theorem, though not explicitly stated pre-
viously in a published form, is part of the common folk-
lore among theoreticians [Pullman 851.

Theorem 3.1 (folklore):

The problem of testing the satisfiability of proposi-
tional Horn clauses is log-space complete.

Proof:

The proof is by reduction from solvability of
AND/OR graphs (GAllE of [Jones & Laaser 771) and
will not be presented here in full detail. Generally,
“reduction” is the most common technique to show a
problem X is log-space complete. Specifically, it is ade-
quate to show the problem is in P (the class of polyno-
mial time algorithms), and then reduce a known log-
space complete problem to X using a function comput-
able in logarithmic space (log-space) by a deterministic
Turing machine. Since log-space reducibility is a transi-
tive relation, we can then deduce that if we had a loga-
rithmic time parallel algorithm to solve X, we could
also perform every other sequential polynomial time
computation in logarithmic time. In our case the reduc-
tion of AND/OR graph solvability to propositional Horn
satisfiability is immediate (in some sense it is the same
problem). We label all the nodes in the Am/OR graph
with distinct propositional atoms. Then for each AND-

node P connected to P r, . . . , Pn we create a formula
P+P,,...,P,. For each OR-node P connected to
PI,. *. , P, we create formulae

P+P,.

. . .

P + P, .

For each terminal success node Q we create the assertion
Q. Finally if the start node of the graph is labelled by P
we add the goal + P to the set.

It is easy to see that the original graph has a solu-
tion iff the set of formulae created in this fashion is
unsatisfiable and the transformation can indeed be done
in log-space.

It is not difficult to verify that the following is also true
[Reif 851:

Theorem 3.2:

Theorem 3.1 holds for propositional logic programs
restricted to implications that have at most two atoms
on the right hand side of the implication.

4. The Complexity of RCLP

In this section we prove our main result, namely
that the problem of finding a solution to Relaxed CLP
(RCLP) is log-space complete. To accomplish this we
show that RCLP is in P and subsequently prove that
satisfiability of propositional Horn clauses (PHSP) is
reducible to RCLP. The first part of the proof is
straightforward since most existing algorithms for RCLP
are of polynomial sequential complexity (see [Mackworth
& Freuder 851). In fact the edge consistency algorithm
as given in [M ac k worth 771 is linear in the number of
edges in the constraint graph [Ma&worth & Freuder 851.

Theorem 4.1:

The Propositional Horn clause satisfiability problem
is log-space reducible to the Relaxed Consistent

Labelling Problem.
Proof:

Let Pr be a propositional logic program such that
no implication has more then two atoms on its right
hand side. We will also assume that all the atoms in Pr
are uniquely labeled with integer values. We shall con-
struct an RCLP G from Pr such that Pr is
unsatisfiable iff a unique variable <P,> in G that
corresponds to the unique goal +P, does not have a
valid assignment of the label f . The RCLP is con-
structed in the following way.

1. For each atom in Pr A we create a unique variable
<A>.

2. For each assertion Q in Pr we create a unique
variable <SOL VEDg >.

KNOWLEDGE REPRESENTATION / 35 1

3. Create a unique variable <P,> that corresponds
to the goal t P o of Pr .

4. For each implication of the form P +Q ,R. we add
the variable <Q,R> to G .

This construction defines all the variables of G .
The initial label sets are created as follows:

- Each variable with the exception of the
<SOLVED > variables is assigned the label 1 .

- For each assertion Q in PT we add the label q to
the initial label set of < SOLVEDQ >.

- For each variable of the form <R> we add the
label j to its initial set.

- For each variable of the form <S,T> we add the
labels fs and f T to its initial set.

We are now ready to define the constraints of the
problem G . We define the constraints using a compati-
bility matrix COM, whose entries are of the form
COM[variable,variable,lal~el, label]. COM[V, , tpj ,X ,y]
= 1 ifI the assignment of label y to variable uj is com-
patible with the assignment of label z to variable vi. An
alternative natural representation is to use a directed
multigraph where the nodes correspond to the variables
of the problem and the edges are labeled with the con-
straints of the problem. It is important to observe that
in order to preserve log-space reducibility we do not need
to create the entire compatibility matrix COM. For a
full description of the RCLP we only need to create a list
of the constraints of the form COM[var,var,label,label]
= 0. That is, we describe only the incompatible assign-
ments. The remaining entries in the matrix can be filled
with 1s.

For each implication of the form P +--R lve add the
constraints

COM[<P>,<R>J ,f] = 1
COM[<P>,<R>J ,I] = 0

For each implication of the form P +Q ,R we add the
constraints

COM[<P>,<Q,R>,f JQ] = 1
COM[<P>,<Q,R>,f ,f R] = 1
COM[<P>,<Q,R>,f ,E] = 0

COM[<Q,R>,<R>,f, ,f] = 1
COM[<Q,R>,<R>,fR $1 = 0

COM[<Q,R>sQ>,fg ,I 1 = 1
COM[<Q,R>,<Q>,&, $1 = 0

Finally, for every variable of the form < SOLVEDg >
we add the constraint

COM[<Q>, <SOLT’EDg >,f ,q] = 0

This completes the definition of all the “necessary”
constraints of the the RCLP. The rest of the matrix
COM can be filled with 1s.

Note that the label f must be removed from all
the variables that correspond to the assertions of the
logic program. Using induction on the length of the
satisfiability proof it is fairly easy to show that the label
f will be removed from the variable <P, > that
corresponds to the goal +P, iff P, is solvable. The
formal proof is omitted.

Now we have to verify that the above construction
can be done using only logarithmic space on the work
tape of the Turing machine. We shall sketch the main
ideas of the proof method. If the construction were to be
carried out in the order given above it would have taken
linear space (linear in the number of total occurrences of
all the atoms in Pr). Fortunately, since we assumed the
atoms were initially numbered by integers, we can follow

the above construction in a demand-driven fashion as
explained below.

To start off we can create all the variables of the
form <Q> and their respective label sets. This can be
done with logarithmic space consumption since process-
ing each one of the N-variables we need ZgN-bits. Fol
each assertion we can add the respective label to
<SOLVED>. For implications of the form P +-Q ,R
we generate a new variable and its respective initial label
set. This step requires a counter that can be imple-
mented in logarithmic space. Finally, for each implica-
tion encountered we can generate the constraints (again
in logarithmic space). This completes the generation of
all the necessary (see above discussion) information that
completely describes the RCLP G .

Example:
Consider the following PHSP :

tP
P + Q,R.
P + ST.
R + S.
T t P.

Q-
s.

We construct the following RCLP. The variables of
the problem are: <P>, <Q>, <R>, <S>, <T>,
<Q,R>, <S,T>, <SOLVED0 >, <SOLVED, >.
The initial assignments of labels are as follows:

<P>: {f ,I}
<Q>: {f A>
<R>: {f ,I}
<s>: {‘i ,I}
<T>: {f ,I}
<Q,R>: (f Q JR ,I >
<SJ’>: {f sJTJ}
<SOLVEDQ >: {q }
<SOLVED, >: {s }

Finally, the constraints are given in Figure 1.

352 / SCIENCE

COM[<P>,<Q,R>,I $1 = 0
COM[<P>,<S,T>,f ,I] = 0

COM[<Q,R>,<R>,& ,I] = 0
COM[<Q,R>,<Q>,fQ ,I] = 0

COM(<S,T>,<S>,fs ,I] = 0
COM[<S,T>,<T>,h- $1 = 0

COM[<R>,<S>,f ,I] = 0

COM[<T>,<P>,I ,I] = 0

COM[<Q>,<SOLVED, >,f ,q] = 0

COM[<S>,<SOLVED, >,f ,s] = 0
Figure 1.

5. Conclusion

In this paper we have shown that a very important
glass of algorithms which were previously believed to be
highly parallelizable are in fact inherently sequential.
This negative result needs to be quantified. Essentially,
it suggests that the application of massive parallelism
will not change significantly the worst case complexity of
discrete relaxation (unless one has an exponential
number of processors). However, this result does not
preclude research in the direction of applying parallel-
ism in a more controlled fashion. Specifically, speedups
are possible in the case- where the number of processors
is significantly smaller than the size of the constraint
graph (a very likely case). In this case, it may be possible
to obtain a full P-processor speedup. We are currently
actively investigating this interesting case.

Acknowledgements
Thanks are due to Azriel Rosenfeld, Dave Mount

and Deepak Sherlekar for their constructive comments
that contributed greatly to the final form of this paper.
This work was supported by NSF under grant DCR-
18408 while the author was a visiting scientist at the
Center for Automation Research, University of Mary-
land.

REFERENCES

PI Ballard, D.H. and C.M. Brown, Computel Vision,
Prentice Hall, 1982.

PI Barrow, H. G. and J. M. Tenenbaum, MSYS: A
system for reasoning about scenes, Technical
Note 121, SRI AI Center, Menlo Park, CA,
April 1976.

[3] Brooks, R A., Symbolic reasoning among 3-D
models and 2-D images, Artificial Intelligence
17, pp. 285-348, 1981.

PI

PI

PI

PI

PI

PI

101

WI

[121

131

141 1

(151

P61

Garey, M.R and D. S Johnson, Computers and In-
tractability: A Guide to NP-Completeness,
Freeman, San Francisco, 1979.

Goldschlager, L.M., A Unified Approach to
Models of Synchronous Parallel Machines,
Proc. of the lo-th Symposium on Th.eory of
Computing, pp. 89-94, May 1978.

Haralick, R. M. and L. G. Shapiro, The consistent
labeling problem: Part I, IEEE Trans. Pd.
Anal, Mach. Intel. PAMI-1, pp. 173-184,
1979.

Jones, N. and T. Laaser, Complete problems for
deterministic polynomial time, Theoretical
Computer Science 3, pp. 105-117, 1977.

Kitchen, L. J., Relaxation applied to matching
quantitative relational structures, IEEE
Trans. Syst. Man Cybern. SMC-10, pp. 96-
101, 1980.

Mackworth, A. and E. Freuder, The complexity of
some polynomial network consistency algo-
rithms for constraint satisfaction, Artificial
Intelligence 25, pp. 65-74, 1985.

Mackworth, A. I<., Consistency in networks of re-
lations, Artificial Intelligence 8, pp. 99-118,
1977.

Nilsson, N. J., Problem-Solving Methods in
Artificial Intelligence, McGraw-Hill, New
York, 1971.

Reif, J., Depth-first search is inherently sequen-
tial, Info. Proc. Letters 20, pp. 229-234,
1985.

Rosenfeld, A., R. Hummel, and S. Zucker,, Scene
labeling by relaxation operations, IEEE
Trans. Syst. Man Cybern SMC-6, pp. GO-
433, 1976.

Ullman, J., Personal communication. 1985.

Waltz, D., Understanding line drawings of scenes
with shadows, pp. 19-92 in The Psychology of
Computer Vision, ed. P. H. Winston,
McGraw-Hill, New York, 1975..

Winston, P.H., Artificial Intelligence, Addison
Wesley, 1984.

KNOWLEDGE REPRESENTATION / 353

