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ABSTRACT 

Constraint satisfaction networks have been shown 
to be a very useful tool for knowledge representation in 
Artificial Intelligence applications. These networks often 
utilize local constraint propagation techniques to achieve 
global consistency (consistent labelling in vision). Such 
methods have been used extensively in the context of 
image understanding and interpretation, as well as plan- 
ning, natural language analysis and commonsense reason- 
ing. In this paper we study the parallel complexity of 
discrete relaxation, one of the most commonly used con- 
straint satisfaction techniques. Since the constraint pro- 
pagation procedures such as discrete relaxation appear 
to operate locally, it has been previously believed that 
the relaxation approach for achieving global consistency 
has a natural parallel solution. Our analysis suggests 
that a parallel solution is unlikely to improve by much 
the known sequential solutions. Specifically, we prove 
that the problem solved by discrete relaxation is log- 
space complete for P (the class of polynomial time deter- 
ministic sequential algorithms). Intuitively, this implies 
that discrete relaxation is inherently sequential and it is 
unlikely that we can solve the polynomial time version 
of the consistent labelling problem in logarithmic time 
by using only a polynomial number of processors. Some 
practical implications of our result are discussed. 

1. Introduction 

Constraint satisfaction networks have been shown 
to be a very useful tool for knowledge representation in 
Artificial Intelligence applications [Winston 841. These 
networks often utilize local constraint propagation tech- 
niques to achieve global consistency. Such methods have 
been used extensively in the context of image 

understanding and interpretation [Rosenfeld et al. 761, 
[Haralick & Shapiro 791, [Mackworth 771 as well as plan- 
ning, natural language analysis and commonsense reason- 
ing [Winston 841. 

In particular, this paradigm has been applied to 
solve the consistent labelling problem (CLP) which is a 
key problem in many computer vision applications. The 
consistent labeling problem can be informally defined as 

follows. Let S be a set of objects. Each object has a set 
of possible labels associated with it. Additionally, we are 
given a set of constraints that for each object s and 
label x describe the compatibility of assigning the label 
x to object s with assignment of any other label X’ to 
any other object s’ . 

Since CLP is known to be NP-complete, the discrete 
relaxation method has been proposed to reduce the ini- 
tial ambiguity. The Relaxed Consistent Labeling Prob- 
lem (RCLP) allows an assignment of a label x to an 
object s iff for any other object s’ in the domain there 
exists a valid assignment of a label a! which does not 
violate the constraints (a formal definition is given in the 
next section). This formalization allows us to achieve 
global consistency by local propagation of constraints. 
Specifically, a discrete relaxation algorithm can discard a 
label from an object if it is incompatible with all other 
possible assignments of labels to the remaining objects. 
The discrete relaxation approach has been successfully 
applied to numerous computer vision applications [Waltz 
75.1, [Kitchen 19801, [B arrow & Tenenbaum 761, [Brooks 
811. The sequential time complexity of RCLP is dis- 
cussed in [Mackworth 22 Freuder 851. 

In this paper we study the parallel complexity of 
RCLP. Since the constraint propagation procedures 
such as discrete relaxation appear to operate locally, it 
has been previously believed that the relaxation 
approach for CLP has a natural parallel solution [Rosen- 
feld et al. 761, [Ballard SC Brown 821, [Winston 841. Our 
analysis suggests that a parallel solution is unlikely to 
improve by much the known sequential solutions. 
Specifically, we prove that the relaxed consistent label- 
ling problem belongs to the class of inherently sequential 
problems called log-space complete for P. 

Intuitively, a problem is log-space complete for P ill 
a logarithmic time parallel solution for the problem will 
produce a logarithmic time parallel solution for any poly- 
nomial time deterministic sequential algorithm. This 
implies that unless P & NC (the class of problems solv- 
able in logarithmic parallel time with polynomial 
number of processors) we cannot solve the problem in 
logarithmic time using a polynomial number of proces- 
sors. This result is based on the “parallel computation 
thesis” proved in [Goldschlager 781 that establishes that 
parallel time computation is polynomially related to 
sequential space. Specifically, the class of problems that 
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can be solved in logarithmic parallel time with polyno- 
mial number of processors is equivalent to the class of 
problems that can be solved in polynomial time using 
logarithmic space on a sequential machine. For length 
considerations, we assume that the reader is familiar 
with elementary complexity theory and log-space reduci- 
bility techniques [Garey SC Johnson 701 and the literature 
on discrete relaxation (network consistency algorithms). 
For completeness we shall provide the necessary 
definitions in the next two sections. 

2. Consistent Labelling Problems and Discrete 
Relaxation 

The consistent labelling problem (CLP) and its less 
restrictive (relaxed) version are formally defined in 
[Mackworth 771 and [Rosenfeld et al. 761. For complete- 
ness we give a semiformal definition here. Let 

v={v,,....v,} be a set of variables. iVit,h each 

variable Vi we associate a set of labels Li. Now let Yij 
be a binary predicate that defines the compatibility of 
assigning labels to objects. Specifically, 

Pij (5 yj/ )=l 

iff the assignment of label x to ‘ui is compatible wit,11 
the assignment of label y to ‘uuj, The Consistent Label- 
ling Problem (CLP) is defined as the problem of finding 
an assignment of labels to the variables that does not 
violate the constraints given by Pij. More formally, a 
solution to CLP is a vector (x 1, . . . , x,, ) such that xi is 
in Li and for each i and j, Pii (xi ,xcj ) = 1. 

For example, the d-queens problem can be seen as 
an instance of CLP. To confirm this, associate a variable 

with each column in the board and let Li = 1,2,3,4 
{ > 

for 

15; <4. Let Pij (x ,y )=l iff positioning of a queen in - 
row x at column i is ” safe ” when there is a queen in 
column j and row y . 

A.s mentioned in the introduction, the CLP is 
known to be NP-complete. Therefore several polynomial 
approximation algorithms were proposed and were shown 
to perform quite well in practical applications. The most 
significant class of algorithms are variations on discrete 
relaxation [Rosenfeld et, al. 761 also known as network 
consistency algorithms [Mackworth 771. Formally, a 
solution to the relaxed version of CLP (RCLP) is a set of 
sets M,, . . . , M,, such that A4i is a subset of Li and a 
label x is in h4i iff for Ej%RY iMj i #j there is a 

Yz. in Mj, SUCh that Pij (X YYzj ) = 1. Intuitively, a 
label x is assigned to a variable iff for every other vari- 
able there is at least one valid assignment of a label to 
that other variable that supports the assignment of label 
x to the first, variable. Clearly, any solution to CLP is 
also a solution to RCLP but, not vice versa. In this sense 
discrete relaxation is a form of incomplete limited rea- 
soning. We call a set n4,, . . . , Al, to be a maximal 
solution for a RCLP iff there does not exist any other 

solution S 1, . . . , S, such that n4i C Si for all 
I< i < 11 . We are only interested in maximal solutions 
fo7 a-RCLP. This restriction is necessary since any 
RCLP has a trivial solution: the set of empty sets. 
Additionally, recall that any solution for a RCLP 
represents a set, of candidate solutions for the original 
CLP, which will eventually be verified by a final exhaus- 
tive check. Thus, by insisting on maximality we guaran- 
tee that we are not loosing any possible solutions for the 
original CLP. Therefore, in the remainder of this paper 
a solution for a RCLP is identified with a maximal solu- 
tion. 

3. The Complexity of Searching AND/OR 
Graphs 

In this section we state several preliminary 
definitions and results that will be used in the following 
section to analyze the complexity of RCLP. We begin 
by defining AND/OR graphs [Nilsson 711. 

An AND/OR graph is a G-tuple (A ,0 ,E ,S ,S ,r ) 
where A is a set, of AND-nodes, 0 is a set of OR-nodes, 
E is a set of directed edges connecting nodes in 

A UO US UF , s is a unique start node in A , S is a 
set of success nodes and F is a set of failure nodes. The 
solvability of a node in an ,4ND/OR graph is defined 
recursively: 

- If x is a S-node, it is solved. 

- If x is is an AND-node, then it is solved iff all its 
successors (defined by the direction of the edges of 
E ) are solved. 

- If x is an OR-node then it is solved iff one of its suc- 
cessors is solved. 
An AND/OR graph has a solution iff s is solved. 

Proposition 3.1: (Jones & Laaser) 
Finding a solution for an AND/OR graph is log-space 
complete. 
Proof: 

This result can be obtained by observing that 
GAME studied in [Jones SC Laaser 771 is an instance of 
the problem of AhrD/OR solvability. 

We now define the class of propositional Horn 
clauses. 

A propositional formula H is said to be a proposi- 
tional Horn clause iff one of the following holds 

- H is a propositional atom of the form Q, called an 
assertion. 

- H is a propositional formula of the form P + 
P,& )...) 8 P,, denoted by P + 
p,, *. ., P, and called an implication. 

- H is a propositional negative atom (literal) of the 
form 1 P , denoted by +- P and called a goal. 

We note that our slightly restrictive definition of 
Horn clauses (not allowing multiple literals in the goal) 
does not, restrict the expressiveness of the language. 
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A Propositional Logic Program is a set of proposi- 
tional Horn clauses with a single goal. We define the 
unsatisfiability of a set of propositional Horn clauses s as 
a solvability relation on the set of propositional names in 
S. The definition is recursive: 

- If P is an assertion in S then it is solvable. 

- If P appears on the left hand side in a set of impli- 
cations of the form 

P+P,,...,P, 

then P is solvable iff each one of the Pi s is solvable 
in at least one of the implications, 
A propositional logic program is unsatisfiable iff the 
propositional name that appears in the single nega- 
tive atom is solvable. The problem of testing 
whether a propositional logic program is 
unsatisfiable will be referred to as the Propositional 
Horn Satisfiability Problem (PHSP). 

Example: 

The following set of Horn clauses is unsatisfiable 
since P is solvable: 

+P 
P + Q,R. 
P +- ST. 
R t S. 
T + P. 
Q. 
S. 

The next theorem, though not explicitly stated pre- 
viously in a published form, is part of the common folk- 
lore among theoreticians [Pullman 851. 

Theorem 3.1 (folklore): 

The problem of testing the satisfiability of proposi- 
tional Horn clauses is log-space complete. 

Proof: 

The proof is by reduction from solvability of 
AND/OR graphs (GAllE of [Jones & Laaser 771) and 
will not be presented here in full detail. Generally, 
“reduction” is the most common technique to show a 
problem X is log-space complete. Specifically, it is ade- 
quate to show the problem is in P (the class of polyno- 
mial time algorithms), and then reduce a known log- 
space complete problem to X using a function comput- 
able in logarithmic space (log-space) by a deterministic 
Turing machine. Since log-space reducibility is a transi- 
tive relation, we can then deduce that if we had a loga- 
rithmic time parallel algorithm to solve X, we could 
also perform every other sequential polynomial time 
computation in logarithmic time. In our case the reduc- 
tion of AND/OR graph solvability to propositional Horn 
satisfiability is immediate (in some sense it is the same 
problem). We label all the nodes in the Am/OR graph 
with distinct propositional atoms. Then for each AND- 

node P connected to P r, . . . , Pn we create a formula 
P+P,,...,P,. For each OR-node P connected to 
PI,. *. , P, we create formulae 

P+P,. 

. . . 

P + P, . 

For each terminal success node Q we create the assertion 
Q. Finally if the start node of the graph is labelled by P 
we add the goal + P to the set. 

It is easy to see that the original graph has a solu- 
tion iff the set of formulae created in this fashion is 
unsatisfiable and the transformation can indeed be done 
in log-space. 

It is not difficult to verify that the following is also true 
[Reif 851: 

Theorem 3.2: 

Theorem 3.1 holds for propositional logic programs 
restricted to implications that have at most two atoms 
on the right hand side of the implication. 

4. The Complexity of RCLP 

In this section we prove our main result, namely 
that the problem of finding a solution to Relaxed CLP 
(RCLP) is log-space complete. To accomplish this we 
show that RCLP is in P and subsequently prove that 
satisfiability of propositional Horn clauses (PHSP) is 
reducible to RCLP. The first part of the proof is 
straightforward since most existing algorithms for RCLP 
are of polynomial sequential complexity (see [Mackworth 
& Freuder 851). In fact the edge consistency algorithm 
as given in [M ac k worth 771 is linear in the number of 
edges in the constraint graph [Ma&worth & Freuder 851. 

Theorem 4.1: 

The Propositional Horn clause satisfiability problem 
is log-space reducible to the Relaxed Consistent 

Labelling Problem. 
Proof: 

Let Pr be a propositional logic program such that 
no implication has more then two atoms on its right 
hand side. We will also assume that all the atoms in Pr 
are uniquely labeled with integer values. We shall con- 
struct an RCLP G from Pr such that Pr is 
unsatisfiable iff a unique variable <P,> in G that 
corresponds to the unique goal +P, does not have a 
valid assignment of the label f . The RCLP is con- 
structed in the following way. 

1. For each atom in Pr A we create a unique variable 
<A>. 

2. For each assertion Q in Pr we create a unique 
variable <SOL VEDg >. 
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3. Create a unique variable <P,> that corresponds 
to the goal t P o of Pr . 

4. For each implication of the form P +Q ,R. we add 
the variable <Q,R> to G . 

This construction defines all the variables of G . 
The initial label sets are created as follows: 

- Each variable with the exception of the 
<SOLVED > variables is assigned the label 1 . 

- For each assertion Q in PT we add the label q to 
the initial label set of < SOLVEDQ >. 

- For each variable of the form <R> we add the 
label j to its initial set. 

- For each variable of the form <S,T> we add the 
labels fs and f T to its initial set. 

We are now ready to define the constraints of the 
problem G . We define the constraints using a compati- 
bility matrix COM, whose entries are of the form 
COM[variable,variable,lal~el, label]. COM[V, , tpj ,X ,y ] 
= 1 ifI the assignment of label y to variable uj is com- 
patible with the assignment of label z to variable vi. An 
alternative natural representation is to use a directed 
multigraph where the nodes correspond to the variables 
of the problem and the edges are labeled with the con- 
straints of the problem. It is important to observe that 
in order to preserve log-space reducibility we do not need 
to create the entire compatibility matrix COM. For a 
full description of the RCLP we only need to create a list 
of the constraints of the form COM[var,var,label,label] 
= 0. That is, we describe only the incompatible assign- 
ments. The remaining entries in the matrix can be filled 
with 1s. 

For each implication of the form P +--R lve add the 
constraints 

COM[<P>,<R>J ,f ] = 1 
COM[<P>,<R>J ,I] = 0 

For each implication of the form P +Q ,R we add the 
constraints 

COM[<P>,<Q,R>,f JQ] = 1 
COM[<P>,<Q,R>,f ,f R ] = 1 
COM[<P>,<Q,R>,f ,E] = 0 

COM[<Q,R>,<R>,f, ,f ] = 1 
COM[<Q,R>,<R>,fR $1 = 0 

COM[<Q,R>sQ>,fg ,I 1 = 1 
COM[<Q,R>,<Q>,&, $1 = 0 

Finally, for every variable of the form < SOLVEDg > 
we add the constraint 

COM[<Q>, <SOLT’EDg >,f ,q] = 0 

This completes the definition of all the “necessary” 
constraints of the the RCLP. The rest of the matrix 
COM can be filled with 1s. 

Note that the label f must be removed from all 
the variables that correspond to the assertions of the 
logic program. Using induction on the length of the 
satisfiability proof it is fairly easy to show that the label 
f will be removed from the variable <P, > that 
corresponds to the goal +P, iff P, is solvable. The 
formal proof is omitted. 

Now we have to verify that the above construction 
can be done using only logarithmic space on the work 
tape of the Turing machine. We shall sketch the main 
ideas of the proof method. If the construction were to be 
carried out in the order given above it would have taken 
linear space (linear in the number of total occurrences of 
all the atoms in Pr ). Fortunately, since we assumed the 
atoms were initially numbered by integers, we can follow 

the above construction in a demand-driven fashion as 
explained below. 

To start off we can create all the variables of the 
form <Q> and their respective label sets. This can be 
done with logarithmic space consumption since process- 
ing each one of the N-variables we need ZgN-bits. Fol 
each assertion we can add the respective label to 
<SOLVED>. For implications of the form P +-Q ,R 
we generate a new variable and its respective initial label 
set. This step requires a counter that can be imple- 
mented in logarithmic space. Finally, for each implica- 
tion encountered we can generate the constraints (again 
in logarithmic space). This completes the generation of 
all the necessary (see above discussion) information that 
completely describes the RCLP G . 

Example: 
Consider the following PHSP : 

tP 
P + Q,R. 
P + ST. 
R + S. 
T t P. 

Q- 
s. 

We construct the following RCLP. The variables of 
the problem are: <P>, <Q>, <R>, <S>, <T>, 
<Q,R>, <S,T>, <SOLVED0 >, <SOLVED, >. 
The initial assignments of labels are as follows: 

<P>: {f ,I} 
<Q>: {f A> 
<R>: {f ,I} 
<s>: {‘i ,I} 
<T>: {f ,I} 
<Q,R>: (f Q JR ,I > 
<SJ’>: {f sJTJ} 
<SOLVEDQ >: {q } 
<SOLVED, >: {s } 

Finally, the constraints are given in Figure 1. 
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COM[<P>,<Q,R>,I $1 = 0 
COM[<P>,<S,T>,f ,I] = 0 

COM[<Q,R>,<R>,& ,I] = 0 
COM[<Q,R>,<Q>,fQ ,I] = 0 

COM(<S,T>,<S>,fs ,I] = 0 
COM[<S,T>,<T>,h- $1 = 0 

COM[<R>,<S>,f ,I] = 0 

COM[<T>,<P>,I ,I] = 0 

COM[<Q>,<SOLVED, >,f ,q] = 0 

COM[<S>,<SOLVED, >,f ,s] = 0 
Figure 1. 

5. Conclusion 

In this paper we have shown that a very important 
glass of algorithms which were previously believed to be 
highly parallelizable are in fact inherently sequential. 
This negative result needs to be quantified. Essentially, 
it suggests that the application of massive parallelism 
will not change significantly the worst case complexity of 
discrete relaxation (unless one has an exponential 
number of processors). However, this result does not 
preclude research in the direction of applying parallel- 
ism in a more controlled fashion. Specifically, speedups 
are possible in the case- where the number of processors 
is significantly smaller than the size of the constraint 
graph (a very likely case). In this case, it may be possible 
to obtain a full P-processor speedup. We are currently 
actively investigating this interesting case. 
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