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Abstract 

We work in a calculus of intervals, formulated by James Allen 
for convex intervals, and by ourselves for unions of convex in- 
tervals [AZZ2,Lad.Z]. W e investigate the primitive relations and 
operations needed for implementing such calculi in a system 
which includes some set theory, and which allows the assertional 
definition of operators in Horn clause fashion. We indicate how 
standard temporal logic may be rephrased in the interval cal- 
culus, and present a formalisation of a system of time units in 
the interval framework. We are implementing the primitives in 
the REF IN ETM system’. 

Introduction 

James Allen introduced an interval calculus for reasoning about 
time, and we have proposed an extension of this calculus to en- 
able the representation of time by non-convex intervals. Recent 
work on the convex interval calculus is by Allen, Pat Hayes, and 
Henry Kautz [All2, AM, AllHay, AllKau]. Recent work on the 
non-convex calculus is by ourselves and Roger Maddux[Lad2, 
Lad3, LadMad. 

Convex intervals are those intervals considered by Allen and 
Humberstone [AZl2, Hum], which span a period of time, with- 
out gaps of any sort. In a formalism based on points, these 
are l-dimensional convex sets of points. We are concerned 
with intervals that are arbitrary unions of these, which we need 
for expressing temporal properties of intermittent events [Ladl, 
Lad2]. We consider the interval formulation to be an abstrac- 
tion of time periods, and in this view, sets of time points would 
be just one way of modelling intervals. 

Mathematically, Allen’s calculus of convex relations is a par- 
ticular relation algebra in the sense of Tarski [Jo Tal, JoTa2]. 
Allen’s algebra has thirteen atoms, and thus generates a relation 
algebra of size 213. By Contras t Ladkin’s algebra is infinite, as , 
well as having only infinite representations. We argue in [Lad21 
that the relations, which are a strict subset of all relations be- 
tween unions of convex intervals, are not only convenient but 
necessary for expressive power. Mathematical results concern- 
ing Allen’s and our own calculi are contained in [LadMad]. 

We present a specification of primitives which can be used 
to implement time intervals represented as unions of convex in- 
tervals. It is important to us to allow only relation structure 
in the interval calculus, so that we are able to maintain the 
structure of a relation algebra, and to restrict the prolifera- 
tion of intervals denoted by basic terms in our model [LadMad, 
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Lad2]. We obtain the effect of operators on intervals by using a 
correspondence between an interval and a certain set of convex 
subintervals of that interval. Sets of convex intervals are needed 
in any case for our model of time units. 

We show how to express standard temporal logic primitives 
in the interval calculus, and finally we develop a general model 
of time units in the interval framework. 

We assume throughout that time is linearly ordered, with 
respect to the relation precedes, although this work is equally 
applicable to branching time models. Some modification would 
be needed to the measure functions, and other modifications 
would be of a minor nature only. 

Other references to time representation by intervals are [ uBen, 
Dow]. Another representation of time for AI purposes using a 
points-based model rather than an interval model is described 
in (McDerl, McDer2]. 

Notation 

We assume the reader is familiar with standard logical notation, 
in particular the connectives and quantifiers 

.AVTJV3 

We use certain terminology from [AZZ2, Lad2], in particular 

We refer to the relations in [All21 as conuez relations. All 
convex relations are irreflexive and antisymmetric, except 
for equality. Non-convex intervals or relations are those 
for unions of convex intervals in [Lad2]. A picture of such 
a beast will look like a sequence of lines with gaps, when 
drawn in one dimension. The lines are the maximal convez 
subintervals, or maxconsubints. 

]] is the convex relation meets. 
. i ,‘;il;1 ff i is before j with no interval occurring between 

< is the convex relation contained-in 
(i < j) iff i is a strict subinterval of j, i.e. 
i starts j v i during j v i ends j in the terminology of 
[All21 

4 is the convex relation precedes 
(i < j) iff i is before j, with some other interval occurring 
between 

0 is the convex relation overlaps 
(z’ @ j) iff, intuitively, i starts before j, and finishes before 
5 
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l (RI v Ra V . ..) is the non-convex relation of disjunction, 
where the & are convex relations. 
(i(R1 V R2 V . ..) j) ff i corresponding maxconsubints of i 
and j are one of the & to each other (different subinter- 
vals may be related by different R;). 
We assume a l-l correspondence between the maximal 
convex subintervals is available. 

(i always-R j), where R is a convex relation, iff max- 
consubints of i are in each case R to the corresponding 
maxconsubints of j 

(i sometimes-R j), where R is a convex relation, iff some 
maxconsubint of i is R to the corresponding maxcon- 
subint of j 

Operators for Intervals 

We attach intervals to actions, tasks, events and assertions, rep- 
resenting the periods of time over which an action takes place, 
a task is performed, an event happens, or an assertion is true. 
We note here that certain supposed problems with the defini- 
tion of truth-on-an-interval have been adequately answered in 
[Hum]. 
We also provide the correspondence between an interval and a 
set of convex intervals, a means of measuring the duration of 
an interval, and the length of time over which it happens, here 
called the diameter. Duration and diameter are, of course, the 
same for convex intervals. 
In mathematics, duration is usually called measure, and diam- 
eter is terminology from topology. 

The operators 

We use the word type to indicate a domain of objects of the 
same sort. There is no implied type theory in the use of this 
terminology. 

interval-of(P): P is of type task / action / event / assertion 
returns i of type interval such that occupies(P,i) (see be- 
low) 
Since we reason assertionally about time intervals, this 
gives us a way of passing between the task domain and 
the time domain. 

dissect(i): the set of maximal convex subintervals of i Dis- 
sect is somewhat like a selector for the data domain of 
non-convex intervals even though it returns a set, not an 
interval. 

combine(S): S is a set of intervals 
makes an interval out of S, rather like a union operator. 
In general, this interval will be non-convex. All the inter- 
vals in S are subintervals of combine(S). Combine is the 
constructor for the data domain of non-convex intervals. 

duration(i): type real, the measure of i 

convexify(startint,endint): type interval, the smallest con- 
vex interval containing startint and endint. Note that it 
follows that convezifv is commutative and associative. 

alltime: type interval, the global time interval that includes all 
time. 

Note that we have omitted from the list of primitives the func- 
tion 
diameter(i): type real, the largest distance between two subin- 

tervals of i (including the duration of the subintervals) 

Diameter 
tion 

may be defined in terms of duration by the equa- 

l diameter(i) = duration(convexify(i,i)) 

We do not include diameter as a primitive, since it is definable, 
but it is a basic part of the constraint-expression language. 

Similarly, duration need only be defined for conuez intervals, 
since its extension to non-convex intervals follows from the ad- 
ditive property below. 

Axioms 

In this section, we give the axioms that specify the operators 
described above. We note that the only unbounded quantifiers 
appearing in the axioms are universal, and that the bounded 
existential quantifiers that appear are restricted to range over 
sets or intervals that are parameters in the formula. We envis- 
age that these objects will be finitely bounded in most applica- 
tions, in such a way that the quantifiers may be realised by an 
enumeration. This is indeed the case for REFINETM. 

Note (i conuez) and (convex i) are both shorthand for i bars i 
[Lad2]. 

l (V’i)(; << alltime V i = alltime) characterises alltime as 
the global time interval. All intervals are contained-in or 
equal- to alltime 

The next three axioms characterise dissect(i). 

l (V convez j < i)(3k E dissect(i))(j < k v j = k) 

l (Vj E dissect(i))(j convex A (j << i V j = i)) 

l (Vj)(Vk E d issect(i))(j < k =+ 1 j E dissect(i)) 

The first axiom states that all convex subintervals of i are con- 
tained in some interval k in dissect(i), or are equal to such an 
interval. The second ensures that dissect(i) contains only con- 
vex subintervals of i, which in the presence of the first ensures 
that dissect(i) contains at least the maxconsubints of i. The 
third axiom is not in positive Horn clause form, since the con- 
sequent is negated. It may easily be turned into the right form 
by observing that the negation of the antecedent is equivalent 
to a positive disjunction of the other twelve interval relations 
enumerated by Allen, who gave the exhaustive list of possible 
relations between convex intervals. This observation allows us 
to take the contrapositive statement for our axiom. This has 
the correct form, even though its intent is more obscure. Our 
relations include those that are the disjunction of convex inter- 
val relations, so this disjunction reduces to a single predication 
in the consequent. 

l (Vj)(Vk E dissect(i))((j E dissect(i)) =+ (j(llv@V.....)k)) 

In the presence of the first two axioms for dissect, the third dis- 
sect axiom ensures that dissect(i) contains only maxconsubints 
of i. 
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The next three axioms characterise combine. The first says 
that if you combine a dissected interval, that you get back the 
original interval under all circumstances. The second asserts 
that if the set S consists of disjoint, non-meeting convex inter- 
vals, then combine is indeed the full inverse of dissect. Note 
that dissect(i) consists only of disjoint, non-meeting intervals, 
i.e. this is derivable from the dissect axioms. The third combine 
axiom ensures that combine-ing a set of intervals which overlap 
or meet does not give more than you want in the resulting inter- 
val. If there were more, then the extra would form an interval 
that was a subinterval of combine(S), but which was disjoint 
from anything in S. The axiom rules this out. An alternative 
way of axiomatising this property is 

0 (Vi E dissect(combine(S))) 

(( (3j E S)(j starts i) A (3k E S)(k ends i)) V 
(3j E S)(j = i)) 

This property ensures that there are no “little bits hanging 
off the end” of an interval in combine(S) that aren’t there in 
some interval in S. Notice that every convex interval in dis- 
sect(combine(S)) is at least as big as any convex interval in 
S, thus reducing the number of cases we have to worry about 
stating in the axiom. 

The cleanest way to implement the correct combine function 
is probably to iteratively convezify intervals in S which over- 
Zap or meet. Call the resulting set Sr. All the intervals in 5’1 
are disjoint, and non-meeting, and hence dissect(combine(S1)) 
= 271. Furthermore, combine(S1) = combine(S) by the axioms. 
However, in this paper, we are only concerned with a correct 
assertional specification of the functions in a limited logical lan- 
guage, and we have given this for combine. The assertions may 
be compiled any appropriate way. 

l combine(dissect(i)) = i 

0 (Vi E S)(Vj E S)((i 4 j v j + i v i = j) A 
(i conuex A j convex)) 
& dissect(combine(S)) = S 

. (V.i>(((j 0 combine(S)) =+ (3 E S)(j 0 i)) A 
((combine(S) 8 j) + (3 E S)(i 8 j))) 

Next, we have the axioms for duration, which specify only 
that duration is a fully additive function. Giving values of du- 
ration on the convex intervals will then specify duration com- 
pletely. The purpose of the special axiom for the case of meeting 
is to be able to derive different time units. For example, one 
can specify that there are seven days in a week, by adding a con- 
dition that seven day-type intervals which meet consecutively 
form a week-type interval. One can then count in week units or 
day units merely by adding axioms of the form 

l (i E DAYS + duration(i) = 1 ) 

l ( i E WEEKS ==+ duration(i) = I ) 

as appropriate. Given the days definition, the specification of 
week, and the axiom, will then guarantee that the duration of 
a week is seven day units. 

l duration(i) = C duration(dissect(i)) 

The sum is taken over all members of dissect(i). 

a (i 11 j) =+ duration(combine(dissect(i) U dissect(j))) = 
duration(i) + duration(j) 
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Finally, the axioms for conuezify specify that convexify(i,j) 
is the smallest convex interval containing i and j. Convexify is a 
total, and thus a commutative operation. It is also associative, 
and we prefer to include both these properties explicitly, even 
though they follow from the minimal property. 

i (begins-at v ends-at) convexify(i,j) A 
j (begins-at V ends-at) convexify(i,j) 

convexify(i,j) convex 

(Vk conuex)(Vi) (Vj)( (i < k A j < k) =+ 
(conuexify(i, j) < k v convexify(i, j) = k)) 

convexify(i, j) = convexify(j, i) 

convexify(i, conuexify(j, k)) = conwesify(convexify(i,j), k) 

Note that the associative and commutative properties 
of convexify actually follow from its minimal property. 
However, any reasonable theorem prover would probably 
prefer to know this explicitly (as ours does). 

Addit ional Noteworthy Properties 

The following properties are all consequences of the axioms: 

l i conuex =+ duration(i) = diameter(i) 

this follows from the definition of diameter and the prop- 
erty: 

l i convex * convexify(i,i) = i 

l i < j =+ duration(i) < duration(j) 

which follows from the additive property of duration, given 
enough subintervals in the universe. 

Predicates 

The predicates we wish to use on intervals are specified in [Lad2, 
Lad,?]. They form a relation algebra in the sense of Tarski 
[JoTal, JoTu2, Mudl]. W e mention them here only for com- 
pleteness, since it is not the purpose of this paper to explain 
the interval calculus. 

interval relations: We include all the relations between in- 
tervals defined in [ Lad2]. 

Axioms 

l We include the relation product table, and the other ax- 
ioms needed for specifying the algebra of relations in [ LadS]. 
See [LadMad, Madl, Jo Tu2], 

Additional Defined Entities 

We need the basic (but not primitive) function diameter to ad- 
equately express properties of, and constraints on, non-convex 
intervals. We repeat here the definition and properties of di- 
ameter 

diameter(i): type real, the largest distance between two subin- 
tervals of a’ (including the duration of the subintervals) 

a diameter(i) = duration(convexify(i,i)) 



We also need, for purposes of specification, the predicates 0 past 11 now II future 

occupies(P,i): P is type tusk / action / event / assertion 
i is type interval 
i is the exact interval over which P takes place / holds / 
occurs / is true 

occurs-iu(P,i): true of all i such that i < interval-of(P) 

which have the properties 

0 occupies(P,interval-of(P)) 

l occupies(P,i) ==+ occurs-in(P,i) 

l occurs-in(P,i) * (3j << i)(occupies(P, j)) 

These predicates are provided by, and their properties follow 
from, the definitions 

0 occupies(P,i) 0 i = interval-of(P) 

l occurs-in(P,i) U interval-of(P) << i 

Temporal Logic 

Interval Constants 

We introduce three interval constants, which correspond to Mc- 
Taggart’s A-series notion of time [MC T, LadJ], and the standard 
syntax of temporal logic. The A-series notion conceives of time 
as consisting of the moving, changing present, the past and the 
future. This corresponds to the interpretation of the temporal 
operators in classical tense logic, except that ‘present’ is im- 
plicit. The semantics of tense logic, however, is similar to Mc- 
Taggart’s B-series, which consists of immutable points of time, 
like timestamps, at which there is no change. Change is rep- 
resented in the B-series by moving from one point to another. 
The evaluation of a tense-logical formula relative to a point, 
which is the standard semantical definition, is similar to con- 
necting the A-series and the B-series notions. We show how to 
capture the A-series notion in interval calculus. The standard 
time-of-day clock functions as an A-series to B-series converter. 

We refer the reader to [A1121 for the terminology and calcu- 
lus of interval relations. 

The constants are: 

now: intuitively, an interval of smallest granularity. In any 
practical domain of application, intervals will not be in- 
finitely divisible. If they are, there is still no logical con- 
tradiction in the axioms presented, as can be shown by a 
compactness argument from model theory. In this case, 
now would function like an interval of measure 0. 

future: intuitively, for those who like their intervals 
points, the interval ( now, oo); all future time 

to contain 

past: intuitively, the interval (-co, now); all past time 

Axioms 

0 now convex 

l future convex 

0 (V conwex i)( 7 now < i * ((i < past) V (i < future))) 

0 (Vi)(i 4 now ===+ i < past) 

l (Vi)(now 4 i ==+ i < future) 

0 (V convex i)(( now < i) V (now 4 i) V (i -C now) V 
(i 11 now) V (now II i) V (i = now)) 

These axioms characterise the constants. They state that the 
three convex intervals meet in the right ways, that they include 
all time, and that time is linearly ordered with respect to the 
now interval. 

The Temporal Operators 

0 0 P 3 (int(P) = future V future << &t(P)) 

l OPE 
(int(P) sometimes-(overlaps V contained-in) future) 

Standard temporal logic has a syntax that corresponds to Mc- 
Taggart’s A-series time, and a semantics that corresponds to 
his B-series notion of time (roughly, timestamps). 

We indicate that conversion by noting that it is provided 
already in the standard facilities available on most AI worksta- 
tions, as a real-time clock, which converts now into a timestamp. 
We also need to construct past and future from the timestamp. 
We assume that the clock runs to a certain granularity, say mi- 
croseconds, and point out that the clock does, in fact, specify 
a time interval, whose duration is one microsecond in this case. 
Essentially, the clock tells you which interval the query inter- 
rupt is contained in. In this context, there are next and previous 
operators, which return the next and the previous timestamps. 
They may be implemented by increment and decrement respec- 
tively. The representation is therefore just 

timenow(): 
now to 

the call to 
its B-series 

the clock implements 
timestamp. 

the conversion of 

If there are infinity intervals at both ends of the time structure, 
(oo and -co for want of better names) then past and future may 
both be represented by 

past: convexify(-03, previous(now)) 

future: convexify(next(now), 00) 
0 past convex 
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It is consistent to add such infinity intervals. If you don’t want 
them, the properties of the past and future B-series intervals 
may then be inferred from the axioms alone, 

Defining Time Units 

We need to reason about years, months, days, minutes and 
microseconds. We introduce a standard form for an interval 
which represents an instance of one of these units. All the units 
will be convex intervals, and we then show how to develop the 
types of units from these standard forms. 

Standard Time Units 

We use sequences of integers to represent our standard units. 
We use a linear hierarchy of standard units, year, month, day, 
hour, minute, second, arranged as a sequence. We illustrate 
its use down to seconds, hence our sequences will have lengths 
of up to six elements. It should be clear that the hierarchy is 
easily extendable to smaller units such as microseconds. We 
illustrate the meanings of sequences of integers, rather than 
giving an obvious definition. 

[1986] represents the year 1986 

[1986,3] represents the month of March, 1986 

[1986,3,21] represents the day of 21st March, 1986 

[1986,3,21,7] p re resents the hour starting at 7am on 21st 
March, 1986 

[ 1986,3,21,7,30] represents the minute starting at 7:3Oam 
on 21st March, 1986 

[1986,3,21,7,30,32] p re resents the 33rd second of 7:30am 
on 21st March, 1986 (the first second starts at 0) 

We conceive of these intervals as being closed at the left end 
and open at the right, since this corresponds with normal usage. 
Notice, as we mentioned, that the standard clock times returned 
by a time-of-day clock in fact returns the interval in which the 
interrupt occurred. (It’s not really possible to determine from 
this which end of an interval should be open and which closed, 
since the interrupts are serialised). 

Axioms for Units 

Certain relations hold between these intervals. All of these 
intervals are convex, and hence the vocabulary of relations is 
Allen’s [ All2]. 

We give examples only of the axioms, since the nature of 
the rest may easily be inferred from the examples. 

It is obvious that not all integer sequences of appropriate 
lengths are goin g to name units in our formalism. We shall 
not bother with checking bounds on elements of a sequence, 
since this is a detail of no theoretical interest. We shall assume 
bounds are checked somehow. 

We shall use x, y, z,..... for integer variables, and CY, p,.... 

for sequence variables. Concatenation of sequences is denoted 
by -. All the axioms are quantifier-free statements. 

l ([x,1] starts [x]) A ([x,12] ends [x]) 
January is the first month and December is the last month 
of the year 

All months begin with day 1 

[x,1,31] ends [x,1] 
January ends on the 31st 

x divisible by 4 =S ([x,2,29] ends [x,2]) else ([x,2,28] 
ends [x,2]) 
February has 28, or sometimes 29 days 

appropriate cases for the other months 

([x,~,z,O] begins [x,Y,z]) A ([x,Y,@~] ends [x,Y,z]) 
constraints for hours in a day 

appropriate cases for minutes and seconds 

for length(o) = 0 to 5 and x less than the ending numbers 
for the appropriate length, 
(Q: -[xl) II b -[x+11) 
the xth year/month/.. meets the x+lst year/month/.. 

for length(a) < 5, 
(CY -[xl) < o! 

We also need to be able to coalesce representations, to gather 
months into years, and seconds into minutes. The axiom for 
this is 

. (a- 6 starts a) A (a - 7 ends a) =+ 
convexify(cy - 6, a - 7) = a 

Interval Types Definable From Unit Types 

We can now define classes of intervals, based upon the units. 

l YEARS = { CY I length(o) = 1 } 

l MONTHS = { Q I length(o) = 2 } 

l DAYS = { cr I length(a) = 3 } 

l Similarly for HOURS, MINUTES, SECONDS,..... 

We may also define units which are not in the list of basic units. 
Firstly, let us assume that all variables and sequences range over 
the set DAYS. This will simplify notation for our examples. We 
define 

l &+1(G) - (37)(4&r) A (7 II PI) for 0 I i 
l 4’ is the symmetric, transitive closure of 4, for any binary 

relation 4 

The 4; are the iterated meet relations for DAYS. Note that, as 
we have defined them, a given CY in DAYS meets exactly one ,LI 
in DAYS, and is-met-by exactly one 7 in DAYS. 

WEEKS = 
{ conve~ify(~, P) I d~5b!, P) 1 

defines all 7 day intervals as weeks 

MONDAYS = 
{ a 1 @6)*([1986,3,31], Q) } 
Needless to say, [1986,3,31] is, in fact, a Monday 
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We may define other days of the week in a similar way to MON- 
DAYS, or we may choose to use an implicit definition, such as 

Bibliography 

. (SUNDAYS c DAYS) A (combine(SUNDAYS) 
always-meets combine(MONDAYS)) 

Our definitions of the interval types show that we need to main- 
tain the distinction between a non-convex interval I and the set 
of its maximal convex subintervals dissect(l). All of the unit 
classes YEARS, MONTHS, . . . . . . as well as some of the defined 
classes such as WEEKS, satisfy the condition 

0 combine(S) = alltime 

and cannot thus be distinguished purely as interval objects. 
One of the major reasons for introducing sets into the time 
structure must be to distinguish between the different classes of 
time units. Since the set theory is needed, we see no reason not 
to make cautious use of it, and we may then avoid the need for 
a proliferation of interval operations, since we may use dissect 
on an interval, perform set theoretic operations, and then use 
combine to create the new interval. 
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