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Abstract 

James Allen in [AZZ2] formulated a calculus of convex time in- 
tervals, which is being applied to commonsense reasoning by 
Allen, Pat Hayes, Henry Kautz and others [AZZKuu, AZZHay]. 
For many purposes in AI, we need more general time intervals. 
We present a taxonomy of important binary relations between 
intervals which are unions of convex intervals, and we provide 
examples of these relations applied to the description of tasks 
and events. These relations appear to be necessary for such de- 
scription. Finally, we provide logical definitions of a taxonomy 
of general binary relations between non-convex intervals. 

Introduction 
James Allen in [Alli?] formulated a calculus of convex time in- 
tervals, which is being applied to commonsense reasoning by 
Allen, Pat Hayes, Henry Kautz and others [AZZKau, AZZHay]. 
Convex intervals are intuitively those which have no gaps. The 
term convex comes from topology. Allen’s calculus is a finite 
relation algebra in the sense of Tarski [Jo Tul, JoTa2, dada]. It 
has 13 atoms, which Allen enumerates, and hence the algebra 
has 2ls elements. We refer to the elements of this algebra as 
convex relations. There are close relations between algorithms 
used by Allen [Freu], and work in representations of relation al- 
gebras [Ma&, corn11 WC present some mathematical results on 
Allen’s algebra in [LadAdnd. other ways of representing time 
in AI have been argued for in [ McDer1, McDerZ]. 

Here, we investigate the binary relations that can hold be- 
tween intervals which are UniCJnS of convex intervals. We call 
such relations non-convex relations. These intervals consist in- 
tuitively of some (maximal) convex subintervals with convex 
gaps in between them. We star? by discussing points-based and 
intervals-based representations of time. We then present a tax- 
onomy of important binary relations between intervals which 
are unions of convex intervals, and we provide examples of these 
relations applied to the description of tasks and events. These 
relations appear to be necessary for such description. Finally, 
we provide logical definitions of a taxonomy of general binary 
relations between non-convex intervals. 

The combinatorial explosion of possible binary relations be- 
tween unions-of-convex intervals is dampened by considering 
only a subset of all possible relations. However, results of the 
author and Roger Maddux show that there are infinitely many 
relations definable in the algebra generated by these intervals 
[LadMadj. The notion of convex interval is definable in the al- 
gebra, as are the notions of having exactly (greater than, less 
than) n maximal convex subintervals, for each n [LadMad]. 

*This work was partially supported by RADC contract F30@X-84-C- 
0109 and DARPA contract N00014-81-C-0582 

Instants, Intervals and the Representation 
of Periods 

In [Ladl], we discussed points-based and intervals-based ways 
of representing time. 

Project management systems, amongst others, need a way 
of representing periods of time over which tasks happen, are 
scheduled, etc. There is a choice to be made between instant- 
based and interval-based representations of periods: 

Instants are atomic, indivisible entities which do not over- 
lap, and are usually partially or linearly ordered. The order is 
usually called later than. Instants have no duration. 

This notion is used in the semantics of serial or concurrent 
programming languages with atomic instructions. Instants of 
time are identified with states of the system, and attached to 
these instants are propositions which describe the internal, non- 
temporal structure of the states. 

Use of instants in this way can be referred to as taking snap- 
shots, and this approach is often taken when the system to be 
modelled is clocked. All snapshots are then synchronised with 
the clock, and the problem of determining 
is reduced to a count of clock interrupts. 

durations of periods 

To build periods from instants, we have to specify a range 
of instants, e.g. 
period(tl,tz) ES {t : tl < t 5 tz}. There is a question about 
whether to include endpoints, which we shall refer to again. 
A more complex, but useful, kind of period can be specified by 
taking (finite or arbitrary) unions of these basic convex periods. 

We then have periods which can represent, say, the 
during which a given process has control of the processor 

time 

time-shared environment. 

Intervals represent time periods directly. Intervals have 
duration, and are not necessarily indivisible. They are thus 
an abstraction from the properties of sets of time instants with 
measure. Thus, there are 12 ways that intervals may be related, 
excluding equality, e.g. precedes, overlaps, contained in [AZ1211 
By contrast, instants can be related by only two, earlier than, 
later than. 

To determine what structure we need in this context, we 
believe it is best to work with the abstraction directly. This 
position is argued in [Ladl, AZZZ, AZZKau, 
AZZHay]. We consider the sets-of-points notion as one possible 
interpretation of intervals. 

The use of intervals is not restricted to AI. [~am1] defines 
an ordering on intervals (there referred to as sets of events), 
in order to prove the correctness of certain concurrency algo- 
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rithms. Interval representations are also considered in [uBen, 
Hum, Dow]. There are mathematical constructions that con- 
vert point structures to interval structures and vice versa, e.g. 
the sets-of-points with measure construction [vBen]. See also 
[LadMad]. 

In particular, [Hum] resolves some supposed difficulties in 
the definition of truth of propositions over intervals. 

Additional reasons we prefer to work with intervals are 

l intervals provide a natural way of talking about duration, 
the length of time over which something happens, because 
they are an abstraction of the properties of periods of time 

The Choice of Relation Primitives 

There are too many discrete ways that unions of convex inter- 
vals may be related to each other. An exhaustive enumeration 
is infeasible, because 

Theorem 1 The number of relations between unions of convex 
intervals is at least ezponential in the number of maxconsubints. 

In fact, a much sharper result is true (see [LadMadj), but we 
intend only to establish infeasibility here. 

Proof: 

l interval notation is extensible: complexifying time struc- 
ture doesn’t lead to changes in syntax; whereas point 
notation isn’t extensible, in that the number of points 
needed to specify a time structure varies with the com- 
plexity of the structure, e.g. we need 2 x n points to 
specify the union of n convex periods 

l there are unresolved difficulties with the endpoints of time 
periods, whether specified in point structures or interval 
structures. These need to be resolved before any imple- 
mentation of time is attempted, but the difficulties are 
treated in a more ad hoc manner by points-based models 
of time. Notions such as temporal conjunction of propo- 
sitions may be expressed in interval formulations [Hum], 
but not easily (so far) in standard points-based temporal 
logic. The interval approach allows all possible relations 
between endpoints, whereas such points-based approaches 
as [McDerl, McDeri?] have to chose a convention which is 
then hard-wired into the semantics. In terms of [AU?], the 

We prove the theorem by enumerating the relations between 
two intervals with n maxconsubints and using an inductive ar- 
gument . 

Consider two intervals which are the unions of 2 convex 
subintervals each. Suppose the first subinterval of each is en- 
tirely disjoint from the second subinterval of the other. Then 
each first maxconsubint precedes the second maxconsubint of 
the other. The intervals are related in 132 ways, including 
equality, since the first maxconsubints can be related in 13 ways, 
including equality, and so can the second maxconsubints. When 
we consider that the first maxconsubint of each may be related 
by other than precedence to the second maxconsubint of the 
other, e.g. they may overlap, or meet, we see there are more 
than 132 relations overall. 

Now consider two intervals with n + 1 maxconsubints, such 
that the first n maxconsubints of each interval all precede the 
final maxconsubint of the other. By the inductive hypothesis, 
there are more than 13” ways the subintervals consisting of 
the first n maxconsubints may be related. The final two max- 

points-based approach has to choose between dreeedence 
(don’t include the endpoint), or overlapping (include the 
endpoint), and usually rules out meeting for any inter- 
vals. See [Hum] for another example involving temporal 
conjunction. 

consubints may be related in 13 ways, and therefore the total 
number of possible relations is more than 13n+1, Again, when 
we consider that the final two maxconsubints may be related 
by overlaps or meets to the penultimate maxconsubint of the 
other, we notice there are many more relations than just those 
we enumerated in the proof. 

Relation Primitives for Unions of Convex 
Intervals 

Hence we have established the base and the inductive steps, 
and we draw the conclusion of the induction. 
End of Proof. 

Intervals which are unions of convex intervals occur naturally. 
For example, any recurring time period can be represented: 
we can regard the period MONDAYS as being composed of 
each individual Monday, LABOR-DAYS is likewise the union 
of convex intervals, consisting of each individual Labor day, 
the period of the regular weekly meeting with the boss is also 
a union of convex intervals, each of them the period of single 
meeting. These kinds of intervals seem to be among the most 
useful of the non-convex cases, and since we have reason to 
hope that knowledge gleaned from considering the convex case 
will transfer in part, we consider unions of convex intervals in 
detail. We develop further the definition of time units, which 
include examples such as the above, in [Lada]. 

An interval which is a union of convex intervals looks like 
this 

1 - 

To avoid the combinatorial explosion implied by the theo- 
rem, our basic relations don’t depend on the number of maxcon- 
subints. It is intuitively plausible that we don’t need relations 
that depend on the number of maxconsubints for expressing 
properties of time periods associated with actions, tasks, events 
or propositions. 

However, the relation algebra generated by the relations we 
consider is still infinite, and still enables us to define the class 
of intervals with exactly n subintervals, for each n [LadMad]. 

The approach we take will generalise the convex relations, 
by introducing functors that generate non-convex relations from 
convex relations, by enumerating new subclassifications of rela- 
tions that weren’t there in the convex case, and by enumerating 
the various relations that arise from considering just the first 
and last maxconsubints. 

Additionally there is one relation, bars, which is not ob- 
tained by generalising the convex case in some way. 

This interval i has three “parts”, i.e. maximal convex subinter- 
vals, which we call 
mazconaubints. 

We obtain the following relations between unions of convex 
intervals: 
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l those generated by the functors mostly, always, partially, 
sometimes, and disjunction from convex relations (always 
may be defined in terms of mostly) 

l contain8 

l disjoint from, which splits into: 

- precedes and follows 

- meets and is met by 
- intermingles with, which splits further into: 

* disjointly-contains and disjointly-contained by 
* disjointly-overlaps and disjointly-overlapped by 
* begins preceding and begins following 
* ends preceding and ends following 
* surrounds and is surrounded by 

0 strictly intersects, splitting into 

- begins after which splits into 

* begins in 
* begins with 
* begins following 

- ends before which splits into 

* ends in 

* ends with 
* ends preceding 

- begins before and ends after, with the corresponding 
case splits 

- begins at and ends at 

l bars, which is a new relation not generalised from convex 
relations 

We give below the definitions of the relations, and follow 
with examples to show they are naturally occurring. We con- 
clude that these relations are necessary for expressiveness in a 
calculus of intervals which are unions of convex intervals. 

These relations are not atomic (not disjoint as sets of in- 
terval pairs), and some of them are definable from others. For 
example, surround8 is the conjunction of the relations begins 
before and ends after, i.e. begins before A ends after, where 
(i(RAS)j) f ((i Rj) A (iSj)) 

The Definition of the Relation Primitives 

The Intended Calculus 

We intend that these relations will be manipulated algebraically, 
that is, by considering only derived relations defined in the re- 
lation algebra generated by these relations [Jo Ta2, Madl, Lad- 
Mad]. We are not concerned with first-order definability, since 
we don’t intend to use a first-order theorem-proving approach, 
and thus we have many more relations than we would need if 
we were using a first-order language approach. We believe the 
payoff is in the simpler structure of an algebraic theory. 

Informal Definitions of the Primitives 

Define a component of a non-convex interval to be a maxcon- 
subint , 

We shall speak of the n’th component of i and the n’th com- 
ponent of j, where i and j have finitely many components, as a 
matched pair of subintervals. In case of i and j having infinitely 
many components, we assume without defining it a one-to-one 
function that matches the “closest” components. This function 
may, in fact, be rigorously defined [LadMad]. 

R” is the converse relation to R; i.e. (i R” j) iff (j R i). 
We draw example intervals i and j for each relation. We 

represent them on different lines, but they are intended to be 
intervals on the same time line. It would be better to use two 
colors. 

The relation functors are: 

mostly: i mostly R j, where R is a convex relation, if, 
for every component of j, there is a component of i that 
is R to it. This allows the possibility that there are other 
components of i, but not of j. 

E.g. i mostly meets j 

i - 

j 

always: i always R j, where R is a convex relation, iff 
matched pairs of components of i and j are R to each 
other. Alternatively, a form of the definition that will 
work for both finite and infinite unions of convex intervals:- 
every component of i R some component of j, and every 
component of j R” some component of i. Always is de- 
finable from mostly: i always R j iff i mostly R j and j 
mostly R” i, where R” is the converse relation to R. 

E.g. i always meet8 j 

i - - - 

j 

partially: i partially R j, where R is a convex relation, iff 
some pairs of components of i and j are R to each other, 
and all others are disjoint. This allows the possibility that 
the disjoint intervals may meet 

E.g. i partially meets j 

i - 

j 

sometimes: i sometimes R j, where R is a convex rela- 
tion, iff some pairs (at least one pair) of components of i 
and j are R to each other 

E.g. i sometime8 meets j 

i - ~ 

j 

disjunction: i R V . . . ..V Q j iff every pair of components 
is related by R or . . . . or Q or precedes or follows 

E.g. i meets V contains j 
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i - - 

j 

Many of the convex classifications generalise directly to the 
non-convex case. However, some of the convex classifications 
get new subclassifications in the non-convex case, notably dis- 
joint from, which obtains a new category of intermingles, which 
itself has subclassifications, and strictly intersects, which ob- 
tams many new subcategories. Some of the new subcategories 
are valid for both intermingles, which is a category of disjoint, 
and strictly intersects, which is a different category. 

l contains; unchanged from the convex case; i contains j 
iff every component of j is contained by some component 
of i 

i -- 

j - - 

l disjoint from, which is a symmetric relation, and can be 
classified into: 

- precedes, as in the convex case; precedes is anti- 
symmetric, and i precedes j iff all subintervals of i 
precede all subintervals of j 

i --- 

j -- 

- follows, the inverse of precedes 
- meets, antisymmetric; i meets j iff the final compo- 

nent of i meets the first component of j 

i -- 

j 

- is met by, the inverse of meets 
- intermingles with; new in the non-convex case, 

symmetric, and itself has subclassifications enumer- 
ated below 

l strictly intersects, which has new subclassifications gen- 
erated by the relation functors, as well as the new sub- 
categories enumerated below 

We now enumerate the subclassifications of strictly intersects. 

l i begins after j; which is split into the mutually exclusive 
cases: 

- i begins in j; the leftmost component of i is over- 
lapped by a component of j. 

i 

j -- 

- i begins with j; the leftmost component of i is 
overlapped by the leftmost component of j 

i - - 

j - 

- i begins following j; some component of j precedes 
all components of i 

1 

j - 

l i ends before j; split into the mutually exclusive cases: 

- i ends in j; the rightmost component of i overlaps 
a component of j 

i - 

j -- 

- i ends with j; the rightmost component of i over- 
laps the rightmost component of j 

i - - - 

j -- 

- i ends preceding j; some component of j succeeds 
all components of i. 

j -- 

l the converses begins before and ends after, which are 
also split into cases, giving begins preceding and ends 
following, and the converses of the other four relations. 
We can’t find any useful names for these other four at 
present 

l i begins at j; the leftmost component of i starts the 
leftmost component of j 

i -~ 

j - -- 

o i ends at j; the rightmost component of i finishes the 
rightmost component of j 

i - 

J -- 

We enumerate the subclassifications of intermingles with: 

l i disjointly-contains j; equivalent to i is disjoint from 
and surrounds j 

i - 

j 
l i is disjointly-contained in j; the converse of disjointly 

contains 
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l i disjointly-overlaps j; equivalent to di+int and begins 
preceding and ends preceding 

tion task 
l always meets: 

i - 

j 

l i is disjointly-overlapped by j; the converse of disjointly- 
overlaps 

Finally, we note there are certain classifications that are 
valid in both the intermingling and the intersecting cases: 

l begins preceding, begins following, ends preceding 
and ends following, with the definitions given in the 
intersectin.q case valid also for the interminglinq case 

l i surrounds j; equivalent to i begins before and ends after 
j in the intersecting case, and disjointly-contains in the 
disjoint case. We illustrate the intersecting case: 

i - 

j 

l i is surrounded by j; the converse of surrounds 

Additionally, there is a polyadic relation that is of some 
importance. We illustrate it for two intervals, and it should be 
clear how to generalise it to many. In our calculus, we only 
consider the binary case [LadMadj. 

l i bars j; the union of i and j is convex. Bars is a sym- 
metric relation, and commutative in the general case 

i - 

j - - 

Examples of Relations Between Non-Convex In- 
t ervals 

We illustrate the relations by examples drawn from general pro- 
cesses, procedures, tasks and occurrences. We conjecture that 
the most useful applications of the calculus will be in the areas 
of task description and management, action theory and process 
theory. 

The reader may observe that many of the relations above 
are converses of relations already included in the enumeration. 
We include enough examples to show that the relations are 
useful and natural for descriptive purposes. Each example has 
the form of expressing a relation between two tasks, events or 
actions. Suppose P is such a creature. Then we attach to P 
the interval int(P) [LadS]. Th en, for two tasks, P and Q, we 
can consider the interval relation R(int(P), int(Q)) between 
the associated intervals. This relation R appears above each 
example. 

l mostly meets: 

- after the committee has reviewed the market on Mon- 
day, the brokers may act to buy the desired stock. 

- when designs are finalised, the programmers assigned 
may be immediately available for the implementa- 

- after the committee has reviewed the market on Mon- 
day, the brokers always act to buy the desired stock. 

- when designs are finalised, the programmers assigned 
should be immediately available for the implementa- 
tion task 

0 always overlaps: 

- investigation of the system crash starts before system 
service is restored, and continues afterwards. 

- preparations for performing the task should be initi- 
ated while the design team is finishing the detailed 
description 

0 (overlaps V contains): 

- investigation of the system crash starts before sys- 
tem service is restored, and sometimes continues af- 
terwards. 

- these tasks are always concurrent: 
work on the processor configuration and the dis- 
tributed system design task 

a partially contains: 

- if you need to cross the road, you do so while there’s 
no traffic. 

- task 34 should only be worked on when Fred and 
Mary are available for it 

l partially meets 

- when system service degrades, sometimes we need to 
reboot 

- the distributed system design task may need to be 
followed by a feasibility study 

l begins in: 

- the emergency procedures were introduced and used 
during the company reorganisation 

- the implementation should be commenced while the 
system is being configured 

l ends in: 

- the final reorganisation before dissolution occurred 
during last year’s first financial crisis 

- the implementation should be completed while the 
system is in the test stage 

l begins with: 
regular system backups were started during the first time 
the system lost a drive because of a head crash 

a ends with: 
communication with other machines ceased with the last 
failure of the main processor of the gateway 
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l begins at: 
tasks A and B are independent starting tasks for the 
project 

l ends at: 
finishing a project at the deadline date 

Relation Primitives for General 
Non- Convex Intervals 

General non-convex intervals correspond to arbitrary sets of 
time-points, in a points-based model of time. 

To define the relations logically, we can either assume that 
certain relations are primitive, that a notion of subobject is 
primitive, or that part of is primitive (subobjects are parts of 
their superobjects, and contain8 and subobjects are interdefin- 
able also, as indicated below). 

The notion of subobject may be introduced by definition 
also from interval operators. For example, if we have a notion 
of intersection of intervals, which is natural in certain represen- 
tations such as that of a set of points, we may stipulate that 
the result of any intersection of intervals is a subobject of all 
those intervals. For another example, the argument intervals of 
a union operation on two intervals are subobjects of the result 
of the union. We do not consider operators on intervals in this 
paper, and prefer to avoid them where possible, since the addi- 
tion of operators vastly complicates the algebra, which would 
be no longer simply a relation algebra in the sense of Tarski. 

We have the following classification of general non-convex 
intervals: 

0 contain8 

l disjoint from, which splits into: 

- precedes and follows 
- meets and is met by 
- intermingles with, which splits further into: 

* disjointly-contains and disjointly-contained by 
* disjointly-overlaps and disjointly-overlapped by 
* begins preceding and begins following 
* ends preceding and ends following 

0 strictly intersects, splitting into 

- begins after 

- ends before 
- begins before and ends after, with the corresponding 

case splits 
- begins at and ends at 

l bars 

We shall refer to the basic object of time (point, interval or 
whatever) as a time object. For example, if you prefer points- 
based time notions, then you will represent intervals as sets of 
points, and your basic time object will be a set of points. We 
assume at present that there is no null object. 

Allen and Hayes [personal communication, AZZHay] are able 
to define the convex relations from one primitive, in a first- 
order manner. Van Benthem [vBen] uses two. We have more, 
to enable us to keep the logical form of the definitions to a 

statement with at most two bounded quantifiers. We give En- 
glish descriptions of the definitions, but it should be obvious 
how to translate them into a first-order logical language with 
the declared primitives. 

Given a basic time object, we define its subobjects as those 
objects which are contained in it. So, for example, for the set- 
of-points notion, the subobjects of a’ are precisely the subsets of 
i. For the convex interval notion, subobjects are convex subin- 
tervals, and for the unions-of-convex-intervals notion, subob- 
jects are unions of convex subintervals. We assume that in a 
given ontology of intervals, either the subobjects are precisely 
defined, or the notion of containment is primitive. They are 
interdefinable, as indicated below. 

If subobject is a primitive notion, or, alternatively, contain- 
ment is a primitive relation, and precedes and meets are also 
primitive relations, we can give the following definitions of the 
relations. We assume that the conditions in the subclassifica- 
tions are conjoined with the conditions in the apropriate super- 
classification, so that we may avoid repeating parts of defini- 
tions; e.g. i disjointly contains j is to be read as (i is disjoint 
from j) A some subobject of i is . . . . . . . . . . . 

i contains j: j is a subobject of i 

i precedes j: a primitive relation 

i meets j: also primitive 

i is disjoint from j: i and j have no common subobjects. 

We note that this definition is adequate only because there 
is no null object, which would have to be a subobject of 
every object. 

i disjointly contains j: some subobject of i precedes all 
subobjects of j and some subobject of i follows all 
subobjects of j 

i disjointly overlaps j: some subobject of i precedes all 
subobjects of j and some subobject of j follows all 
subobjects of i 

i begins preceding j: some subobject of i precedes all 
subobjects of j 

i begins following j: some subobject of i follows all sub- 
objects of j 

i ends preceding j: some subobject of j follows all sub- 
objects of i 

i ends following j: some subobject of i follows all sub- 
objects of j 

i strictly intersects j: (also known as i overlaps ~1 i and j 
have a common subobject, and neither i contains j nor 
conversely. 

Notice this relation is symmetric. We can turn this re- 
lation into an antisymmetric relation, as overlaps is for 
Allen, with our primitives, by asserting that the subclas- 
sifications below are mutually exclusive and exhaustive of 
the strictly intersects relation. 

However, we would consider this move to be a claim about 
the structure of a particular interval model. For example, 
if one were to consider axiomatising the structure of closed 
sets of real numbers, one might want to assert that meets 
is the empty relation (since two closed sets can only meet 
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by intersecting at a point, which is a closed set); that pre- 
cedes is a dense (partial) order (any two non-intersecting 
closed sets may be separated by a closed set); etc. 

We prefer to leave the assertion of exhaustiveness as a 
structure axiom if it is needed. Thus we must allow 
strictly intersects the luxury of symmetry. 
i begins after j : some subobject of j precedes all subob- 

jects of i 

i ends before j: some subobject of j follows all subob- 
jects of i 

i begins before j: some subobject of i precedes all sub- 
objects of j 

i ends after j: some subobject of a’ follows all subobjects 
of j 

i begins at j: there is no subobject of i that precedes all 
subobjects of j, and symmetrically for j and a’ 

i ends at j: there is no subobject of i that follows all 
subobjects of j, and symmetrically for j and i 

For the case of bars, we did not include a monadic predicate 
in our language for selecting convez intervals. It is obvious that 
we would need such a predicate, whether primitive or defined, in 
order to define bars, however this doesn’t solve all the problems. 

For example, if we were to provide a predicate for convexity, 
we might try to define: 

i bars j: there is a convex object k such that the subobjects of 
k are exactly the subobjects of i and j 

Such an attempt doesn’t work: consider arbitrary sets of 
real numbers, with subobjects being subsets, and convex objects 
being convex sets. 

Let A = [a, b), and B = [b,c], where a < b < c. Then intu- 
itively A bars B since A u B is [a, c] which is convex. However, 
let z,y be such that a < z < b < y < c. [z, y] is a subobject of 
AU B, but isn’t a subobject either of A or of B. 

It’s probable that bars has to be a primitive relation. 
We note that primitives for interval-based notions of time 

are discussed extensively in [vBen] and [Hum]. We note further 
that our proposed classification is much finer-grained than the 
primitives in these works, but that all are first-order definable 
from the primitives used therein. We have mentioned before 
that our motives for such profusion are algebraic. We note 
that [vBen] also provides an extensive discussion of the types 
of interval structure that may be obtained in different domains 
of application. 
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