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ABSTRACT 

Temporal representation and reasoning are necessary 
components of systems that consider events that occur in 
the real world. This work explores ways of considering 
collections of intervals of time. This line of research is mo- 
tivated by related work being done by our research group 
on appointment scheduling and time management. Natu- 
ral language expressions that refer to collections of inter- 
vals are used naturally and routinely in these contexts, and 
an effective means of representing them is essential. 

Previous studies, which considered intervals primarily 
in isolation, have difficulties in representing some classes 
of expressions. This occurs not only with expressions that 
explicitly refer to collections of intervals, such as “the first 
of every month,” but also with expressions that do so only 
implicitly, such as the U.S. Election Day: “the first Tues- 
day after the first Monday in November.” The traditional 
solution to this problem has been to provide special means 
of specifying those forms that are judged to be the most 
useful (to the exclusion of all other forms). 

The “collection representation” builds on previous 
work in temporal representation by introducing operators 
that allow the representation of collections of intervals, 
whether they occur explicitly or implicitly in the expres- 
sion. 

The operators introduced are natural extensions of the 
relations and operations on intervals. The representation 
has potential use in scheduling in three areas: graphical 
display, natural language translation, and reasoning. 

I PRIOR WORK 

Much of the work on time has focused on temporal 
reasoning (as opposed to temporal representation). For 
example, Rescher and Urquhart (1971) and van Benthem 
(1983) describe temporal logics for reasoning mathemati- 
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tally about time. The logics are based on the concept that 
instead of a predicate calculus statement being universally 
true or false, it may be true or false at different moments 
of time. Temporal quantifiers (much like the universal and 
existential quantifiers) are used to augment the calculus. 

Allen (1983) d escribes a computational approach to 
maintaining knowledge about events in time, for use in AI 
systems that reason about temporal knowledge. Allen’s 
representation takes the concept of a temporal interval as a 
primitive and explicitly allows representations of indefinite 
and relative temporal knowledge. A temporal interval is 
used as the primitive unit because reasoning about points 
in time frequently yields counter-intuitive or paradoxical 
results. 

Ladkin (1985, 1986a) makes an argument for the use 
of non-convex intervals for reasoning. A convex interval 
is an interval in the usual sense: a contiguous period of 
time. A non-convex interval is an arbitrary union of convex 
intervals. 

In this paper, it is assumed that a temporal structure 
based on convex intervals has been defined that has a useful 
set of operations and relations (see appendix). We believe 
that the work could be extended to temporal structures 
based on time-points or non-convex intervals. 

II COLLECTIONS OF INTERVALS 

An interval t is denoted by ( ta, TV) or ( tcr; ts ) where 
ta, TV and ta + t6 are real numbers denoting moments in 
time; the interval starts at time tcu and extends through 
time tg or t, + tb?* 

A collection of intervals is a structured set of inter- 
vals. The order of a collection is a measure of the depth 
of the structure. An order 1 collection is an ordered list 
of intervals. This is somewhat similar to a non-convex 
interval except that the maximal convex subintervals of 

** We ignore the sticky questions of whether the intervals are open 
or closed and whether time is represented in a continuous or discrete 
fashion, as these issues are largely irrelevant to the work discussed 
here. We assume that if t and u are intervals and tp = u,~ then 
tuu= (tcx,up). 
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a non-convex inteFva1 are disjoint and the order they are 
given in is immaterial. An order n collection (n > 1) is an 
ordered list of order n-l collections. The notation used 
for collections is essentially set notation, except for the un- 
derstanding that the order of elements is maintained. For 
example, 

{{%x2}, {x3+4), {x5}} 

is an order 2 collection. The collection of Thursdays (which 
contains all the Thursdays in order) is an example of an 
order 1 collection. The collection of months where each 
month is represented by a collection of the days in that 
month (in order) is an order 2 collection. 

A. A Formula Approach 

Many useful collections can be described by arithmeti- 
cal formulae, but there are subtle difficulties with this. We 
reject this approach for the reasons outlined in this section. 

Given an appropriate definition for day representing 
the length of one day and, for convenience, assume that 
time to is Saturday, December 31, 1904, midnight, the col- 
lection of Thursdays can be described by the formula: 

Thursdays = {(q lday) 1 Q! = 5days + to (mod 7days)) 

We can generalize Thursdays by replacing the 5 with any 
other value. In other words, it can be understood that 
Tuesdays is an essentially similar collection to Thursdays. 

The same approach applied to construct the collection 
of all Januarys is less successful. Since every fourth year 
is a different length, one possible formula is: 

Januurys = { (cr; 3lduys) 1 

((1: + to mod 1461days) E {0,365,730,1095} } 

This formula is considerably more complicated than the 
one given for Thursdays .* More importantly, it fails to 
provide a means of conveniently recognizing Augusts as 
a generalization of Januarys. To generalize from Januarys 
we would need to replace each of the values (except 1461) 
with appropriate new values: the chance of an arbitrary 
substitution producing a reasonable generalization is quite 
small. Essentially, the formula is in a “compiled” form that 
is quite distant from how the concept would naturally be 
expressed. 

The formulae become even more complicated when New collections can be built by combining other col- 
new collections must be built from existing collections. For lections using these operators. The calendars serve as a 
example, consider “the first Thursday of every January.” basis for this construction. Since the calendars are not suf- 
This requires combining the collection of Thursdays and ficient for reasoning about statements that reference col- 
the collection of Januarys to produce a new collection. Fur- lections that might not yet have been defined or might 
thermore, the system must allow for collections to be com- include unknown intervals in the future (e.g., “when Di- 
bined in fairly arbitrary ways, since it will not be possible ana is at work”), collections can also be built by predicate 
to predict all useful specifications. reference. 

III THE COLLECTION REPRESENTATION 

The foundation of the collection representation is a 
set of primitive collections called calendars. A calendar 
is a collection consisting of an infinite sequence of inter- 
vals that span the timeline, i.e., ti meets ti+l for any two 
consecutive intervals. A calendar may have a first interval 
(the first moment in time the system is prepared to con- 
sider), but does not have a last interval. Days, Months and 
Chinese- Calendar- Years are instances of calendars. 

Two new classes of operators, slicing and dicing, are 
defined to operate on collections of intervals. The dicing 
operators provide means of generating collections from in- 
tervals, for example, to break a collection of intervals into 
smaller intervals. In Figure 1, a dicing operation is illus- 
trated between the first two steps. This operation replaces 
each interval on the left (a week) with a collection of subin- 
tervals (the days in that week). 

The slicing operators provide means of selecting in- 
tervals from collections of intervals, for example, to select 
the first interval of a collection. In Figure 1, a slicing op- 
eration is illustrated between the second two steps. This 
operation replaces each order 1 collection (a collection of 
the days in each week) with a single interval (the fifth day 
of each week). 

I I 

. . I 

. Dicing . Slicing . 

. . . 

Weeks Days :during: Weeks 

Figure 1. Slicing and Dicing 

S/Days :during: Weeks 

The terms “slicing” and “dicing” are chosen for both 
their euphonic and metaphoric appeal?‘: The operators 
have a right-to-left precedence. Each operator corresponds 
roughly to a preposition, so these expressions can be read 
naturally by someone who speaks a prepositional language 
(e.g., English). 

* It would be even more complicated if it were correct: the Gregorian 
calendar specifies that only 97 out of every 400 years are leap years. 

** If these terms seem to have conflicting meanings, “Slicing” can be 
thought of as corresponding to “Selection” and “Dicing” to “Dividing 
up”. 
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A. Primitive Collect ions B. The Dicing Operations 

A calendar is defined by specifying the intervals of 
which it is composed. The notation ((a; 61; 62;. . . ; 6,)) de- 
notes the calendar 

{(a;61),(a:+61;~2),..., (~+~s;,6n),~a+C6i,61),. 4. 
i<?I-1 i<n 

The list of &values is treated as if it were a circular list. 

A calendar can also be defined by specifying how it is 
to be constructed from another calendar. This is denoted 
by ((C;sl;s2;...; Sn)) to indicate that the first interval of 
this calendar is the union of the first s1 intervals of C; the 
second interval is the union of the next s2 intervals of C, 
etc. As above, the list of s-values is treated as a circular 
list. 

If we assume that the unit of measure is 1 second, we 
might have the following definitions: 

Days s ((to; 86400)) 

Months E ((Days;31;28;31;30;31;30;31;31;30;31;30;31; 
31;28;31;30;31;30;31;31;30;31;30;31; 
31;28;31;30;31;30;31;31;30;31;30;31; 
31;29;31;30;31;30;31;31;30;31;30;31)) 

These definitions are intensional rather than extensional. 
That is, while a calendar defines an infinite data struc- 
ture, it does not require that an implementation actually 
build the complete structure, but only that it build those 
portions of the structure it needs. 

Collections can also be constructed from a predicate. 
The collection ((Condition)) is the minimal collection of 
intervals C that satisfies the property that there does not 
exist an interval t disjoint from C, such that Condition is 
true during t. This definition is carefully constructed to 
avoid the question of whether the predicate operates on 
intervals or points. 

a. Weeks :overlaps: (Januaw1986) b. Weeks .overlaps. (January-1986) 

c. Weeks :during: (January-1986) d. Weeks .<. ( January-l 986) 

Figure 2. Dicing Operators 

The dicing operators are extensions of the relations on 
intervals (listed in the appendix). A dicing operator takes 
an order 1 collection as its left argument, an interval as 
its right argument and produces an order 1 collection as a 
result. A dicing operator can also take a collection as the 
right argument, in which case it operates on each interval 
in that collection. 

For each relational operator (R) there are two dicing 
operators: strict (:R:) and relaxed (.R.). If C is an order 1 
collection and t is an interval, the dicing operators are 
defined by: 

C :R: t G {c n t ] c E C A c R t} \ {E} 
C .R. t z {c ] c E C A c R t} \ {E} 

The effect of a strict dicing operator is to break up t into 
pieces according to C. An illustrative example occurs 
when C is a calendar. The expression Weelcs :overlaps: 
(January-1986) will break up the month on the bound- 
aries of the weeks, i.e., it will give those weeks or parts 
of weeks that overlap the month. (See Figure 2a.) The 
effect of a relaxed dicing operator is to select intervals 
from C that have the appropriate relation with t. Thus 
Weeks .overlaps. (January-1986) will break up the month 
in the same way as above, but for the weeks at the begin- 
ning and end of the month it will give the entire week (in- 
cluding that part not overlapping the month). (See Figure 
2b.) In contrast, Weeks :during: (January-1986) will give 
only the weeks that are completely contained in the month. 
(See Figure 2c.)’ Finally, Weeks :I: (January-1986) will 
give only the partial week at the beginning of the month. 
(See Figure 2d.) 

C. The Slicing Operations 

The slicing operators, denoted f/C and [f]/C, op- 
erate on any collection, replacing each of the contained 
order 1 collections with the result of the application of 
the slicing operator. Operating on an order 1 collection 
yields either a single interval or an order 1 collection (usu- 
ally a subcollection of the original order 1 collection). The 
expression f/C applies the selection function f to the col- 
lection and returns a single interval, while [f]/C returns 
a collection. F may be a predicate, in which case it con- 
structs a collection containing the intervals which satisfy 
the predicate. The expression [fl, f2, . . . , fn]/C is the col- 
lection consisting of the individual applications of fl, f2, 
. - . 7 fn to C in order. 

In some cases, a selection function may not have a 
result (e.g., the 29ths of Februarys), in which case the re- 
sult is defined to be the empty interval E. Note that since 
the dicing operators will never produce a collection that 
contains E, any result that includes E is a sign of a failed 
selection operation. 
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The integers are defined as selection functions so that 
n/C selects the nth interval in C and -n/C selects the 
nth interval from the end. The function the is defined so 
that the/C selects the single interval of C, and produces E 
if C contains other than a single interval. 

The function any is used to select intervals nondeter- 
ministically. any/C selects a single interval of C. [any nJ/C 
selects n intervals of C. [any -n]/C selects all but n inter- 
vals of C. The any slicing operator has a subtly different 
operation when used in a declarative statement - in that 
case, it refers to an interval without specifying which one. 
This usage of any has a close relationship to the existential 
quantifier of the predicate calculus. 

D. Examples of Collections 

Table 1 gives a list of English phrases and their cor- 
responding expressions in the collection representation. 

IV APPLICATIONS 

The reason for constructing this representation is to 
provide a framework for a scheduling system. The pre- 
vious sections have shown how terms commonly used in 
scheduling can be easily expressed. The representation was 
designed to address three areas of our group’s research on 
scheduling: graphical display, natural language translation 
(primarily generation), and reasoning (about schedules). 

The illustrations in Figures 1 and 2 indicate the type 
of graphical display that would be generated by the system. 
The definition of each calendar can be made to contain 
simple graphical display information, such as the shape 
and orientation of any “boxes” in which they and their 
contents are shown. The b oxes in Figures 1 and 2 are 

unlabelled. An interval of a calendar could also carry tags 
that could be used to label the boxes or to organize the 
data in a tabular form. 

The bus schedule of Figure 3 provides a good illus- 
tration of this. The schedule is constructed as an order 2 
collection, where each interval has been tagged. The col- 
lection prefers to display intervals with the same tag in 
the same column. The intervals in turn prefer to display 
only their start times. Notice that in several places a table 
entry is blank. Despite this, displaying the table presents 
no problem. 

Hampshire Amherst UMass Smith Mt. Holyoke 

- - 8:20 
lo:oo 1O:lO 10:20 
11:oo 11:lO 11:20 

&ii0 Every hour 6:lO . 
. . 

6:20 
7:oo 7:lO 7:20 
8:00 8:lO 8:20 

11:oo 1l:lO 11:20 

8:35 8:45 
10:35 10:45 
11:35 11:45 

6:35 6:45 
- 7:45 
8:35 - 

11:35 11:45 

Figure 3. A Bus Schedule 

The appointment calendar display of Figure 4 would 
be treated in a similar fashion. In this case, the collection 
of appointments is superimposed on another collection to 
provide the time grid, with the roles of tags and starting 
times reversed in the displayed table. 

The English text in Table 1 indicates the type of nat- 
ural language that could be produced or processed by the 
system. Expressions in the collection representation can 
be almost literally translated into natural language with 
comprehensible results. Similarly, statements can be eas- 

Table 1. English Collection Representation 
Mondays 2/Days :during: Weeks 
Januarys l/Months :during: Years 

First Monday in January 1986 l/Mondays :during: Januarys :during: 1986/ Years 
or equivalently: 1/ (2/Days :during: Weeks) :during: 

First of every month 
First Monday of every month 

Last two Mondays of every month 
Week of the 15th of each month 

First full week of each month 
Week of the first of the month 

First week of the month 
U.S. Election Day 

The first (or only) day of t 
The day after t 

Any day of the week 
Any day this week 

l/Months :during: 1986/ Years 
l/Days :during: Months 
l/Mondays :during: Months 
[ - 1, -2]/Mondays :during: Months 
the/ Weeks .overlaps. 15/Days :during: Months 
I/ Weeks :during: Months 
l/ Weeks .overlaps. l/Days :during: Months 
l/ Weeks .overlaps. Months 
l/Tuesdays .>. l/Mondays :during: November 
l/Days .overlaps. t 
l/Days .>meets. - 1 /Days .overlaps. t 
any/ Days :during: We&s 
any/Days :during: Weeks .overlaps. ( Today) 
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9 

10 

11 

12 

:oo :20 :40 

zjF?Ej 

Figure 4. An Appointment Calendar 

ily translated since the temporal components of the state- 
ment are not distributed across a number of quantifiers 
and predicates. For example, the statement 

((Roy-worked)) contains Weekend-Days :during: (January) 

can be glossed as “The time that Roy worked included the 
weekend days in January.” 

Since the expressions are stored symbolically, the sys- 

tem need only generate the actual intervals that it needs. 
For example, for the expression 

23/Seconds :during: 457O/Minutes :during: 1986/ Years 

the system naturally would not generate a data structure 
containing the 31536000 seconds in 1986 before selecting 
the one desired. If the system was asked whether two ex- 
pressions conflicted and could not determine this by purely 
symbolic means, it still would not need to generate all the 
intervals in each collection. Only those subcollections and 
intervals that have been determined to be possible candi- 
dates for conflicts need to be generated (and this process 
can be done recursively). 

If scheduling conflicts occur, the system can replace 
specific slicing operators with the any operator. For exam- 
ple, the system could make the following successive gener- 
alizations in searching for a non-conflicting schedule: 

the/Mondays :during: l/ Weeks :during: Months 

the/Anyday :during: I/ Weelcs :during: Months 

the/Mondays :during: any/ Weeks :during: Months 

the/Anyday :during: any/ Weeks :during: Months 

Our motivation for this work has been to provide a 
framework for the scheduling system. We are in the pro- 
cess of building a scheduling system around the represen- 
tation. We believe that the consideration of collections of 
intervals is essential to the scheduling domain and that the 
notation and accompanying semantics introduced in this 
paper provide a natural medium for that consideration. 
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APPENDIX 

The intersection of two intervals is defined by: 

t flu E (max(t,,u,),min(tp,vp)) 

The cover of two intervals is defined by: 

t u u E (min(ta,ucu),max(tp,ug)) 

The union of two intervals (t U u) is defined only if 
the intervals overlap or meet and is equal to the cover of 
the two intervals. The empty interval E = (00, -00) and 
any interval that has o 2 /3 is automatically replaced by E. 
This definition is motivated by the desire to have t n E = E 
and t H E = t , for any t. 

We use the following binary relations on intervals: 

t overlaps u G t fl u # E 

t during u = (ta 2 u,) A (tp I up) 
t contains u E u during t 

t<uzitp~u, 
t>uEt&ug 
t < u E (ta < u,) A (t/j 5 up) 
t > u E (ta 2 U@) A (t/j 2 up) 

t meets u E (tp = uQ) 

The during, 5 and 2 operations form partial orders. Note 
that t 5 u is not equivalent to (t < u) V (t = u); however, 
t < u is equivalent to (t ‘: u) A ‘(t overlaps u). 
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