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ABSTRACT 

One of the major representational problems in 
massively parallel or connectionist models is the 
difficulty of representing temporal constraints. Temporal 
constraints are important and crucial sources of informa- 
tion for event perception in general. This paper 
describes a novel scheme which provides massively paral- 
lel models with the ability to represent and recognize 
temporal constraints such as sequence and duration by 
exploiting link to link interactions. This relatively unex- 
plored yet powerful mechanism is used to represent rule- 
like constraints and behaviors. The temporal sequence 
of a set of nodes is defined as the constraints or t,he tem- 
poral context, in which these nodes should be activated. 
This representation is quite robust in the sense that it 
captures subtleties in both the strength and scope (order) 
of temporal constraints. Duration is also represented 
using a similar mechanism. The duration of a concept is 
represented as a memory trace of the activation of this 
concept. The state of this trace can be used to generate 
a fuzzy set like classification of the duration. 

I. INTRODUCTION 

Massively parallel models of computation [I, 21 

(also known as connectionist, parallel distributed pro- 
cessing, or interactive activation models) consist of large 
networks of simple processing elements with emergent 
collective abilities. The behavior of such networks has 
been shown to closely match human cognition in many 
tasks, such as natural language understanding and pars- 
ing 131, speech perception and recognition [4, 5, 61, 
speech generation, physical skill modeling, vision and 
many others. The use of such models provides cognitive 
scientists with experiment and simulation results in a 
finer level of detail than was previously possible. In 
addition, various learning algorithms [7, 8, 91 have been 
developed to enable these networks to acquire knowledge 
through gradual adaptation. The distributed nature of 
some of these models enables network structures to be 
less sensitive to structural damages. 

One of the major representational problems in 
massively parallel models is the difficulty in representing 
temporal constraints. These are constraints which con- 
trol network activation based on temporal knowledge. 
Temporal constraints are important and crucial sources 
of information for event perception in general. This is 
especially true for tasks such as speech perception and 
schema selection. This paper describes a novel scheme 
which provides connectionist models with t,he ability to 
represent and recognize temporal constraints such as 
sequence and duration by exploiting link to link interac- 

II. OVERVIEW 

Sequential constraints on a set of events is one 
form of temporal constraints. There are basically two 
types of knowledge about temporal sequences. One is 
how to generate a sequence of activations. The second is 
how to recogni,-e a given sequence of events. Figure 1 

shows a simple network structure [l] which can activate 
a predetermined sequence of events (El -+ E2 -+ . ..). 
This type of network structure is useful in modeling 
schema execution such as physical motor control. 

Figure 1. Activating a sequence of events. 

The second type of temporal sequence knowledge 
(recognizing a sequence of events) is somewhat more 
difficult to represent. The main problem is constructing 
a network st’ructure which can represent temporal con- 
texts in which nodes should be activated. A mechanism 
is needed which could recognize particular sequences of 
activation patterns over time. This problem arises most 
notably in modeling speech perception. For example, a 
word should be recognized only if its constituent acoustic 
segments are heard in the correct sequence. 
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One approach to this problem is to construct time 
buffered network structures in which each time slot con- 
tains an identical substructure [l, 61. Conceptually, this 
type of network contains a copy of the event to be recog- 
nized at each particular slot in time in which this event 
might occur. There are many problems associated with 
this type of duplicated structures (either pre-wired or 
dynamic). Various techniques of dynamic structures and 
connections [lo, ll] have been suggested to partly handle 
these problems. However, there is still an overhead in 
both computation and memory when using this 
approach. 

Another approach is to approximate sequence con- 
straints through lateral priming [5]; priming events that 
follow those that have already been activated. Using the 
example of word perception, this approach is only useful 
if there are several words with similar acoustic segments. 
In this case, the priming will help activate the most 
plausible word. However, in general, this approach will 
not inhibit the perception of a word when segments are 
given out of sequence. 

This paper presents an alternative network 
representation which can recognize particular temporal 
sequences without using duplicated or dynamic struc- 
tures. This paradigm is further extended to form a 
representation of temporal duration. 

III. METHODOLOGY 

The crux of this paper centers around the notion of 
representing interactions among the links to define tem- 
poral constraints. This idea is remotely analogous to 
neural networks where synapses may be made between 
different parts of the neuron; for example between axon 
and dendrite, axon and axon, dendrite and dendrite, and 
axon and cell body [ 121. In the model presented here, 
links may be made between node and node, as well as 
between node and link. 

The approach uses two types of link interaction. 
Figure 2 (a) shows one type in which the activation-flow 
from one node to another (node A to B) is precondi- 
tioned by a third node (node C). The association 
between nodes A and B can be formed only if node C is 
also activated. Figure 2 (b) shows how this interaction is 
implemented. The intersection of the two links is 
represented by a CONSTRAINT node. This node imple- 
ments the computation (described in detail in the next 
section) required to represent the link interactions. 
Letter “P”, in figure 2(b), indicates the precondition 
input link. 

P 
> 

(4 
Figure 2. Precondition link. 

The second type of interaction (figure 3) has just, 
the reverse effect. Activation flows from node A to B, 
unless node C is already activated. In other words, node 
C inhibits the association between nodes A and B to 
occur. The inhibiting link is called the exception input 
and is labeled with an “E” at the CONSTRAINT node. 

E 

(4 
Figure 3. Exception link. 

(b) 

These two relatively unexplored yet powerful 
mechanisms can be used to represent rule-like con- 
straints and behaviors. Link interactions represented by 
the CONSTRAINT node are, by no means, a simple 
binary enable/disable type mechanism. The CON- 
STRAINT node is robust enough to a capture a contin- 
uum of interactions. For instance, the CONSTRAINT 
node scales the activation flow between node A and B 
according to the activation level of the node C. In the 
precondition case? to account for noisy environments, a 
CONSTRAINT node can be programmed (by setting a 
positive bias level) to allow energy to trickle through, 
from node A to B, even when the node C is not 
activated. This bias level can be thought of as defining 
the fuzziness or looseness of the precondition. The 
CONSTRAINT node reduces to a BINDER node ]2j 
when the bias level is zero and there are no exception 
inputs. 

A. The Computation of the CONSTRAINT Node 

Although the CONSTRAINT node was originally 
designed to represent link interactions, the computation 
is general enough to be used as a normal node in the net- 
work simply by not having precondition or exception 
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inputs. Thus allowing a uniform node unit to be used 
throughout the network to represent nodes as well as 
link interactions. The following describes the computa- 
tion of the CONSTRAINT node used in our simulations: 

The main energy parameters of this node are: 

P - the potential, and 
V - the output value. 

These depend on the following internal parameters: 

t - the threshold 
6 - the bias level 
d - the decay 
i - vector of normal inputs i,,...,i 
P - vector of precondition inputs il,...,pn 
E - vector of exception inputs el,...,en 

The functions to compute the new values are: 

P + f(i,P&P,6,4, 
2’ + 9 (Ptt). 

In the case where the CONSTRAINT node is used 
to represent a normal node in the network (i.e. when P 
and E is absent), the computation involved is defined as: 

P + p (1 - d) + qwk x ;,, [O<w&l] 
v + if p>t then p else 0, 

where wk is the link weight on the link ;k and p and v are 
continuous values in [0, 11. The potential is simply the 
previous potential scaled by a decay factor, plus the sum- 
mation of weighted inputs. The output is equal to p wit(h 
a threshold. 

When the CONSTRAINT node is used to represent 
link interactions (i.e. with P or E), p becomes: 

P - [C(uj x PJ - w$ x eJ + 61 x P’. 
where p’ is the potential without P and E. The new 
potential is equal to p’ scaled by tie difference in the 
weighted inputs of P and E plus the bias level, 

B. Characteristics of the CONSTRAINT Node 

To give a flavor of the type of constraints that can 
be represented using the CONSTRAINT node, a simple 
example from the monkey-and-banana problem is shown. 
In this problem, one of the rules might be expressed as: 

if [goal = possess-banana] then [action = grasp-banana] 
precondition: [location = at-banana]. 
exception: [state = grasped-banana]. 

Figure 4 shows how this can be represented in net- 
work form. The CONSTRAINT node permits the asso- 
ciation between the goal to possess banana and the 
action to grasp banana only if the monkey is at the 
banana location and have not already grasped the 
banana. 

cl POSS-B 

Figure 4. Monkey and banana. 

Imagine that, initially, the monkey wants to pos- 
sess the banana but is not at the banana location. 
Although, the POSS-B node is activated, there is no 
energy flow to the GRASP-B node (since the precondi- 
tion is not present). The bias level of the CON- 
STRAINT node in this case is zero since we want a strict 
precondition (i.e. the monkey cannot start, to grasp the 
banana unless it is positively at the banana location). 
As the monkey moves towards the banana, AT-B node 
gets activated (perhaps through visual perception) and 
energy gradually flows to the GRASP-B node which 
triggers the grasping action. As the monkey performs 
this action, the GRASPED node is activated and inhibits 
the grasping action to continue. The GRASP-B node is 
activated only after the precondition AT-B is activated 
and is deactivated after the exception GRASPED. The 
CONSTRAINT node in this example behaves like a feed- 
back mechanism to control physical motion. 

IX TEMPORAL SEQUENCE 

The network structure used to represent/recognize 
a temporal sequence is conceptually an extension to the 
structure used in the monkey-and-banana problem. Fig- 
ure 5 shows how a schema (Sl), which consists of a 
sequence of three events (El ---) E2 + E3), can be recog- 
nized using CONSTRAINT nodes to represent link 
interactions. 

Figure 5. Representation for temporal sequence. 

Schema 

Event 

Tokens 

Temporal 
Constraints 

Event Types 
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The lowest layer of this network structure consists 
of the type nodes for the various events. The type is 
accessible by other schema structures as well. Above 
this is the temporal constraint layer which restricts a 
particular temporal ordering of the types to occur before 
the event tokens can be activated. The schema structure 
is represented as a set of event tokens. The schema node 
remains activated, with a varying potential level, as long 
as the input events follow the sequence defined in the 
temporal constraint layer. For example, after E2 is 
activated, the token for E2 will be activated only if the 
token of the preceding event (El) is already activated 
and the token of the next event (E3) has not yet been 
activated. In other words, the token for E2 will only be 
activated after El and before E3. 

Not only can this schema structure recognize a 
strict sequence of events, it is also flexible enough to 
accommodate variations such as missing events or events 
which are only weakly present. For example, in the case 
of word recognition, a particular instance of a phoneme 
might be present only in a very weak form or even 
absent, since speech input is often incomplete or only 
partially specified. There are three parameters which 
can adjust the overall behavior of the temporal con- 
straints to accommodate for these variations. First, 
there is the bias level in the CONSTRAINT node. A 
non-zero bias level allows energy to trickle through even 
in the absence of the precondition input. This is useful 
for cases where the precondition events may not always 
be present. Second, there is the strength of the precondi- 
tion inputs (i.e. the link weight on the precondiGon 
input links). This weight reflects the probability that 
the precondition events would lead to the current event. 
The third parameter is the scope of the temporal con- 
straints. It can be adjusted by having higher order 
dependencies for precondition and exception inputs (i.e. 
not only dependencies on the preceding and next node 
but also on a larger temporal scope). In our experi- 
ments, these parameters were adjusted manually. How- 
ever, it is conceivable that a learning algorithm can be 
used to fine-tune the parameters based on experience. 

This model suits word recognition quite appropri- 
ately. In this case, the schema is a word in the lexicon 
and the events are phonemes. The model has been used 
successfully in constructing a word recognition system 
which recognizes alphabets and digits spoken by a single 
speaker 1131. The massively parallel computation was 
simulated on a Symbolics Lisp machines using the 
AINET-2 simulator [14]. This system represents one of 
the first to successfully use real speech data on a speech 
system based on a massively parallel model. One of the 
main reasons for its accomplishments is the robustness in 
temporal representation which this model can capture. 

The behavior of this model is similarly, in certain 
aspects, to a discrete Markov chain model. Both models 
traverse a discrete number of states over a discrete 
number of time intervals. The link weights on the 
precondition inputs in the temporal sequence model 
reflects the state transition probabilities in the h4arkov 
chain model. However, the state transition in the tem- 
poral sequence model is gradual over time, unlike the 
Markov chain. This permits smooth graceful transitions 
between states based on the gradual accumulation of evi- 
dence to support the transition. The temporal sequence 
model also allows for higher order dependencies other 
than just the previous state. 

V. TEMPORAL, DURATION 

The network structure which represents/recognizes 
temporal duration uses a similar temporal constraint 
mechanism based on link interactions. The duration of a 
concept is represented as a memory trace of the activa- 
tion of this concept. 

Fuzzy Set 
Classification 

Duration 
Network 

Input 

Figure 6. Representation for temporal duration. 

Figure 6 shows the network structure which can measure 
the duration of t,he activation of the node “x”. Activa- 
tion energy in this example network gradually spreads 
from the node labeled “1” (short duration) to the node 
labeled “ 10” (long duration) as node ‘lx” remains 
activated. This is similar to a memory trace of how long 
“X” was active. The state of this trace can be used to 
generate a fuzzy-set like classification of the duration. 
Figure 7 shows the different activation plots for the 
different durations of “x”. 

Although knowledge of temporal duration is 
extremely important in event perception, this source of 
information has been seriously lacking before in mas- 
sively parallel models. One example, in speech recogni- 
tion, in which duration information is useful is in the 
distinction bet)ween the letters “b” and “v”. If a labial 
stop is long, it is more likely to be a labial fricative that 
has been misidentified as a labial stop. 
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The example network structure shown above only 
measures the absolute duration according to a fixed 
scale. For relative duration, one needs an indication of 
the context to shift the attention of the fuzzy 
classification network. 
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(a) The activation plot for a short “x” input. 
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(b) The activation plot for a medium “x” input. 
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(c) The activation plot for a long “x” input. 
Figure 7. Activation plot showing fuzzy classification gen- 

erated by the duration network for the node ‘(xl. 

VI. SUMMARY 

This paper presented a novel approach towards 
representing temporal sequence and duration based on 
capturing interactions among links. This model fills a 
much needed void in present massively parallel models. 
In addition, the mechanism seems capable of represent- 
ing a wide variety of constraints other than temporal 
constraints. 

Future research may include developing learning 
algorithms which could gradually improve or learn the 
link weights in highly structured networks such as those 
described in this paper. At present, this lack of suitable 
learning algorithms, is the main limitation of this model. 
Another interesting topic is to explore how temporal con- 
straints might fall out from learning in random or semi- 
random distributed networks. One recent approach uses 
the “error propagation” learning algorithm [8) on a 
recurrent distributed network to learn to complete 
sequences, i.e. given the initial part of a sequence, the 
network generates the rest of this sequence. However, 
network structures that result from this process seem to 
be less flexible in accepting distorted inputs or inputs 
with varying durations. 
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