
Constraint Propagation Algorithms
for Temporal Reasoning

Marc Vilain Henry Kautz
BBN LABORATORIES UNIVERSITY OF ROCHESTER

10 MOULTON ST. COMPUTER SCIENCE DEPT.
CAMBRIDGE, MA 02238 ROCHESTER, NY 14627

Abstract: This paper considers computational aspects of several
temporal representation languages. It investigates an interval-based
representation, and a point-based one. Computing the
consequences of temporal assertions is shown to be computational/y
intractable in the interval-based representation, but not in the poinf-
based one. However, a fragment of the interval language can be
expressed using the point language and benefits from the tractability
of the latter.’

The representation of time has been a recurring concern of
Artificial Intelligence researchers. Many representation schemes
have been proposed for temporal reasoning; of these, one of the
most attractive is James Allen’s algebra of temporal intervals [Allen
831. This representation scheme is particularly appealing for its
simplicity and for its ease of implementation with constraint
propagation algorithms.

Reasoners based on this algebra have been put to use in several
ways. For example, the planning system of Allen and Koomen
[1983] relies heavily on the temporal algebra to perform reasoning
about the ordering of actions. Elegant approaches such as this one
may be compromised, however, by computational characteristics of
the interval algebra. This paper concerns itself with these
computational aspects of Allen’s algebra, and of a simpler algebra of
time points.

Our perspective here is primarily computation-theoretic. We
approach the problem of temporal representation by asking
questions of complexity and tractability. In this light, this paper
examines Allen’s interval algebra, and the simpler algebra of time
points.

The bulk of the paper establishes some formal results about the
temporal algebras. In brief these results are:

l Determining consistency of statements in the interval
algebra is NP-hard, as is determining all consequences
of these statements. Allen’s polynomial-time constraint
propagation algorithm is sound but not complete for
these tasks.

l In contrast, constraint propagation is sound and
complete for computing consistency and consequences
of assertions in the time point algebra. It operates in
O(n3) time and O(n2) space.

l A restricted form of the interval algebra can be
formulated in terms of the time point algebra. Constraint
propagation is sound and complete for this fragment.

Throughout the paper, we consider how these formal results affect
practical Artificial Intelligence programs.

‘This research was supported in part by the Defense Advanced Research
Agency, under contracts NOOOl4-85-C-0079 and N-0001 4-77-C-0378.

Projects

The Interval Algebra
Allen’s interval algebra has been described in detail in [Allen 831.

In brief, the elements of the algebra are relations that may exist
between intervals of time. Because the algebra allows for
indefiniteness in temporal relations, it admits many possible relations
between intervals (213 in fact). But all of these relations can be
expressed as vectors of definite simple relations, of which there are
only thirteen, 2 The thirteen simple relations, whose definitions
appear in Figure 1, precisely characterize the relative starting and
ending points of two temporal intervals. If the relation between two
intervals is completely defined, then it can be exactly described with
a simple relation. Alternatively, vectors of simple relations introduce
indefiniteness in the description of how two temporal intervals relate.
Vectors are interpreted as the disjunction of their constituent simple
relations.

A BEFORE B B AFTER A G--v*

A MEETS B B MET-BY A
A ,B

/

A
/

A OVERLAPS B BOVERLAPPED-BY A
B

/

A STARTS B B STARTED-BY A

A DURING B B CONTAINS A ++,B

A ENDS B BENDEDBY A B/
A--v

AEQUALSB BEQUALSA

/
A

/

/
B

Figure 1: Simple relations in the interval algebra

Two examples will serve to clarify these distinctions (please refer
to figure 2). Consider the simple relations BEFORE and AFTER:
they hold between two intervals that strictly follow each other, without
overlapping or meeting. The two differ by the order of their

21n fact, these thirteen simple relations can be in turn
universally and existentially quantified expressions involving
relation, For details, see (Allen 8 Hayes 651.

expressed in terms of
only one truly primitive

KNOWLEDGE REPRESENTATION / 3’7

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

arguments: today John ate his breakfast BEFORE he ate his lunch,
and he ate his lunch AFTER he ate his breakfast. To illustrate
relation vectors, consider the vector (BEFORE MEETS OVERLAPS).
It holds between two intervals whose starting points strictly precede
each other, and whose ending points strictly precede each other.
The relation between the ending point of the first interval and the
starting point of the second is left ambiguous. For instance, say this
morning John started reading the paper before starting breakfast,
and he finished the paper before his last sip of coffee. If we didn’t
know whether he was done with the paper before starting his coffee,
at the same time as he started it, or after, we would then have:

PAPER (BEFORE MEETS OVERLAPS) COFFEE

V, = (BEFORE MEETS OVERLAPS)
V, = (BEFORE MEETS)

then the product of V, and V, is
V, x V2 = (BEFORE)

As with addition, the multiplication of two vectors is computed by
inspecting their constituent simple relations. The constituents are
pairwise multiplied by following a simplified muttiplication table, and
the resutts are combined to produce the product of the two vectors.
See [Allen 831 for details.

Returning to our formal discussion, we note that the interval
algebra is principally defined in terms of vectors. Although simple
relations are an integral part of the formalism, they figure primarily as
a convenient way of notating vector relations. The mathematical
operations defined over the algebra are given in terms of vectors; in
a reasoner buitt on the temporal algebra, all user assertions are
made with vectors.

Two operations, an addition and a multiplication, are defined over
vectors in the interval algebra. Given two different vectors describing
the relation between the same pair of intervals, the addition
operation “intersects” these vectors to provide the least restrictive
relation that the two vectors together admit. The need to add two
vectors arises from situations where one has several independent
measures of the relation of two intervals. These measures are
combined by summing the relation vectors for the measures. For
example, say the relation between intervals A and B has been
derived by two valid measures as being both

R<A,B> = (BEFORE MEETS OVERLAPS)
R<B,C> = (BEFORE MEETS)
~~~~~~~---- 
R<A,C> = (BEFORE) 

Flgure 3: Intervals whose relations are to be multiplied 

V, = (BEFORE MEETS OVERLAPS) 
V2 = (OVERLAPS STARTS DURING). 

To find the relation between A and B, that is implied by V, and V, 
the two vectors are summed: 

Breakfast BEFORE Lunch $imDle relations: 

Lunch AFTER breakfast 

Determining Closure in the Interval Algebra 
In actual use, Allen’s interval algebra is used to reason about 

temporal information in a specific application. The application 
program encodes temporal information in terms of the algebra, and 
asserts this information in the database of the temporal reasoner. 
This reasoners job is then to compute those temporal relations 
which follow from the user’s assertions. We refer to this process as 
completing the closure of the user’s assertions. 

Breakfast 

H /A 

Relation Vector: Paper ( BEFORE MEETS OVERLAPS) Coffee 

Figure 2: Examples of simple relations and relation vectors 

V, + V, = (OVERLAPS). 

Algorithmically, the sum of two vectors is computed by finding their 
common constituent simple relations. 

Multiplication is defined between pairs of vectors that relate three 
intervals A, B, and C. More precisely, if V, relates intervals A and B, 
and V, relates B and C, the product of V, and V, is the least 
restrictive relation between A and C that is permitted by V, and V, 
Consider, for example, the situation in Figure 3. If we have 

In Allen’s model, closure is computed with a constraint 
propagation algorithm. The operation of this forward-chaining 
algorithm is driven by a queue. Every time the relation between two 
intervals A and B is changed, the pair CA, B> is placed on the queue. 
The algorithm, shown in Figure 4 operates by removing pairs from 
the queue. For every pair CA, B> that it removes, the algorithm 
determines whether the relation between A and B can be used to 
constrain the relation between A and other intervals in the database, 
or between B and these other intervals. If a new relation can be 
successfully constrained, then the pair of intervals that it relates is in 
turn placed on the queue. The process terminates when no more 
relations can be constrained. 

As Allen suggests [Allen 831, this constraint propagation algorithm 
runs to completion in time polynomial with the number of intervals in 
the temporal database. He provides an estimate of O(n2) calls to the 
Propagate procedure. A more fine-grained analysis reveals that 
when the algorithm runs to completion, it will have performed O(n3) 
multiplications and additions of temporal relation vectors. 

Theorem 1: Let I be a set of n intervals about which m 
assertions have been added with the Add procedure. 
When invoked, the Close procedure will run to completion 
in O(n3) time. 

Proof: (Sketcfl) A pair of intervals <iti> is entered on 

3Most of the theorems in this paper have rather long proofs. For this reason, we 
have restricted ourselves here to providing only proof sketches. 

378 / SCIENCE 



r Let Table be a two-dimensional array, indexed by intervals, in 
which Table[i,j] holds the relation between intervals i and j. 
Tab/e[i,,jl is initialized to (BEFORE MEETS . . . AFTER), the 
additive identity vector consisting of all thirteen simple relations; 
except for Table[i,i] which is initialized to (EQUAL). 
Let Queue be a FIFO data structure that will keep track of those 
pairs of intervals whose relation has been changed. 
Let Intervals be a list of all intervals about which 
assertions have been made. l / 

To Add( R<i,j>) 
/’ R<i,j> is a relation being asserted between i and j.*l 

begin 
Old t Table[i,ji 
Table[i,j] c Table[i,j] + R<i,j>; 
If Table[i,j] # Old 

then Place <i,j> on Fifo Queue; 
Intervals c Intervals u {i, 1); 

end: 

To Close 
1’ Computes the closure of assertions added to the database. l / 

While Queue is not empty do 
begin 

Get next ci,j> from Queue; 
Propagate(i,j); 

end; 

To Propagate 
/’ Called to propagate the change to the relation between 

intervals I and Jto all other intervals. l / 

For each interval Kin Intervals do 
begin 

Temp c Table[l,K] + ( Tablet/, J] x Table[J, Kb ; 
If Temp = 0 

then {signal contradiction); 
If Table[l,K} # Temp 

then Place C&K> on Queue; 
Table[l,K] t Temp; 
Temp t Table[K, J] + ( Table[K, Q x Table[i, J/ ; 
If Temp = 0 

then {signal contradiction}; 
If Table[K,J] 1: Temp 

then Place <K,J> on Queue; 
Table[K,J] c Temp; 

end: 

Flgure 4: The constraint propagation algorithm 

Queue when its relation, stored in Tab/e[i,j], is non-trivially 
updated. It is easy to show that no more than O(n2) pairs 
of intervals <i,j> are ever entered onto the queue. This is 
because there are only O(n2) relations possible between 
the n intervals, and because each relation can only be 
non-trivially updated a constant number of times. 

Further, every time a pair ci,i> is removed from Queue, 
the algorithm performs O(n) vector additions and 
multiplications (in the body of the Propagate procedure). 
Hence the time complexity of the algorithm is 
O(n . n2) = O(n3) vector operations. 

The vector operations can be considered here to take constant 
time. By encoding vectors as bit strings, addition can be performed 
with a 13-bit integer AND operation. For multiplication, the 
complexity is actually O(lV, 1 . IV,l), where IV, I and IV,1 are the 

“lengths” of the two vectors to be multiplied (i.e., the number of 
simple constituents in each vector). Since vectors contain at most 
13 simple constituents, the complexity of multiplication is bounded, 
and the idealization of multiplication as operating in constant time is 
acceptable. 

Note that the polynomial time characterization of the constraint 
propagation algorithm of Figure 4 is somewhat misleading. Indeed, 
Allen [1983] demonstrates that the algorithm is sound, in the sense 
that it never infers an invalid consequence of a set of assertions. 
However, Allen also shows that the algorithm is incomplete: he 
produces an example in which the algorithm does not make all the 
inferences that follow from a set of assertions. He suggests that 
computing the closure of a set of temporal assertions might only be 
possible in exponential time. Regrettably, this appears to be the 
case. As we demonstrate in the following paragraphs, computing 
closure in the interval algebra is an NP-hard problem. 

Intractability of the Interval Algebra 
To demonstrate that computing the closure of assertions is NP- 

hard, we first show that determining the consistency (or satisfiability) 
of a set of assertions is NP-hard. We then show that the consistency 
and closure problems are equivalent. 

Theorem 2: Determining the satisfiability 
assertions in the interval algebra is NP-hard. 

of a set of 

Proof: (Sketch) This theorem can be proven by 
reducing the 3-clause satisfiability problem (or 3SAT) to 
the problem of determining satisfiability of assertions in the 
interval algebra. To do this, we construct a 
(computationally trivial) mapping between a formula in 3- 
SAT form and an equivalent encoding of the formula in the 
interval algebra. 

Briefly, this is done by creating for each term P in the 
formula, and its negation -P, a pair of intervals, P and 
NOTP. These intervals are then related to a “truth 
determining” interval MIDDLE: intervals that fall before 
MIDDLE correspond to false terms, and those that fall after 
MIDDLE correspond to true terms. The original formula is 
then encoded into assertions in the algebra; this can be 
done (deterministically) in polynomial time. 

The encoding proceeds clause by clause. For each 
clause P v Q v R, special intervals are created. These 
intervals are related to the literals’ intervals P, Q, and R in 
such a way that at most two of these intervals can be 
before MIDDLE (which makes them false). The other (or 
others) can fall after MIDDLE (which makes them true). 

It can then be shown that the original formula has a 
model just in case the interval encoding has one too. 
Satisfiability of a 3-SAT formula could thus be established 
by determining the satisfiability of the corresponding 
interval algebra assertions. Since the former problem is 
NP-complete, the latter one must be (at least) NP-hard. 

The following theorem extends the NP-hard result for the problem 
of determining satisfiability of assertions in the interval algebra to the 
problem of determining closure of these assertions, 

Theorem 3: The problems of determining the 
satisfiability of assertions in the interval algebra and 
determining their closure are equivalent, in that there are 
polynomial time-mappings between them. 

Proof: (Sketch) First we show that determining closure 
follows readily from determining consistency. To do so, 
assume the existence of an oracle for determining the 
consistency of a set of assertions in the interval algebra. 
To determine the closure of the assertions, we run the 
oracle thirteen times for each of the O(n2) pairs ci,j> of 
intervals mentioned in the assertions. Specifically, each 
time we run the oracle on a pair ci,j>, we provide the 
oracle with the original set of assertions and the additional 

KNOWLEDGE REPRESENTATION / 379 



assertion i (I?) i, where R is one of the thirteen simple 
relations. The relation vector that holds between i and j is 
the one containing those simple relations that the oracle 
didn’t reject. 

To show that determining consistency follows from 
determining closure, assume the existence of a closure 
algorithm. To see if a set of assertions is consistent, run 
the algorithm, and inspect each of the O(n2) relations 
between the n intervals mentioned in the assertions. The 
database is inconsistent if any of these relations is the 
inconsistent vector: this is the vector composed of no 
constituent simple relations. 

The two preceding theorems demonstrate that computing the 
closure of assertions in the interval algebra is NP-hard. This result 
casts great doubts on the computational tractability of the algebra, as 
no NP-hard problem is known to be solvable in less than exponential 
time. 

A PRECEDES S l 

Consequences of Intractability 
Several authors have described exponential-time algorithms that 

compute the closure of assertions in the interval algebra, or some 
subset thereof. Valdes-Perez [1986] proposes a heuristically pruned 
algorithm which is sound and complete for the full algebra. The 
algorithm is based on analysis of set-theoretic constructions. Malik & 
Binford [1983] can determine closure for a fraction of the interval 
algebra with the exponential Simplex algorithm. As we shall show 
below, their method is actually more powerful than need be for the 
fragment that they consider. 

Even though the interval algebra is intractable, it isn’t necessarily 
useless. Indeed, it is almost a truism of Artificial Intelligence that all 
interesting problems are computationally at least NP-hard (or worse)! 
There are several strategies that can be adopted to put the algebra 
to work in practical systems. 

The first is to limit oneself to small databases, containing on the 
order of a dozen intervals. With a small database, the asymptotically 
exponential performance of a complete temporal reasoner need not 
be noticeably poor. This is in fact the approach taken by Malik and 
Binford to manage the exponential performance of their 
Simplex-based system. Unfortunately, it can be very difficult to 
restrict oneself to small databases, since clustering information in 
this way necessarily prevents all but the simplest interrelations of 
intervals in separate databases. 

Another strategy is to stick to the polynomial-time constraint 
propagation closure algorithm, and accept its incompleteness. This 
is acceptable for applications which use a temporal database to 
notate the relations between events, but don’t particularly require 
much inference from the temporal reasoner. For applications which 
make heavy use of temporal reasoning, however, this may not be an 
option. 

Finally, an alternative approach is to choose a temporal 
representation other than the full interval algebra. This can be either 
a fragment of the algebra, or another representation altogether. We 
pursue this option below. 

A Point Temporal Algebra 
An alternative to reasoning about intervals of time is to reason 

about points of time. Indeed, an algebra of time points can be 
defined in much the same way as was the algebra of time intervals. 
As with intervals, points are related to each other through relation 
vectors which are composed of simple point relations. These 
primitive relations are defined in Figure 5. 

As with the interval algebra, the point temporal algebra possesses 
addition and multiplication operations. These operations, whose 
tables are given in Appendix , mirror the operations in the interval 
algebra. Addition is used to combine two different measures of the 
relation of two points. Multiplication is used to determine the relation 

A SAME B A 0 

0 l 

AKXLCWSB 
0 A 
l 0 

Figure 5: Simple point relations 

between two points A and 5, given the relations between each of A 
and 5 and some intermediate point C. 

Computing Closure in the Point Algebra 
As was the case with intervals, determining the closure of 

assertions in the point algebra is an important Operation. 
Fortunately,, the point algebra is sufficiently simple that closure Can 
be computed in polynomial time. To do so, we can directly adapt the 
constraint propagation algorithm of Figure 4. Simply replace the 
interval vector addition and multiplication operations with point 
additions and multiplications, and run the algorithm with point 
assertions instead of interval assertions. 

As before, the algorithm runs to completion in O(n3) time, where n 
is the number of points about which assertions have been made. As 
with the interval algebra, the algorithm is sound: any relation that it 
infers between two points follows from the user’s assertions. This 
time, however, the algorithm is complete. When it terminates, the 
closure of the point assertions will have been correctly computed. 

We prove completeness by referring to the moaer theory OI the 
time point algebra. In essence, we consider any database over 
which the algorithm has been run, and construct a model for any 
possible interpretation of the database. If the database is indefinite, 
a model must be constructed for each possible resolution of the 
indefiniteness4 

We choose the real numbers to model time points. A model of a 
database of time points is simply a mapping between those time 
points and some corresponding real numbers. The relations 
between time points are mapped to relations between real numbers 
in the obvious way. For example, if time point A precedes time point 
B in the database, then A’s corresponding number is less than CTs. 

Theorem 4: The constraint propagation algorithm is 
complete for the time point algebra. That is, a model can 
be constructed for any interpretation of the processed 
database. 

Proof: (Sketch) We first note that the algorithm 
partitions the database into one or more partial order 
graphs. After the algorithm is run, each node in a graph 
corresponds to a cluster of points. These are all points 
related to by the vector (SAME); note that the algoriihm 
computes the transitive closure of (SAME) assertions. 
Arcs in the graph either indicate precedence (the vectors 
(PRECEDES) or (PRECEDES SAME), or their inverses) or 
disequality (the vector (PRECEDES FOLLOWS)). At the 
bottom of each graph is one or more “bottom” nodes: 
nodes which are preceded by no other node. 

Further, when the algorithm has run to completion the 

4This demonstrates completeness in the following sense. If there were an 
interpretation of the processed database for which no model could be constructed, the 
algorithm would be incomplete It would have failed to eliminate a possible 
interpretation prohibited by the onglnal assertions. 

380 / SCIENCE 



graphs are all consistent, in the following two senses. 
First, all points are linearly ordered: there is no path from 
any point in a graph back to itself that solely traverses 
precedence arcs (time doesn’t curve back on itself). 
Second, no two points that are in the same cluster were 
asserted to be disequal with the (PRECEDES FOLLOWS) 
vector. If the user had added any assertions that 
contradicted these consistency criteria, the algorithm 
would have signalled the contradiction. 

Note that all of the preceding properties can be shown 
with simple inductive proofs by considering the algorithm 
and the addition and muttiplication tables. 

The model construction proceeds by picking a cluster of 
points (i.e., a node) at the “bottom” of some graph and 
assigning all of its constituent points to some real number. 
The cluster is then removed from the graph, and the 
process proceeds on with another real number (greater 
than the first) and another cluster (either in the same graph 
or in another one). The process is complicated somewhat 
because some clusters may be “equal” to other clusters 
(their constituent points may be related by some vector 
containing the SAME relation). For these cases it is 
possible to “collapse” several (zero, one, or more) of these 
clusters together, and assign their constituent points to the 
same real number. Some other clusters may be 
“disequal”. For these, we must just make sure never to 
“collapse” them together. Because the choice of which 
“bottom” node to remove and which clusters to collapse is 
non-deterministic, the model construction covers all 
possible interpretations of the database. 

Relating the interval and point algebras 
The tractability of the point algebra makes it an appealing 

candidate for representing time. Indeed, many problems that involve 
temporal sequencing can be formulated in terms of simple points of 
time. This approach is taken by any of the planning programs that 
are based on the situation calculus, the patriarch of these being 
STRlPS [Fikes & Nilsson 711. 

However, as many have pointed out, time points as such are 
inadequate for representing many real phenomena. Single time 
points by themselves aren’t sufficient to express natural language 
semantics [Allen 841, and they are very inconvenient (if not useless) 
for modelling many natural events and actions [Schmolze 861. For 
these tasks, an interval-based time representation is necessary. 

Fortunately, many interval relations can be encoded in the point 
algebra. This is accomplished by considering intervals as defined by 
their endpoints, and by encoding the relation between two intervals 
as relations between their endpoints. For example, the interval 
relation 

A (DURING) B 

can be encoded as several point assertions 

A- (FOLLOWS) B- 
A+ (PRECEDES) B+ 
A- (PRECEDES) A+ 
B- (PRECEDES) B+, 

where A- denotes the starting endpoint of interval A, A+ denotes its 
finishing endpoint, and similarly for B. 

This scheme captures all unambiguous relations between 
intervals, that is all relations that can be expressed using vectors that 
contain only one simple constituent. It can also capture many 
ambiguous relations, but not all. One can represent ambiguity as to 
the pairwise relation of endpoints, but one can not represent 
ambiguity as to the relation of whole intervals. The vector 
(BEFORE MEETS OVERLAPS) for example can be encoded as 

point assertions, but the vector (BEFORE AFTER) can not. See 
Figure 6. 

INTERVAL POINT 
VECTOR TRANSLATION ILLUSTRATION 

A (BEFORE A- (PRECEDES) B- & /* 
0vFaRLAPs A- (PRECEDES) A+ 
MEETS) B A+ (PRECEDES) B+ e 

B- (PRECEDES) B+ 

A (BEFORE 
AFTER) B 

No equivalent 
point form 

Figure 6: Translation of interval algebra to point algebra 

The fragment of the interval algebra that can be translated to the 
point algebra benefits from all the computational advantages of the 
latter. In particular, the polynomial-time constraint propagation 
algorithm is sound and complete for the fragment. This/is the 
interval representation method that Simmons uses in his geological 
reasoning program [Simmons 83, and personal commur$ation]. 

This fragment of the interval algebra is also the one used by Malik 
and Binford [1983] in their spacio-temporal reasoning program. In 
their case, though, reasoning is performed with the exponential 
Simplex algorithm. This use of the general Simplex procedure is not 
strictly necessary, though, since the problem could be solved by the 
considerably cheaper constraint propagation algorithm. 

Although many applications may be able to restrict their interval 
temporal reasoning to the tractable fragment of the interval algebra, 
some applications may not. One program that requires the full 

interval algebra is the planning system of Allen and Koomen (19831 
that we referred to above. In this system, actions are modeled with 
intervals. For example, to declare that two actions are non- 
overlapping, one asserts 

ACT, (BEFORE MEETS MET-BY AFTER) ACT, 

As we just showed, this kind of assertion falls outside of the 
tractable fragment of the interval algebra. In a planner with this 
architecture, this representation problem can be dealt with either by 
invoking an exponential temporal reasoner, or by bringing to bear 
planning-specific knowledge about the ordering of actions. 

Consequences of These Results 
Increasingly, the tools of knowledge representation are being put 

to use in practical systems. For these systems, it is often crucial that 
the representation components be computationally efficient. This 
has prompted the Artificial Intelligence community to start taking 
seriously the performance of Al algorithms. The present paper, by 
considering critically the computational characteristics of several 
temporal representations, follows this recent trend. 

What lessons may we learn from analyses such as this? Of 
immediate benefit is an understanding of the computational 
advantages and disadvantages of different representation 
languages. This permits informed decisions as to how the 
representation components of application systems should be 
structured. We can better understand when to use the power of 
general representations, and when to set these general tools aside in 
favor of more application-specific reasoners. 

A close scrutiny of the ongoing achievements of Artificial 
Intelligence enables a better understanding of the nature of Al 
methods. This process is crucial for the maturation of our field. 

KNOWLEDGE REPRESENTATION / 38 1 



Appendix: Algebraic Operations in the Point Algebra 
Addition and multiplication are defined in the point algebra by the 

two tables in Figure 7. These operations both have constant-time 
implementations if the relation vectors between time points are 
encoded as bit strings. With this encoding, both operations can be 
performed by simple lookups in two-dimensional (8 x 8) arrays. 
Alternatively, addition can be performed with an even simpler 3-bit 
logical AND operation. 

[Allen 831 

+ I < <= > >= = -= ? I 
---+---+---+---+---+---+---+---+ 

<I<l<lolclol<l<l 
+---+---+---+---+---+---+---+ 

<=I < 1 <=I 0 1 = 1 = 1 <I <=I 
+--- +---+---+---+---t---+---+ 

>lclol>l>lol~l>l 
+---+---+---+---+---+---+---+ 

>=I 0 1 = 1 > 1 >=I = 1 > 1 >=I 
+---+---+---+---+---+---+---+ 

=lol=lol=l=lol=t 
+--- +---+---+---+---+---+---+ 

-=I < 1 < I > 1 > 1 0 1 -=I -=I 
+---+---+---+---+---+---+---+ 

? 1 < 1 <=I > 1 >=I = 1 -=I ? 1 
---+---+---+---t---+---+---+---+ 

[Allen 841 

[Allen & Hayes 85]Allen, J. F. and Hayes, P. J. 
A Common-Sense Theory of Time. 
In Proceedings of the Ninth International Joint 

Conference on Artificial Intelligence, pages 
528-531. The International Joint Conference 
on Artificial Intelligence (IJCAI), Los Angeles, 
CA, August, 1985. 

[Allen & Koomen 831 

x I < <= > >= = as= ? I 
--- +a-- +---+---+---+---+---+---+ 
<1<1<1?1?1<1?1?1 

+---+---+---+---+---t---+---t 
<=I < 1 <=I ? 1 ? 1 <=I ? 1 ? 1 

+--- +---+---+---+---+---+---+ 

>l?l?l>l>l>l?l?l 
+--- +---+---+---+---+---+---+ 

>=I ? 1 ? 1 > 1 >=I >=I ? 1 ? 1 
+---+---+---+---+---+---+---+ 

= 1 < 1 <=I > 1 >=I = 1 -=I ? 1 
+--- +---+---+---+---+---+---+ 

C”= I ? I ? I ? I ? I -=I ? I ? I 
+---+---+---+---t---+---+---+ 

?1?1?1?1?~?1?~?~ 
---+---+---f---t---+---+---+---+ 

[Fikes & Nilsson 711 
Fikes, R., and Nilsson, N.J. 
STRIPS: A new approach to the application of 

theorem proving to problem solving. 
Artificial Intelligence 2:189-208, 1971. 

[Malik & Binford 831 

Key to symbols: [Schmolze 861 

0 is () , the null vector 
< is (PRECEDES) 
<= is (PRECEDES SAME) 
> is (FOLLOWS) 
>= is (SAME FOLLOWS) 
= is (SAME) 
-= is (PRECEDES FOLLOWS) 
? is (PRECEDES SAME FOLLOWS) 

Figure 7: Addition and multiplication in the time point algebra 

[Simmons 831 

References 

Allen, J. F. 
Maintaining Knowledge About Temporal Intervals. 
Communications of the ACM 26(11):832-843, 

November, 1983. 

Allen, J. F. 
Towards a General Theory of Action and Time. 
Artificial intelligence 2312):123-l 54, 1984. 

Allen, James F., and Koomen, Johannes A. 
Planning Using a Temporal World Model. 
In Proceedings of the Eighth International Joint 

Conference on Artificial Intelligence, pages 
741-747. The International Joint Conference 
on Artificial Intelligence (IJCAI), Karlsruhe, 
W. Germany, August, 1983. 

Malik, J. and Binford, T. 0. 
Reasoning in Time and Space. 
In Proceedings of the Eighth Int’i. Joint 

Conference on Artificial Intelligence, pages 
343-345. The International Joint Conference 
on Artificial Intelligence (IJCAI), Karlsruhe, 
W. Germany, August, 1983. 

Schmolze, J. G. 
Physics for Robots: Representing Everyday 

Physics for Robot Planning. 
PhD thesis, The University of Massachusetts, 

Amherst, 1986. 

Simmons, R. G. 
The Use of Qualitative and Quantitative 

Simulations. 
In Proceedings of the Third National Conference 

on Artificial Intelligence (AAAI-83). The 
American Association for Artificial Intelligence, 
Washington, D.C., August, 1983. 

[Valdes-Perez 861 Valdes-Perez, R. E. 
Spatio-Temporal Reasoning and Linear 

Inequalities. 
1986. 
Unpublished A.1 Memo, Massachusetts Institute of 

Technology Artificial Intelligence Laboratory. 

382 / SCIENCE 


