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ABSTRACT 

The mathematical fixed point theories of 
nonmonotonic reasoning are examined and compared 
to a commonsense theory of nonmonotonic reasoning 
which models our intuitive ability to reason about 
defaults. It is shown that all of the known 
problems of the fixed point theories are solved by 
the commonsense theory. The concepts of this 
commonsense theory do not involve mathematical 
fixed points, but instead are explicitly defined 
in a monotonic modal quantificational logic which 
captures the modal notion of logical truth. 

IINTRODUCTION 

A number of recent papers [McDermott & Doyle, 
McDermott, Moore, and Reiter] have attempted to 
formalize the commonsense notion of something 
being possible with respect to what is assumed. 
All these papers have been based on the 
mathematical theory of fixed points. For example, 
[McDermott & Doyle] describes a rather baroque 
theory of nonmonotonicity in which sentences such 
as 'A are discovered to be theorems of a system by 
determining if 'A is in the intersection of 
possibly infinite numbers of sets which are the 
fixed points of the theorems generated by applying 
inference rules to axioms and possibility 
statements in all possible ways. Explicitly if K 
is the set of axioms it must be determined 
whether: 

('A is in the (intersection of all S such that 
(S is a fixed point of K))) 

where: 
(S is a fixed point of K) iff S = 

(Theorems of (union K 
{'(,P is possible with respect 

to what is assumed): 
P is not in S})). 

The main problem with such "mathematical fixed 
point" theories of nonmonotonicity is that even if 
the theorems of these theories were in accord with 
our primitive intuitions (which they are not as we 
shall see in section 3) and even if deductions 
could be carried out in such theories (and this is 
not likely since they inherently involve proofs by 
mathematical induction over both the classical 
theorem generation process and the process of 
generating sentences) by no stretch of the 
imagination would those deductions reflect our 

of Kansas 
Kansas 

ience 

commonsense understanding of the concept of 
something being possible with respect to what is 
assumed. For what after all have intersections of 
infinite sets, mathematical fixed points, infinite 
sets of theorems generated by formalized deduction 
procedures, mathematical induction over formalized 
deduction procedures, or even formalized deduction 
procedures themselves to do with commonsense 
arguments about nonmonotonicity (such as for 
example the argument presented in section 2 
below)? In our opinion, commonsense nonmonotonic 
arguments do not involve such concepts, at any 
conscious level of human reasoning, and therefore 
to try to explain such concepts in that 
terminology is an extraordinary perversion of 
language that is likely to lead only to 
unintuitive theories. The unintuitiveness of 
these fixed point theories is in fact recognized 
by some of the very proponents of these theories 
although they tend to view said unintuitiveness as 
an intrinsic property of nonmonotonic reasoning 
rather than as a mere artifact of their particular 
theories. For example, [McDermott] states "AS 
must be clear to everyone by now, using defaults 
in reasoning is not a simple matter of 
'commonsense', but is computationally impossible 
to perform without error" and "we must attempt 
another wrenching of existing intuitions." 
Generally, we suggest that the problems with these 
fixed point theories is a consequence of trying to 
model commonsense reasoning by semantic analysis 
rather than by developing a calculus which 
directly models that commonsense reasoning. 

We briefly describe our commonsense theory on 
nonmonotonicity in section 2 and then compare it 
to the fixed point theories in section 3. 

II THE CO- 

The basic idea of our commonsense theory of 
nonmonotonicity is that nonmonotonicity is already 
encompassed in the normal intensional logic of 
everyday commonsense reasoning and can be 
explained precisely in that terminology. 

For example, a knowledge base consisting of a 
simple default axiom expressing that a particular 
bird flies whenever that bird flies is possible 
with respect to what is assumed is stated as: 

(that which is assumed is 
(if (A is possible with respect 

to what is assumed) then A)) 
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where A stands for the proposition that that 
particular bird flies. 

Reflection on the meaning of this 
knowledgebase leads immediately to the conclusion 
that either A is logically possible and the 
knowledgebase is synonymous to A, or A is not 
logically possible and the knowledgebase is 
synonymous to logical truth. This conclusion is 
obtained by simple case analysis: for either A is 
possible with respect to what is assumed or it is 
not. If A is possible with respect to what is 
assumed then, since (if truth then A) is just A, 
that which is assumed is indeed A. Since that 
which is assumed is A, A is possible with respect 
to what is assumed only if A is logically 
possible. On the other hand, if A is not possible 
with respect to what is assumed then since falsity 
implies A is just truth, that which is assumed is 
truth. Since that which is assumed is truth, A is 
not possible with respect to what is assumed only 
if A is not logically possible. Thus if it is 
further assumed that A is logically possible, then 
it follows that the knowledgebase is synonymous to 
A itself. The nonmonotonic nature of these 
expressions becomes apparent if an additional 
proposition that that particular bird does not fly 
is added to the knowledgebase: 

(that which is assumed is 
(and (not A) 

(if (A is possible with respect 
to what is assumed) then A))) 

Reflection on this new knowledgebase leads 
immediately to the conclusion that it is 
synonymous to not A. This conclusion is again 
obtained by simple case analysis: for if A is 
possible with respect to what is assumed then, 
since (if truth then A) is just A, that which is 
assumed is indeed ((not A)and A) which is falsity. 
Since that which is assumed is falsity A is 
possible with respect to what is assumed only if A 
and falsity is logically possible which it is not. 
Thus A is not possible with respect to what is 
assumed. On the other hand, if A is not possible 
with respect to what is assumed then, since 
falsity implies A is just truth, that which is 
assumed is just not A. Since that which is 
assumed is (not A), A is not possible with respect 
to what is assumed only if A and (not A) is not 
logically possible which is the case. Thus it 
follows that the knowledgebase is synonymous to 
(NOT A). 

Therefore, whereas the original knowledgebase 
was synonymous to A the new knowledgebase, 
obtained by adding (not A), is synonymous, not to 
falsity, but to (not A) itself. 

These simple intuitive nonmonotonic EirgUxnentS 

involve logical concepts such as not, implies, 
truth, falsity, logical possibility, possibility 
with respect to some assumed knowledgebase, and 
synonymity to a knowledgebase. The concepts: 
not, implies, truth (i.e. T), and falsity (i.e. 
NIL) are all concepts of (extensional) 
quantificational logic and are well known. The 
remaining concepts: logical possibility, poss- 
ibility with respect to something, and synonymity 
of two things can be defined in a very simple 
modal logic extension of quantificational logic, 

which we call Z[Brown 1,2,3,41. The axiom- 
atization of the modal logic Z is described in 
detail below. But briefly, it consists of 
(extensional quantificational logic) plus the 
intensional concept of something being logically 
true written as the unary predicate: (LT P) . The 
concept of a proposition P being logicaly possible 
and the concept of two propositions being 
synonymous are then defined as: 

(POS P) = (NOT(LT(NOT P))) P is logically possible 
(SYN P Q) = (LT(IFF P Q) 1 P is synonymous to Q 

The above knowledgebases and arguments can be 
formalized in the modal logic Z quite simply by 
letting some letter such as K stand for the 
knowledgebase under discussion. The idiom "that 
which is assumed is X" can then be rendered to say 
that K is synonymous to X, and the idiom "X is 
possible with respect to what is assumed" can be 
rendered to say that K and X is possible: 

(that which is assumed is X) = (SYN K X) 
(X is possible with respect 

to what is assumed) = (POS(AND K X)) 

These two idioms are indexial symbols 
referring implicitly to some particular 
knowledgebase K under discussion. This 
knowledgebase referenced by the (X is possible 
with respect to what is assumed) idiom is always 
the meaning of the symbol generated by the 
enclosing (that which is assumed is X) idiom. 
Each occurrence of the (that which is assumed is 
X) idiom always generates a symbol (unique to the 
theory being discussed) to stand for the database 
under discussion. These knowledgebases have been 
expressed solely in terms of the modal 
quantificational logic Z. In particular, the 
nonmonotonic concepts were explicitly defined in 
this logic. The intuitive arguments about the 
meaning of these nonmonotonic knowledgebases can 
be carried out solely in the modal 
quantificational logic Z. Most importantly, our 
commonsense understanding and reasoning about 
nonmonotonicity is directly represented by the 
inference steps of this formal theory. Therefore, 
it is clear that nonmonotonic reasoning needs no 
special axioms or rules of inference because it is 
already inherent in the normal intensional logic 

of everyday commonsense reasoning as modeled by 
the modal quantificational logic Z. It remains 
only to axiomatize the logic Z. 

Our theory Z of commonsense intensional 
reasoning is a simple modal logic ['Lewis] that 
captures the notion of logical truth. The symbols 
of this modal logic consist of the symbols of 
(extensional) quantificational logic plus the 
primitive modal symbolism: (LT p) which is truth 
whenever the proposition p is logically true. 

The axioms and inference rules of this modal 
logic include the axioms and inference rules of 
(extensional) quantificational logic similar to 
that used by Frege in Begriffsschrift [Frege], 
plus the following inference rule and axioms about 
the concept of logical truth. 

RO: from 
The Modal 

p infer (LT P) 
Logic Z 
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Al: (IMPLY(LT P) P) 
A2: (IMPLY(LT(IMPLY P Q)) (IMPLY(LT P)(LT Q))) 
A3: (OR(LT P) (LT(NOT(LT P)))) 
A4: (IMPLY(ALL Q(IMPLY(WORLD Q) 

(LT(IMPLY Q E')))) 
(LT PI 1 

A5: (ALL S(POS(meaning of the generator 
subset S))) 

The inference rule RO means that p is 
logically true may be inferred from the assertion 
of p to implicitly be logically true. The 
consequence of this rule is that a proposition P 
may be asserted to be logically true by writing 
just: 

P 
and that a proposition P is asserted to be true in 
a particular world or state of affairs W by 
writing: 

(LT(IMPLY w P)) 
The axiom Al means that if P is logically true 
then P. Axiom A2 means that if it is logically 
true that P implies Q then if P is logically true 
then Q is logically true. Axiom A3 means that P 
is logically true or it is logically true that P 
is not logically true. The inference rule RO and 
the axioms Al, A2 and A3 constitute an S5 modal 
logic. A good introduction to modal logic in 
general and in particular to the properties of the 
S5 modal logic is given in [Hughes and Cresswell]. 
Minor variations of the axioms Al, A2, and A3 were 
shown in [Carnapl to hold for the modal concept of 
logical truth. We believe that the additional 
axioms, namely A4 and A5, are needed in order to 
precisely capture the notion of logical truth. 

The axiom A4 states that a proposition is 
logically true if it is true in all worlds. We say 
that a proposition P is a world iff P is possible 
and P is complete, that P is complete iff for all 
Q, P determines Q, that P determines Q iff P 
entails Q or P entails not Q, that P entails Q iff 
it is logically true that P implies Q, and that P 
is possible iff it is not the case that not P is 
logically true. These definitions are given 
below: 

(WORLD P)=df (AND(POS P) (COMPLETE P)) P is a world 
(COMPLETE P) = df (ALL Q(DET P Q)) P is complete 
(DET P Q)= df (OR(ENTAIL P Q) 

(ENTAIL P(NOT Q))) P determines Q 
(ENTAIL P Q) = df (LT(IMPLY P Q)) P entails Q 
(POS P) = df (NOT(LT(NOT P))) P is possible 

Thus a world is a possible proposition which 
for every proposition entails it or its negation. 
The axiom A5 states that the meaning of every 
conjunction of the generated contingent 
propositions or their negations is possible. We 
call this axiom "The Axiom of the Possibility of 
Contingent facts" or simply the "Possibility 
Axiom". The need for this axiom follows from the 
fact that the other axioms of the modal logic do 
not imply certain elementary facts about the 
possibility of conjunctions of distinct possibly 
negated atomic expressions consisting of 
nonlogical symbols. For example, if we have a 
theory formulated in our modal logic which 
contains the nonlogical atomic expression (ON A B) 
then since (ON A B) is not logically true, it 

follows that (NOT(ON A B)) must be possible. Yet 
(POS(NOT(ON A B))) does not follow from these 
other axioms. Likewise, since (NOT(ON A B)) is 
not logically true (ON A B) must be possible. Yet 
(POS(ON A B)) does not follow from the other 
axioms. Thus these contingent propositions (ON A 
B) and (NOT(ON A B)) need to be asserted to be 
possible. There are a number of ways in which 
this may be done and these ways essentially 
correspond to different ways the idiom: (P is a 
meaning combination of the generators) may be 
rendered. In this paper we have chosen a general 
method which is applicable to just about any 
contingent theory one wishes. This rendering is 
given below: 

(meaning of the generator subset S) = df 
(ALL G(IMPLY(GENERATORS G) 

(IFF(S G) (GMEANING G)) )) 
(GMEANING '(p ,Xl...,XN)) df 

(p(GMEAt-iING ~~)...(GMEANING XN)) 
for every contingent symbol p of arity n. 

(GENERATORS) = df (LAMBDA(A) (A is a contingent 
variable free simple sentence)) 

We say that the meaning of the generator subset S 
is the conjunction of the GMEANINGs of every 
generator in S and the negation of the GMEANINGS 
of all the generators not in S. The generator 
meaning of any expression beginning with a 
contingent symbol 'p is p of the GMEANING of its 
arguments. The generators are simply any 
contingent variable free atomic sentences we wish 
to use. 

One of the most striking features of 
nonmonotonic knowledgebases is that they are 
sometimes described in terms of themselves. Such 
knowledgebases are said to be reflexive[Hayes]. 
For example, the knowledgebase K purportedly 
defined by the axiom: 

(SYN K (IMPLY(POS(AND K A))A) ) 
is defined as being synonymous to the default: 
(IMPLY(POS(AND K A))A) which in turn is defined 
in terms of K. Thus this purported definition of 
K is not actually a definition at all but is 
merely an axiom describing the properties 
possessed by any knowledgebase K satisfying this 
axiom. In general, a purported definition of a 
knowledgebase: 

(SYN K(f K)) 
will be implied by zero or more explicit 
definitions of the form: 

(SYN K g) 
where K does not occur in g. The explicit 
definitions which imply a purported definition of 
a knowledgebase are called the solutions of that 
purported definition. In general a purported 
definition may have zero or more solutions. For 
example, (SYN K(NOT K)) is (LT(IFF K(NOT K))) 
which is (LT NIL) which is NIL and therefore has 
no solutions, and (SYN K K) is (LT(IFF K K) 1 
which is (LT T) which is T and therefore has all 
solutions. Finally, (SYN K G) where K does not 
occur in G is an explicit definition of K and 
therefore has only one solution namely itself. 

Because K is the knowledgebase under 
discussion, it is not itself a contingent 
proposition of that knowledgebase. Thus 'K is not 
a GENERATOR and the possibility axiom A5 will not 
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apply to it. 
As an example of how the modal logic Z is 

used, we carry out in Z a slightly more general 
argument similar to the unformalized nonmonotonic 
arguments described above. This argument is about 
a knowledgebase K consisting of (a conjunction of) 
axioms G not containing K plus one additional 
standard default axiom. A standard default axiom 
is an axiom of the form: 

(IMPLY(POS(AND K A)) (IMPLY B A)) 
This structure contains as instances default 
axioms such as: 
(IMPLY(POS(AND K(CAN-FLY ENTERPRISE))) 

(IMPLY(IS-SPACE-SCHUTTLE ENTERPRISE) 
(CAN-FLY ENTERPRISE))) 

T1:A knowledgebase containing exactly one 
variable free standard default has precisely one 
solution. 
(IFF(SYN K(AND G(IMPLY(POS(AND K A))(IMPLY B A)))) 

(SYN K(AND G(IMPLY(POS(AND G A))(IMPLY B A))))) 
proof 

(SYN K(AND G(IMPLY(POS(AND K A))(IMPLY B A)))) 
(IF(POS(AND K A)) 

(SYN K(AND G(IMPLY(AND B T)A))) 
(SYN K(AND G(IMPLY(AND B NIL)A))) ) 

(IF(POS(AND K A)) 
(SYN K(AND G(IMPLY B A))) 
(SYN K G)) 

(OR(AND(POS(AND K A))(SYN K(AND G(IMPLY B A)))) 
(AND (NOT(POS(AND K A)))(SYN K G)) ) 

(OR(AND(POS(AND G(IMPLY B A)A)) 
(SYN K(AND G(IMPLY B A)))) 

(AND(NOT(POS(AND G A))) (SYN K G))) 
(OR(AND(POS(AND G A))(SYN K(AND G(IMPLY B A)))) 

(AND(NOT(POS(AND G A))) (SYN K G)) ) 
(IF(POS(AND G A)) 

(SYN K(AND G(IMPLY B A))) 
(SYN K G)) 

(SYN K(IF(POS(AND G A))(AND G(IMPLY B A))G)) 
(SYN K(AND G(IF(POS(AND G A))(IMPLY B A)T))) 
(SYN K(AND G(IMPLY(E'OS(AND G A))(IMPLY B A)))) 

The solutions to the two purported definitions of 
the informal arguments given at the start of this 
section are obtained from theorem Tl as 
corollaries for if G is T, B is T, and A is 
possible it follows that: 
(IFF(SYN K(IMPLY(POS(AND K A))A)) 

(SYN K A)) 
and if G is (NOT A) and B is T it follows that: 
(IFF(SYN K(AND(NOT A)(IMPLY(POS(AND K A))A))) 

(SYN K(NOT A))) 
We now compare our commonsense theory of 
nonmonotonicity to the fixed point theories. 

In this section we examine four fixed point 
theories: [McDermott & Doyle, McDermott, Moore, 
and Reiter] and comment on their modelling of our 
commonsense intuitions and on their computational 
tractability. 

[Reiter! presents a theory of nonmonotonicity 
called "A Logic for Default Reasoning" which is 
essentially a first order logic supplemented with 
additional inference rules of the form: 

from (A X),(m(Bl X)),...,(m(Bn X)) infer (C X) 

where *‘m*’ is not a symbol of the theory, but like 
"infer" is merely part of the structural syntax of 
the inference rule itself. This rule is intended 
to mean that if A holds and all Bs are possible 
then C may be inferred. The problem with this 
default theory is that even though it uses the 
concept of being possible with respect to what is 
assumed, it does not allow the inference of any 
laws at all about the concept of being possible 
with respect to what is assumed because the 
possibility symbol "m" is not part of the formal 
language. Thus, although there is a certain 
pragmatic utility to this theory, it does not 
actually axiomatize the concept M of being 
possible with respect to what is assumed. 

[McDermott & Doyle] describes a nonmonotonic 
logic which was intended to capture the notion of 
a sentence being consistent with the sentences in 
a given knowledgebase: "We first define a 
standard language of discourse including the 
nonmonotonic modality M ('consistent')." Since 
the intended meaning of their symbol M is 
essentially our idiom (that which is possible with 
respect to what is assumed) if the knowledgebase 
is K the intended meaning of the notion M could be 
defined in our logic as: 

(M X) = df (POS(AND K X)) 
There are two problems with this theory. First, 
as pointed out in [McDermott & Doyle] it is 
computationally intractible: "there seems to be no 
procedure which will tell you when something is a 
theorem" and in fact no proof procedure is given 
for even a first order quantificational 
nonmonotonic logic. Second, again as is pointed 
out in [McDermott t Doyle] this theory is too weak 
to actually capture the notion of consistency with 
a knowledgebase: *'Unfortunately, the weakness of 
the logic manifests itself in some disconcerting 
exceptional cases which indicate that the logic 
fails to capture a coherent notion of 
consistency". All these disconcerting cases are 
solved in our theory. 

The first such problem is that the 
knowledgebase K consisting of the expression: 

(AND(M A) (NOT A)) 
is not synonymous to falsity in their logic even 
though intuitively it should be since (NOT A) is 
in K and therefore (AND K A) is contradictory. 
This problem is solved in our theory of 
nonmonotonicity since: 

(IFF(SYN K(AND G(POS(AND K A))(NOT A))) 
(SYN K NIL)) 

A second problem with their logic, as they point 
out, is that (M A) does not follow from (M(AND A 
B) ), even though intuitively it should. This 
problem is solved in our theory since: 

(IMPLY(POS(AND A B)) (POS A)) 
(IMPLY(NOT(LT(NOT(AND A B)))) (NOT(LT(NOT A)))) 
(IMPLY(LT(NOT A)) (LT(NOT(AND A B)))) 

which by A2 of the modal logic Z is implied by: 
(LT(IMPLY(NOT A) (NOTlAND A B)))) 
T 

McDermott and Doyle consider their logic to have a 
third problem, namely that a theory consisting of 
* (AND(IMPLY(M A)B) (NOT B)) where 'A and 'B are 
simple sentences (ie. GENERATORS in our 
terminology) is incoherent because it has no fixed 
point. However, intuitively, whether the 
knowledgebase consisting of this axiom has a 
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solution or not depends precisely on whether (AND 
A(NOT B)) is logically possible or not; for if 
(AND A(NOT B)) is not logically possible, then it 
is not possible with respect to any K, and 
therefore K is synonymous to (NOT B) and if it is 
logically possible then B is in K and therefore 
the false proposition (AND A(NOT B)B) would have 
to be logically possible (which it cannot be) for 
there to be a solution. Since 'A and 'B are 
assumed to be generators, it follows that (AND 
A(NOT B)) is possible. Therefore intuitively such 
a knowledgebase K should not have any solutions. 
We therefore do not consider this example to be a 
defect of their theory. This same point is made 
in[Moore21 where this example was analyzed from 
the perspective of Stalnaker's [Moore21 theory. 
This example does, however, illustrate that the 
theory in [McDermott&Doyle] only applies to 
generators, for if A were falsity or were 
synonymous to B then there would be a solution, 
namely that K is synonymous to (NOT B). 
Therefore: 

(IFF(SYN K(AND(IMPLY(POS(AND K A))B) (NOT B))) 
(AND(NOT(POS(AND(NOT B)A))) (SYN K(NOT B))) ) 

Thus if 'A and 'B are assumed to be generators, it 
follows that 

(IFF(SYN K(AND(IMPLY(POS(AND K A))B)(NOT B))) 
NIL) 

[McDermott] makes a second attempt to find a 
coherent theory of nonmonotonicity. This attempt 
is based essentially on the idea of supplementing 
the theorem generation process with the rules of 
inference and axioms of a modal logic. Because it 
is based on the same general set theoretic fixed 
point constructions as in [McDermott & Doyle] this 
new theory is just as computationally intractible. 
The "necessity operator": L of these nonmonotonic 
modal logics intuitively mean that something is 
entailed by what is assumed (i.e. that the 
negation of that thing is not possible with 
respect to what is assumed). Thus the intuitive 
meaning of L could be captured in our modal logic 
Z by the definition: 

(L A) = df (ENTAIL K A) (i.e (NOT(M(NOT A)))) 
Three modal logics: T, 54, and 55 are investigated 
because McDermott does not believe any one is 
superior to the others: "The reason why I study a 
variety of modal systems is that they are all 
closely related, and no one is obviously better 
than the others." This statement is entirely 
correct because none of these three modal logic 
extensions of the nonmonotonic theory captures the 
intuitive notion of being possible with respect to 
what is assumed. The problem with the first two 
logics: T and 54 is that they are too weak. For 
example, one problem with [McDermottl's 
nonmonotonic S4, as is therein pointed out, is 
that a knowledgebase K consisting of the 
expression: 

'(IMPLY(L(M A)) (NOT A)) 
where *A is a simple sentence (i.e. a GENERATOR in 
our terminology) is not contradictory although 
intuitively it should be. For if (L(M A)) is the 
case then the knowledgebase is synonymous to (NOT 
A) and (M A) is contradictory making (L(M A) 1 
contradictory. And if (L(M A)) is not the case 
then the knowledgebase is synonymous to T and 
since (L(MT)) is the case a contradiction results. 
This problem is solved in our theory of 

nonmonotonicity since: 
(IFF(SYN K(IMPLY(LT(IMPLY K(POS(AND K A)))) 

(NOT A) 1) 
(OR(AND(SYN A T) (SYN K NIL)) 

(AND(SYN A NIL) (SYN K T))) ) 
Thus, when 'A is a generator there are no 
solutions: 
(IFF(SYN K(IMPLY(LT(IMPLY K(POS(AND K A)))) 

(NOT A) 1) 
NIL) 

Thus, even Nonmonotonic S4 (and since T is weaker 
than S4 it too) is too weak to capture the notion 
of being possible with respect to what is 
assumed. There remains only the question whether 
[McDermottl's nonmonotonic S5 captures the notion 
of being possible with respect to what is assumed. 
One problem with this nonmonotonic 55 logic, as is 
therein pointed out, is that a knowledgebase 
consisting of the simple default: 

(IMPLY(M A)A) 
has a fixed point containing (NOT A). This 
bizarre result follows from the fact that in 
McDermott's theory the additional default: 

'(IMPLY(M(NOT A)) (NOT A)) 
which is logically derivable in the knowledgebase 
from the first default is(in our terminology) 
incorrectly assumed to be part of what entails the 
knowledgebase. Thus, in McDermott's S5 logic a 
knowledgebase containing a default always (in our 
terminology) includes in its purported definition 
the opposite default thus giving the situation: 
(IFF(SYN K(AND(IMPLY(POS(AND K A))A) 

(IMPLY(POS(AND K(NOT A))) (NOT A)))) 
(OR(SYN K A) (SYN K(NOT A))) ) 

which states that a knowledgebase with two 
opposite defaults has two solutions A and (NOT 
A) . The unintuitiveness of having a default 
actually default to the opposite of what is 
specified is recognized by McDermott: "Surely the 
logic should draw some distinction between a 
default and its negation if it is to be a logic of 
defaults at all." (In fact [McDermottl's 
nonmonotonic S5 logic is so bizarre that as is 
pointed out therein it is not nonmonotonic after 
all as its theorems are just those of monotonic S5 
modal logic.) 

This problem of defaults does not appear in our 
theory of nonmonotonicity because we do not make 
the erronious assumption that the derived default 
is part of what entails the knowledgebase K: 
(SYN K(IMPLY(POS(AND K A))A)) 
Thus, even though either default is equivalent in 
the knowledgebase K: 
(IFF(ENTAIL K(IMPLY(POS(AND K A))A)) 

(ENTAIL K(IMPLY(POS(AND K(NOT A))) (NOT A))) ) 
and therefore that the first default is equivalent 
to the conjunction of two: 
(IFF(ENTAIL K(IMPLY(POS(AND K A))A)) 

(ENTAIL K(AND(IMPLY(POS (AND K A))A) 
(IMPLY(POS(AND K(NOT A))) 

(NOT A))))) 
and that K entails the two defaults it does not 
follow that K is synonymous to the two defaults: 
(SYN K(AND(IMPLY(POS(AND K A))A) 

(IMPLY(POS(AND K(NOT A)))(NOT A)))) 
is false because the two defaults do not entail K: 
(ENTAIL(AND(IMPLY(POS(AND K A))A) 

(IMPLY(POS(AND K(NOT A) )) (NOT A))) 
K) is false. 
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These facts are verified by theorem Tl which 
proves that a knowledgebase 
(SYN K(IMPLY(POS(AND K A))A)) 
consisting of one default(even though the opposite 
default is entailed by it) has only one solution, 
namely A. 

Another problem with [McDermottsl's nonmonotonic 
S5, as [Moore21 points out is that for every A, 
the 55 axiom (IMPLY(L A)A) causes every know- 
ledgebase to have (in the absence of information 
to the contrary) a fixed point which contains A. 
This is not a problem in our system because again 

quantified laws such as: 
'(ALL X(IMPLY(L(P X)) (P X))) 
'(ALL X(IMPLY(L(IMPLY(P X)(Q X))) 

(IMPLY(L(P X))(L(Q X1)))) 
'(ALL X(OR(L(P X)) (NOT(L(NOT(P X))))) 

are not theorems of autoepistemic logic. One 
might try to repair this problem of autoepistemic 
logic by adding the axioms of S5. However, this 
does not solve the problem, because when the 
axiom: 

'(IMPLY(L PIP) 
is added to autoepistemic logic, just as in 
[McDermott]'s S5 nonmonotonic logic, the result is 
that there is a fixed point of every knowledgebase 
containing P. For this reason [Moore] suggests 
that only the axioms of a weaker modal logic than 
S5 which does not include * (IMPLY(L PIP) be added. 
The problem with this is that the excluded axiom 
'(IMPLY(L P)P) where 'P is a variable is 
intuitively true of the concept of being possible 
with respect to what is assumed, and therefore 
should be deducible as a theorem. Moore tries to 
justify his system's failure to include this axiom 
by saying that his system tries to capture the 
notion M of something being possible with respect 

to what is "believed" by an ideally rational agent 
and the concept L of something being entailed by 
what is believed: "The problem is that all of 
these logics also contain the schema LP-BP, which 
means that, if the agent believes P then P is 
true, but this is not generally true". Moore then 
essentially argues that since, as it is well 
known, this law fails for the notion of belief 
when this sentence is asserted as being true in 
the real world it must be incorrect to assert it 
generally. (The other S5 modal laws hold for the 
concept of belief as can readily be proven in our 
modal logic Z when "believes" is defined to mean 
that which is entailed by one's explicit beliefs.) 
The problem with Moore's analysis is that it 
confuses the real world and the agent's belief 
world when it states that the second P in "LP->P" 
means P is true; for in autoepistemic logic the 
assertion of a sentence is a statement that that 
sentence is believed, not that it is true. 
Therefore, the correct rendering of this belief 
interpretation is: 

(That which is believed is: 
(if (P is believed) then P)) 

which intuitively is true. 
These problems are solved in our theory of 

nonmonotonicity, because all the axioms and 
inference rules of the concept of being possible 
with respect to what is assumed, are theorems of 
the modal logic Z. An interesting number of these 
theorems are listed below. (LTK p) is interpreted 
to 
The 

mean that p is entailed by what is assumed. 
in the purported definit ion represents the 

conjunction 
knowledgebase. 

of axioms asserted into 

Interpretation in Z of the Modal Logic KZ 
TKR~: (IMPLY (KTRUE P) (KTRUE (LTK PI)) 
TKAl: (KTRUE (IMPLY(LTK P)P))) 
TKA2: (KTRUE (IMPLY(LTK(IMPLY P Q)) 

(IMPLY(LTK P) (LTK Q)))) 
TKA3: (KTRUE (OR(LTK P) (LTK(NOT(LTK P))))) 
TKA4: (KTRUE (IMPLY (ALL Q(IMPLY(WORLDK Q) 

(LTK(IMPLY Q P)))) 
(LTK PI)) 

TKA5: (ALL S(IMPLY(ENTAIL(meaning of the generator 
subset S)K) 

(KTRUE(POSK(meaning of the 
generator subset S))))) 

PURPORTED-DEFINITION: (SYNK . ..) 

DEF 
(WORLDK W) df (AND(POSK W) (COMPLETEK W)) 
(COMPLETEK W) df (ALL Q(DETK W Q)) 
(DETK P Q) df (OR(ENTAILK P Q) (ENTAILK P(NOTQ))) 
(ENTAILK P Q) df (LTK(IMPLY P Q)) 
(POSK P) df (NOT(LTK(NOT P))) 
(LTK P) df (LT(IMPLY K P)) 
(SYNK P) df (SYN K P) 
(KTRUE P) df (LT(IMPLY K P)) 

We now answer the general question which 
[McDermott&Doyle,McDermott,and Moore] attempted to 
answer, namely, from the viewpoint of asserting 
things into a knowledgebase, what precisely are 
the laws which capture the notion of something 
being possible with respect to a knowledgebase. 
Here they are: 
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KRO: from p infer (LTK p) 
KAl: (IMPLY(LTK P)P) 
KA2: (IMPLY(LTK(IMPLY P Q)) 

(IMPLY(LTK P) (LTK Q))) 
KA3: (OR(LTK P) (LTK(NOT(LTK P)))) 
KA4: (IMPLY(ALL Q(IMPLY(WORLDK Q) 

(LTK(IMPLY Q P)))) 
(LTK P)) 

KA5: for the meaning of all the generator 
subsets s which entail K: 
(POSK(meaning of the generator subset S)) 

PURPORTED-DEFINITION: . . . 
Reflection: (entail . . . K) 

where . . . is the conjunction of axioms actually 
being asserted into the knowledgebase. It should 
be noted that the notion of entailment is 
precisely defined in the modal logic Z and 
therefore KA5 does not involve a circular 
definition as do the fixed point theories. An 
examination of these laws, ironically, shows that 
the problem with [McDermott&Doyle, McDermott,and 
Moore] is not with choice of modal laws such as 
KAl,KA2, KA3, and KA4, since all these laws are 
true, but rather with the basic fixed point 
construction itself which is (incorrectly) far 
stronger than KA5 and the reflection pOrtiOn Of 

the purported definition. 

IV CONCLUSIU 
Any scientific theory must be judged by its 

correctness (Does it predict all the phenomena so 
far examined or are there counterexamples?), by 
its experimental feasibility (Is it possible to 
make predictions from the theory, or are the 
deductions so computationally intractable that it 
is practically impossible to determine the 
consequences of the theory?), and by its 
generality (Does it apply to just the current 
problem at hand or does it also provide solutions 
to other radically different problems). By these 
criteria, unlike the fixed point theories, our 
theory of nonmonotonicity based on the modal logic 
Z fairs extremely well. For, indeed, first, we 
have not found any phenomena predicted by our 
theory which clashes with our primitive intuitions 
and in fact even after examining the example 
problems of four other theories of 
nonmonotonicity, we have not found any example 
therein described for which our theory does not 
give the intuitively correct result. Secondly, 
unlike the fixed point theories, our theory of 
nonmonotonicity is computationally tractable in 
that deductions can be made from it merely by 
deducing theorems in the modal quantificational 
logic Z (which is monotonic) in the traditional 
manner by applying inference rules to axioms and 
previously deduced theorems. Finally, unlike the 
fixed point theories, our theory of nonmon- 
otonicity which is essentially nothing more than 
the axioms and inference rules of the modal 
quantificational logic Z is a quite general theory 
applicable to many problem areas. For example it 
has been used to define a wide range of 
intensional concepts [Brown 4,5] such as those 
found in doxastic logic, epistemic logic, and 
deontic logic. 
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