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Abstract

Circumscription is the minimization of predicates
subject to restrictions cxpressed by predicate formulas.
We propose a modified notion of circumscription so that,
instead of being a single minimality condition, it becoines
an “infinite conjunction” of “local” minimality condi-
tions; eacli of these conditions expresses the impossibility
of changing the value of a predicate from true to false at
oune point. We argue that this “pointwise” circumscrip-
tion 1s conceptually simpler than the traditional “global”
approach and, at the same time, leads to generalizations
with the additional flextbility needed in applicatious to
the theory of commonsense reasoning.

1. Introduction

Circumscription (McCarthy 1980, 1986) is logical
minimization, that ;s, the minimization of predicates sub-
ject to restrictions expressed by predicate formulas.

The interpretation ol a predicate symbol in a model
can be described in two ways. One is to represent a k-ary
predicate by a subset of U/%, where {7 is the universe of
the model. This approach identifics a predicate with its
extension. The other possibility is to represent a predi-
cate by a Boolcan-valued function on 7%, These two ap-
proaches are, of course, mathematically equivalent; but
the ntuitions behind them are somcewhat different, and
they suggest different views on what “minimizing a pred-
icate” might mean,

Il a predicate is a set then predicates are ordered by
set inclusion, and it is natural to understand the mini-
mality of a predicate as minumality relative to this order.
A smaller predicate is a stronger predicate. A predicate
salisfying a given coudition is minimal if it cannot be
made stronger without violating the condition. This un-
derstanding of minimality leads to the usual delinition of
circumscription.
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Let us accept now the view of predicates as Boolean-
valued functions, or, in other words, as families of truth
values. Lach predicate is a family of elements of the
ordered set {false,true}. Understanding “smaller” as
“stronger” still makes sense; but now we can also think
of making a predicate smaller at a point £ € U* as chang-
ing its value at that point from true to false. As far as
the values at other points are concerned, we can require,
in the simplest case, that they remain the same; or we
can allow them to change in an arbitrary way; or somne
of them can be required to remain fixed, and the others
allowed to vary.

The new definition of circumscription proposed in
this paper expresses, intuitively, the minimality of a pred-
icate “at every point”. It can be interpreted as an “infi-
nite conjunction” of “local” minimality conditions; each
of these conditions expresses the impossibility of changing
the valuc of a predicate from true to false at one point.
(Formally, this “infinite conjunction” will be represented

by a universal quantifier).

We argue that this “pointwise” approach to circum-
scription is in some ways conceptually simpler than the
traditional “global” approach and, at the same time,
leads to generalizations with the additional flexibility
needed in applications to the theory of commonsense rea-
soning.

Proofs of the mathematical facts stated below will
be published in the full paper.

2. The Basic Casec of Pointwise Circumscription

Let us start with the simplest case of circumscribing
one predicate with all other non-logical constants treated
as parameters. Let A(P) be a sentence containing a pred-
icate constant P. Recall that the (global) circumscription
of P in A(P) is, by delinition, the sccond-order formula

A(P) AVp-(A(p) Ap < P). (1)

Here p is a predicate variable of the same arity as P, and
p < P stands for

Va(pe D Px) A Ve(Pz D pz)



(z is a tuple of object variables). We denote (1) by
Circum( A(P); P).

The pointwise circumscription of P in A(P)is
A(P) AVa-[Pz A AQy(Py Az # ). (2)

Notice that this is a first-order formula. We denote (2)
by Cp(A(P)). A model of (2) is a model of A(P) which
cannot be transformed into another model of A(P) by
changing the value of P from true to false at one point.
The quantifier Yz represents the “infinite conjunction”
mentioned above, and the formula following the quantifier
can be viewed as a minimality condition: it asserts the
minimality of the value of P at point z.

It is easy to check that Circum(A; P) implies Cp(A).
If we assume that all occurences of P in A(P) are posi-
tive then these two formulas are equivalent. This special
case is important, because in standard applications of cir-
cumscription (McCartly 1986) the minimized predicates
usually have no negative occurences in the axioms.

To illustrate the difference between (1) and (2), take
A to be Pa = Pb. Any model with P identically false
satisfies both Circum(A; P) and Cp(A). In addition, any
model of A in which P is true at exactly two points, a
and b, is a model of the pointwise version, but not of the
global one.

3. A Generalization

Even in simple applications to formalizing common-
sceuse knowledge we usually need forms of circumscription
slightly more general than those defined in the previous
section.

Let us start with a formula A(P, Z), where Z is a tu-
ple of predicate and/or function constants. The (global)
circumscription of P in A(P,Z) with Z allowed to vary
is

AP, Z)ANpz-(A(p,z) Ap < P), (3)
where z is a tuple of predicate and/or  function
variables similar to Z. This formula, denoted by
Circum(A(P, Z); P; Z), asscrts that the extension of P
cannot be made smaller even at the price of changing the
interpretations of the symbols included in Z.

The corresponding form of pointwise circumscription

A(P, ZYAVzz-[Pe A AAy(Py Az £ y),2)].  (4)
It will be denoted by Cp(A(P,Z);Z). Because of the

variables z, (4) is, generally, a second-order formula. (4)
is equivalent to (3) if all occurences of £ in A(P, 7) are
positive.

4. Minimizing Several Predicates

In a further generalization of global circumscription
(3), P is a tuple of predicate constants Py,...,P,. The
meaning of Circum(A; P; Z) is given again by (3), with
p standing this time for a tuple of predicate variables
D1,y Pn, and p < P understood as

Vz(p;z O Piz) A V ~Vz(P;z D p;z).
1 i=1

~.

1

This form of joint minimization of several predicates is
called parallel circumscription (to distinguish it from the
case when different members of P are minimized with
different priorities, which is discussed below).

What is the relationship between circumscrib-
ing P,...,P, in parallel and circumscribing each
P;7 1t is easy to show that Circum(A4; P;Z) implies
A, Circum(A; P;; Z). In the important special case when
all occurences of Py,..., P, in A are positive, the converse
also holds; hence, in this case, Circum(4; P; Z) is equiv-
alent to A;Cp,(A;Z). This conjunction asserts that,
whenever one value of one of the predicates Py,..., P,
is changed from true to false, and the interpretation of
Z 1s changed in an arbitrary way, the resulting structure
cannot possibly be a model of A. This formula is the
pointwise counterpart of parallel circumscription; there
is no need to introduce a special definition.

Let us turn now to prioritized circumscription, and
consider, for simplicity, the case of two predicates Py, Pp.
The ciccumseription Circum(A; Py > Pp; Z), which as-
signs a higher priority to the task of minimizing Py, is
defined by the same formula (3), but with p < P inter-
preted lexicographically; for details, sce (Lifschitz 1985).
This circumnscription is equivalent to

Cpl(/‘; PQ,Z)/\CPE(A;Z)

whenever 17, Iy have only positive occurences in A, This
conjunction is the pointwise counterpart of prioritized cir-
cumscription: no value of P; can be changed from true
to false even at the price of changing P, arbitrarily.

5. A Further Generalization

Our next goal is to introduce some more general
forms of pointwise circumscription. We start with a mo-
tivating example.

Consider a simple version of the blocks world, in
which a Dblock can be in only one of two pliaces: cither
on the table or on the floor. We want to describe the
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effect of one particular action, putting block B on the
table. This can be done using two unary predicate con-
stants, ONTABLE, and ONTABLEFE,, which represent
the configurations of blocks before and after the action.
There are two axioms:

~AB 2 > (ONTABLE, « = ONTABLE, z)  (5)

and

ONTABLE; B. (6)

Here AB is the “abnormality” predicate which will be cir-
cumscribed in the conjunction of (5) and (6). The first
axiom expresses what John McCarthy calls the “com-
monsense law of inertia”: normally, objects remain where
they are. This formula exemplifies the use of circumscrip-
tion for solving the frame problem (McCarthy 1986). The
second axiom expresses the basic property of the action
under consideration: in the new coufiguration of blocks,
B is on the table.

What should be varied in the process of minimizing
AB7? The purpose of our axiom set i1s to characterize the
new configuration of blocks; hence it is natural to cir-
cumscribe AB with ONTABLE, allowed to vary. Such

a circumscription (global or pointwise) gives
ABz=(z=BA-ONTABLE, B).

This is exactly what we would intuitively cxpect; the ouly
block which changes its location is B, and this only hap-
pens if it was not on the table prior to the event. It
can be shown that circumscription does not lead to the
same result if ONTABLIEYy and ONTABLE, are both
varied or both fixed; we must trcat ONTABLE, and
ONTABLE, in different ways.

Let us change now slightly the formal language used
in this example and move closer to the formalism of the
situation calculus of (McCarthy and Hayes 1969). In ad-
dition to variables for blocks, we introduce a second sort
of variables, variables for situations. There are two situa-
tion constants, Sy and S), which represent two situations
scparated by the action of placing B ou the table. Instead
of two unary predicates ONTABLI, and ONTABLE,,
we have now one binary predicate ONTABLE, which is
supposed to have a situation term as its second argument.
In the new notation, (5) and (G) become

~ABz > (ONTABLE(z,S,) = ONTABLE(z, $y))

and
ONTABLE(B,Sy).

We also add the axiom Sy £ §).
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What corresponds to the circumscription described
above in this new notation? We would like to vary the
values of ONTABLE(z,s) for s = §1, and have the val-
ues corresponding to s =S, fixed. Definitions (3), (4),
do not allow us to do that; for any predicate or function
constant in the language, we have to either include it in
list Z, and then all values of that predicate or function
may vary, or not include it in Z, and then all of its values
must remain fixed in the process of minimization. We
would like to be able to specify, for each function and
predicate in Z, the part of its domain on which its val-
ues must remain fixed, and allow the other values to be
varied.

The following notation will be useful. If p, q, 7
are predicate symbols of the same arity then we write
EQ,(p,q) for Vz(-rz D (pz = qz)) (“p and ¢ are equal
outside »”). If f, g are function symbols of the same arity
as r then EQ,.(f,g) stands for Vz(—rz D (fz = gz)).

Assume first that Z consists of only one symbol, a
predicate constant or a function constant. Consider a
A-expression V of the same arity as Z, which has no pa-
rameters and contains neither P nor Z. Intuitively, it
specifies the part of the domain of Z on which Z may
vary.

For global circumscription, we propose the following
formula:

A(P, ZYANpz—[EQv(z,Z) AN A(p,z)Ap < P].  (7)

Il V is identically true then (7) becomes (3). Making V
identically [alsc is equivalent to treating Z as a paratneter
rather than varying it; (7) becomes (1). In the example
from the previous section, Z is ONTABLE, and we can
get the desired effect, for instance, by taking V to be
Ays(s # Sy); ONTABLE is allowed to vary in situations
other than Sy.

The counterpart of (7) for pointwisc circumscription
is

AP, ZYAVaz |\ Pae ANEQv(z, ZYA AQAy(Py Az / y), 2)].

We can allow even more flexibility by making it possible
for z to aflect the choice of the part of the domain on
which Z may vary when P is minimized at z. (This ad-
ditional flexibility, not needed in this example, is essential
for more complex applications.) Let V' be a A-expression
AzuV (z,u) whose arity equals the sum of the arities of P
and Z. Intuitively, V represents the function which maps
every value of z into the set of all values of u satisfying
V(w,u); accordingly, we will write Vz for AuV(z,u). The
new form of circumscription is

AP, Z)ANVaz [PeAEQy . (z, ZYNA(Ay(Py Az # y), =)



We will denote this formula by Cp(A(P, Z); Z/V). If
V is identically true then Cp(A4; Z/V) becomes Cp(A4; Z).

TE T/ S i dnsndima Tl Folon #hine: 77 L A ZIVY 10 amisivnlant o
PURE SN} 1uC11b1ballJ 1aldc Lilcil UP\I‘I, lJ/ 1 4 } 1> uiulvau:uu (V)
Cp(A).

6. More on Priorities

Now we know how to perform circumscription with
some values of Z allowed to vary. There is another inter-
esting possibility: we may vary some values of the mini-
mized predicate P itself.

We start with the case when Z is empty. The new
schema is

A(P)AVzp~[Pz AEQv.(p, P)NA(Ay(py Az # y))]. (8)

Here V is a A-expression AzyV (z,y) which has no pa-
rameters and does not contain P. The second term of
(8) expresses that it is impossible to change arbitrarily
the values of P on {y : V(z,y)}, and then change its
value at = from true to false, without loosing the prop-
erty A. We denote (8) by Cp(A4; P/V). It is, generally,
stronger than the basic form of pointwise circumscription
Cp(A) and turns into it when V is identically false.

The following example shows how we can use the
new form of circumscription to create the effect of as-
signing different priorities to the tasks of minimizing P
at different points. Applying the basic forms of global
circumscription (1) or pointwise circumscription (2) to

Pa Vv Pb gives
Ve(Pz =z = a) VVz(Pr =z = b).

Using the form of pointwise circumscription introduced
in this section, we can express the idea of assigning a
higher priority to the task of minimizing P at b; this
circumscription will lead to the stronger result

Ve(Pe == 2 = a). (9)

To this end, introduce a binary predicate constant V', and
let A(P) be the conjunction of PaV Pb and V(b,a). The
second formula shows that P may be varied at point a
when it is minimized at b. This condition expresses in the
language of pointwise ciccumscription that minimizing P
at b is given a higher priority. It is casy to sce that, in
this case, (8) implies (9).

An interesting feature of this example is that infor-
mation ou priorities is represented by the axiom V(b,a),
which is included in the database along with Pa Vv Pb. A
circumscriptive theory is usually thought of as an axiom

set along with a circumscription policy, a metamathemat-
ical statement describing which predicates are allowed to
vary, and what the priorities are. The form of circums-
scription proposed here allows us to describe circumscrip-
tion policies by axioms rather than metamathematical

expressions.

As another example, consider the problem posed in
(Hanks and McDermott 1985), Section 7.1. Let A(P) be
the conjunction of these axioms:

ai#a; (0<i<j<3),

Qf.. .\
AJ\-E, Yy

i

re AL N o N \
(T =a1Ay =apjViz =ay Ay =ay)

V(z = a3 Ay = az)),
-Pz A §(y,z) D Py, —Pay.

We can think of ag,...,a3 as instances of time, S as the
successor relation, and P as an “abnormality” of some
kind. Applying any of circumscriptions (1), (2) to A(P)
gives
Ve[Pz = (z = a; V T = a3)]
VVe[Pz =(z =a; Vz = a3)].

(10)

Hanks and McDermott ask what kind of formal non-
monotonic reasoning can capture the idea of preferring
“minimization at earlier instants of time”, which would
lead to selecting the second disjunctive term. Their anal-
ysis shows that temporal reasoning of this kind is impor-
tant but apparently cannot be captured by the existing
formalisms.

The problem is clearly similar to the one discussed

above. Extend the theory by these “policy” axioms:
V(a;,a;) (0<i<j<3).

The additional axioms tell us that P may be varied at the
points “later than z” when minimized at z; in this way, it
“gives preference to the past”. If a model with az # a3
satisfies the first term of (10) theu a “better” model can
be constructed by making Paj false and Paj true.

This method can be also uscd to resolve a diffi-
culty uncovered in recent attempts to formalize reasoning
about the blocks world using circumscription (see (Mec-
Carthy 1986), Section 12). We would like to use the
formalism of situation calculus to describe the effect of
moving a block. One of the axioms is “the law of mo-
tion” expressing that, normally, moving a block z to a
location [ leads to a situation in which = is at I. An-
other axiom tells us that the case when z is not clear
is an cxception. Imagine now two blocks A and B side
by side on the table. We attempl to place A on top of
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B and then to move B somewhere else. Intuitively, the
second action will be unsuccessful, because after the first
action B is not clear. In other words, the first action
will be “normal” relative to the law of motion, and the
second will be “abnormal”. Unfortunately, circumscrib-
ing abnormality does not allow us to prove this assertion.
It does not eliminate the possibility that the first action
leaves the positions of the blocks unchanged, so that B
remains clear, and the second action leads to the normal
result. In this alternative model, the second action is
“normal”, and the first is not. Each of the two models
corresponds to a minimal value of AB; circumscription
only gives a disjunction.

The “bad” model can be eliminated by “giving pref-
erence to the past”, as in the previous example. Details
will be given in the full paper. The solution uses also the
ideas of the previous section, so that what we need is a
definition of circumscription which covers all the forms
introduced above. This most general definition of point-
wise circumscription is given in the next section.

7. The General Case

Let A(S1,...,5,) be a sentence, where each §; is
a predicate symbol or a function symbol (in particular,
it can be a 0-ary function symbol, i.e., an object con-
stant). We want to minimize one of the predicate sym-
bols from this list, say, S1. (Thus S; corresponds to P
and S3,...,5, correspond to Z in the notation used be-
fore). The pointwise circumscription of S; in A with §;
allowed to vary on V; is, by definition,

A(S)/\sz—‘[slfb‘/\ AEQVir(sirSi) (11)
i=1

ANAQy(s1y Az £ y), 82,0

Here S stands for S1,...,5,, sis alist sy,..., s, of pred-
icate and function variables correspounding to the pred-
icate and function constants §; V; (i = 1,...,n) is a
predicate without paramecters which does not contain
S1,...,95, and whose arity is the arity of S; plus the
arity of S;.

We denote (11) by Cs,(4; 51/V3,..., S/ Va). If V;
is identically true then we will drop /V; in this notation.
If V; is identically false then we can drop the term S;/V;
altogether.

8. Conclusion

The pointwise approach to circumscription has the
following advantages over the traditional global approach.
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1. The basic case of pointwise circumscription is
expressed by a first-order formula.

2. There is no need to define the circumscription of
more than one predicate.

3. Circumscription policies become more “modular”:
a separate policy is defined for each of the minimized
predicates.

4. Circumscription policies, including the selection
of priorities, can be described by axioms, instead of meta-
mathematical definitions.

5. Circumscription policies may vary from point to
point, which provides additional flexibility useful in appli-
cations to formalizing reasoning about time and actions.

We hope that the form of circumscription proposed
in this paper is sufliciently powerful for formalizing many
relatively complex forms of commonsense reasoning. Fu-
ture work on applications of pointwise circumscription
should lead to the discovery of general principles regard-
ing the choice of circumscription policies (such as, for in-
stance, the principle of assigning a higher priority to min-
imization at earlier instants of time in temporal reason-
ing). The present situation, when the policy is selected
in many cases by trial and error, is clearly unsatisfactory.
It is also important to extend the existing methods for
determining the result of circumscription to more general
forms needed in applications.
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