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Abstract 

Circumscription is the minimization of predicates 
subject to restrictions expressed by predicate formulas. 
We propose a modified notion of circumscription so that, 
instead of being a single minimality condition, it becomes 
an “infinite conjun(*tion” of “local” minimality condi- 
tions; each of these conditions expresses the impbssibility 
of changing the value of a predicate from true to f&e at 
one point. We argucl that this “pointwise” circumscrip- 
tion is conceptually simpler than the traditional “global” 
approach and, at the same time, leads to generalizations 
with the atl&tionaJ. flexibility needed in applications to 
the theory of commonsense reasoning. 

1. Introduction 

Circumscription (McCarthy 1980, 1986) is logical 
nhirnimtiion, that, ;s, the minimization of predicates sub- 
ject to restrictions expressed by predicate formulas. 

The iriterprct,ation of a predicate syn~bol in a model 
cm be dcsc*ribcd in two ways. One is I.0 represent a k-nry 
predical,e by ;I srlbsct of I/“‘, where II is the universe of 
the model. ‘I‘his approach identifies a predicate with its 
extension. The other possibility is to represent a predi- 
cate by R 13oo1c;u1-vnlucd function OII li”. These two ap- 
proaches are, of coItrsc, Inathem;~t,ically equivalent; but 
the intuitions behind them are somewhat, dill’erent,, and 
tliey suggest dilfercsnt views on what “minimizing a pred- 
i(.ittC" Illigllt lncnn, 

If a ])rcYlici~l~c is a set tlicn predicates are orderc’d by 
set inclusion, ;uitl it is natural to urltlcrstatid the mini- 
mality of a prctlicate as minimnlity relative to this order. 
A smaller predicate is a stronger predicate. A predicate 
satisfying a given condition is minimal if it cannot be 
made stronger without violating tl~c corltlition. This un- 
derslantling of nliniltla1it.y Ieatls to the usual definii~ion of 
circurnscriplion. 

. - ----- - 
This rc~sc~nrch was partiall<y s~~pport~ctl b,y DAIU’A 

uodrar (:or~t,~~;\(.t, NOO:l!)-,Y't-C-0'250. 

Let us accept now the view of predicates as Boolean- 
valued functions, or, in other words, as families of truth 
values. Each predicate is a family of elements of the 
ordered set {false, true}. IJnderstanding “smaller” as 
“stronger” still makes sense; but now we can also think 
of making a predicate smaller at a poht ( E II” as chang- 
ing its value at that point from true to false. As far *IS 
the values at other points are concerned, we can require, 
in the simplest case, that they remain the same; or we 
can allow them to change in an arbitrary way; or some 
of them cm be required to remain fixed, and the others 
allowed to vary. 

The new definition of circumscription proposed in 
this paper expresses, intuitively, the minimality of a pred- 
icate “ at every point”. It can be interpreted as an “inf- 
nite conjunction” of “local” minimality conditions; each 
of these conditions expresses the impossibility of changing 
the value of a predicate from true to fulse at one point. 
(Formally, this ‘Ynfinitc conjunction” will be represented 
by a universal quantilier). 

We argue that this “pointwise” approach to circum- 
scription is in some wa,ys conceptually simpler than the 
traditiortal “global” approach alid, at the* sa111e time, 
leads to gc.licr;~lizat,iOIis with t,he iLdtlitiOllid Urxibility 
nccdccl in applications to the theory of commonsense yea- 
soning. 

Proofs of the mathematical facts stated below will 
be published in the full paper. 

2. The Basic Cost of Point,wiso Circumscripl,ion 

Let us start with the simplest case of circumscribing 
one predicate with all other non-logical constants treated 
as parameters. Let n(P) b e a sentcncc containing a pred- 
icate constant P. R.ccall that the (glohl) circumscription 
of P in rl( 1’) is, by delinilion, the second-order formrlla 

A(P) A Vpn( [l(P) A p < P). (1) 

Here p is a predicate variable of the sntne arity as P, and 
p < P stands for 
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(Z is a tuple of object variables). We denote (1) by 
Circum( A( P); P). 

The pointwise circumscription of P in A(P) is 

A(P) A VxjPx A il(Xy(Py A 2 # y))]. (2) 
Notice that this is a first-order formula. We denote (2) 
by Cp(A( P)). A model of (2) is a model of A(P) which 
cannot be transformed into another model of A(P) by 
changing the value of P from true to false at one point. 
The quantifier Vx represents the “infinite conjunction” 
mentioned above, aud the formula following the quantifier 
can be viewed as a minimality condition: it asserts the 
minimality of the value of P at point x. 

It is easy to check that Circum(A; P) implies Cp(A)‘. 
If we assume that all occurences of P in A(P) are posi- 
tive then these two formulas are equivalent. This special 
case is important, because in standard applications of cir- 
cumscription (McCarthy 1986) the minimized predicates 
usually have no negative occurences in the axioms. 

To illustrate the difrerence between (I) and (2), take 
A t.o be Pu E Pb. Any model with P identically false 
satisfies both Circum(A; P) and Cp(A). In addition, any 
model of A in which P is true at exactly two points, a 
and b, is a model of the pointwise version, but not of the 
global one. 

3. A Generalization 

Even in simple applications to formalizing common- 
srusc knowledge wc usually riecd forms of circuxiisc.ription 
slightly 1ll0rc gcncral t,liati tliosc defiiicd in the previous 
section. 

Let us start with a formula A(P, Z), where % is a tn- 
ple of predicate and/or function constants. Tllc (global) 
circumscription of P iI1 A( P, 2) with 2 dlowecf to vary 
is 

A( I’, Z) A vpz- I( A(p, z) A p < P), (9 

whcrc t is il t4plc of prcdicatc and/or Cuticbioti 
variables similar to %. This formula, dcnotcd by 
Circum( tl( P, Z); P; Z), asserts that the extetlsion of P 
cannot bc made smaller even at the price of chauging the 
intcrprebations of the symbols included in 2. 

The corrcspotltling form of pointwise circumscri~~tion 
is 

A(P, 2) A VXZl[Pa: A A(Xy(Py A 2 # y), z)]. (4) 

It will be denoted by C,( A(P, Z); Z). Because of the 
variables Z, (4) is, gCIlcsrillly, Zk second-order f0~tIllll~. (4) 

is cquivalcnt to (3) iT all owllmiws of I’ it1 /l( I’, Z) are 
positive. 

4. Minimizing Several Predicates 

In a further generalization of global circumscription 
(3), P is a tuple of predicate constants PI,. . . , P,,. The 
meaning of Circum(,l; P; 2) is given again by (3), with 
p standing this time for a tuple of predicate variables 

Pl,***,Pn, and p < P understood as 

n n 

A ( 
vx p;x 2 Pi,) A v +x(P;x 3 p,x). 

i=l i=l 

This form of joint minimization of several predicates is 
called parallel circumscriptior~ (to distinguish it from the 
case when different members of P are minimized with 
different priorities, which is discussed below). 

What is the relationship between circumscrib- 
ing Pl , * - * , Cl in parallel and circumscribing each 
Pi? It is easy to show that Circum(A; P; Z) implies 
A, Circum(A; Pi; Z). In the important special case when 
all occurences of PI, . . . , P,, in A are positive, the converse 
also holds; hence, in this case, Circum( 11; P; 2) is equiv- 
alent to /\; Cr. (A; Z). Tl lis conjunction asserts that, 
whenever one valuck of one of the predicates PI ,“‘, p, 
is changed from tr?Le to false, and the interpretation of 
2 is changed in an arbitrary way, the resulting structure 
cannot possibly be a model of A. This formula is the 
pointwise counterpart of parallel circumscription; there 
is no need to introduce a special definition. 

Let, 11s turn now to prioritized circumscription, and 
considrr, for simplicity, the case of two prcdicntcs PI, Pz. 
7’11c c.irciiInscript,il)ll CircuIti( 14; 1’1 > 1’2; Z), which as- 
s1g11s a higher priority to the task of minimizing 1’1, is 
defined by the sarnc formula (3), but with p < P intcr- 
pret,ed lexicogral,bic;l.lly; for details, see (l,ifschitz 1985). 
This circumscription is equivalent to 

wlic~tic~vc~r /‘, , I’2 tlitV(’ 0lll.y posil,ivcb occ1ircticcs it1 /I. ‘I’his 
cori.iuuc4ion is the pointwisct COUIlt?rpiWt of prioritize-d cir- 
cumscription: 110 value of PI can be cl~i~~~g~d from true 
to false even at the price of changing P2 arbitrarily. 

5. A Further Generalization 

Our next goal is to introduce some more general 
forms of poinlwisc circuliiscripliorl. We start with a mo- 
tivating example. 

Consider n simple version of the blocks world, in 
which a l)lock catI bc irl 0111,~ ou(’ of two i)IiL(*cs: cit,hcr 
on the tnblc or OIL ttlc floor. We want to tlcscribc the 
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effect of one particular action, putting block B on the 
table. This can be done using two unary predicate con- 
stants, ONTABLE and ONTABLEI, which represent 
the configurations of bloclcs before and after the action. 
There are two axioms: 

TAB x > (ONTABLE x f ONTABLE x) (5) 

and 
ONTABLE B. (6) 

Here AB is the “abnorma1it.y” predicate which will be cir- 
cumscribed in the conjunction of (5) and (6). The first 
axiom expresses what John McCarthy calls the “com- 
monsense law of inertia”: normally, objects remain where 
they are. This formula exemplifies the use of circumscrip- 
tion for solving the frame problem (McCarthy 1986). The 
second axiom expresses the basic property of the action 
under consideration: in the new configuration of blocks, 
B is on the table. 

What should be varied in the process of minimizing 
AB? The purpose of our axiom set is to characterize the 
new configuration of blocks; hence it is natural to cir- 
cumscribe AU with ONT,4BLEl allowed to vary. Such 
a circumscription (global or pointwise) gives 

AB x z (x = B A lONTABL& II). 

This is exactly what we wol~ltl intuitively expert; the oldy 
block which changes its location is H, and tlkis only hap- 
pens if it was not on thr table prior to the event. It 
can bc shown that ~i~clltnscl-iI)tion dots not Irad t,o the 
sanic rcs~~lt. if ONT/1/1 /,I{,, alit1 ON’I’,jl /I I, I<, arc b0l.h 
varied or both fixed; we must treat ON?‘Al1LE,, and 
ONTABLE in difFerent ways. 

Let us change now slightly the formal language used 
in this examplr and move closer to tlic formalism of the 
SitJJtltiOJl CakJJhS of (McCarthy and llaycs 1969). 111 ad- 
dit,ion to Vllriill)lPS for I)locks, wc ittl ro~ltt(‘~ n scc*ottd sort 

of Vilriil,l)lCS, vnriahlcs for SilflitliOtts. ‘l’lt(~tT ilI‘(’ tW0 sikrta- 

tion constatlt,s, S,, and S, , which rcprc~sctlt two sit8uations 
separated by the act ion of placing f1 on the table. Instcnd 
of two tmary predicates ONTdl1Z;E,, a~14 ON’Z’A BLEI, 
we have now one binary prcdicatc ON7’11BLE, which is 
supposed to have a situation term as its second argument. 
III t,hc new notation, (5) and (6) bccornc 

-lAB z > (ONTABLl+, St,) G ONTAU,!,~(x, S,)) 

and 

What corresponds to the circumscription described 
above in this new notation? We would like to vary the 
values of ONTABLE s) for s = S1, and have the val- 
ues corresponding to s = So fixed. Definitions (3), (4), 
do not allow us to do that; for any predicate or function 
constant in the language, we have to either include it in 
list 2, and then all values of that predicate or function 
may vary, or not include it in 2, and then all of its values 
must remain fixed in the ‘process of minimization. We 
would like to be able to specify, for each function and 
predicate in 2, the part of its domain on which its val- 
ues must remain fixed, and allow the other values to be 

The following notation will be useful. If p, q, lr 
are predicate symbols of the same arit,y then .we write 
EQ,,(p, 4) for VO(TX > (pz ZE qz)) (“p and q are equal 
outside 7”‘). If f, g are function symbols of the same arity 
as r then EQ1.( f,g) stands for Vx(lrx > (fx = gx)). 

Assume first that 2 consists of only one symbol, a 
predicate constant or a function constant. Consider a 
X-expression V of the same arity as 2, which has no pa- 
rameters and contains neither P nor 2. Intuitively, it 
specifies the part of the domain of 2 on which 2 may 
vary. 

For global circumscription, we propose the following 
formula: 

A(P, 2) A ‘++WV( z, 2) A A(p) z) A p < P]. (7) 

IT I/ is idcnt,ically true then (7) becomes (3). Making V 
identically Calsc is equivalent t 0 t,reating 2 as a parameter 
rather tflli111 varyiltg it; (7) hcotnc5 ( I). In the cxnmplc 
fro111 the prrvious scctiotl, Z is ON7’,4llLE, and WC cn~l 
get the desired rffect, for instance, by taking V to be 
Xys(s f- S,,); ONTABLE ’ 1s allowed to vary in situations 
other than S,,. 

The counterpart of (7) for pointwisc circumscription 
is 

We can allow cvcn more ilcxibility by making it possible 
for x to affect the choice of the part of the domain on 
which 2 may vary when .P is minimized at x. (This ad- 
ditional flexibility, not nccdcd in this example, is essential 
for more c’olnplc>x applications.) Let T/’ bc a X-expression 
XZ?LV( T, 74 w 10s~ arity equals the sulli of 1,hc arit,ics of P I 
and %. Intuitively, 1/ reprcscnts tlic function whicli nlaps 
every value of 2 into the set of all values of u satisfying 
T/(x, u); accordingly, we will write Vx for AuV(x, u), The 
IIC~ form of ~ir~utllscriI)t,ioll is 
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We will denote this formula by Cp(A(P, 2); Z/V). If 
V is identically true then Cp(A; Z/V) becomes Cp(A; 2). 
If V is identically false then Cp (A; Z/V) is equivalent to 

CP(A). 

6. More on Priorities 

Now we know how to perform circumscription with 
some values of 2 allowed to vary. There is another inter- 
esting possibility: we may vary some values of the mini- 
mized predicate P itself. 

We start with the case when 2 is empty. The new 
schema is 

Here V is a X-expression hyV(z, y) which has no pa- 
rameters and does not contain P. The second term of 
(8) expresses that it is impossible to change arbitrarily 
the values of P on {y : V(X, y)}, and then change its 
value at x from true to false, without loosing the prop- 
erty A. We denote (8) by Cp(A;P/V). It is, generally, 
stronger than the basic form of pointwise circumscript,ion 
Cp(A) and turns into it when V is identically false. 

The following example shows how we can use the 
new form of circumscription to create the effect of as- 
signing different priorities to the tasks of minimizing P 
at different points. Applying the basic forms of global 
circumscription (1) or pointwise circumscription (2) to 
Pa V Pb gives 

Vx(Px 5 x = a) v Vx(Px 5 2 = b). 

Using the form of pointwise circumscription introduced 
in this section, we can express the idea of assigning a 
higher priority to the task of minimizing P at b; this 
circumscription will lead to the stronger result 

Vx(Px zi x = a). (9) 

To this end, introduce a binary prcdicatc constant V, and 
let A(P) be tl le conjunction of Pa V Pb and V( b, a). The 
second formula shows that P may be varied at point a 
when it is minimized at b. This condition expresses in the 
language of pointwise circumscription that minimizing P 
at b is given a higher priority. It is rasy to see that, in 
this case, (8) implies (9). 

An interesting feature of this example is that infor- 
matsion 011 priorities is rcprcscntc>tl by the axiom V(b,n), 
which is iucludtd iu the datnl~asc~ along with l’u V 1’6. A 
circumsrriptive Ihc>or,y is tISlIiLI1~ tl1ollgIlt, of as an axiom 

set along with a circumscriptiorl policy, a metamathemat- 
ical statement describing which predicates are allowed to 
vary, and what the priorities are. The form of circum- 
scription proposed here allows us to describe circumscrip- 
tion policies by axioms rather than metamathematical 
expressions. 

As another example, consider the problem posed in 
(Hanks and McDermott 1985), Section 7.1. Let A(P) be 
the conjunction of these axioms: 

ai # aj (0 < i < j 5 3), 

S(x,y) G [(x = qAy = ao)V (x = a2 Ay = a) 

V(x = a3 A y = a& 

~Px A s(y, x) > Py, TPao. 

We can think of a0 , . . . , a3 as instances of time, S as the 
successor relation, and P as an “abnormality” of some 
kind. Applying any of circumscriptions (1)) (2) to A(P) 
gives 

Vx[Px E (x = al v 2 = a;z)] 

v Vx[Px G (x = a1 v x = a3)]. 

Hanks and McDermott ask what kind of formal non- 
monotonic reasoning can capture the idea of preferring 
“minimization at earlier instants of time”, which would 
leacl to selecting the second disjunctive term. Their anal- 
ysis shows that temporal reasoning of this kind is impor- 
tant but apparently cannot be captured by the existing 
formalisms. 

The problem is clearly similar to the one discussed 
a ove. b Extend the theory by thcsc “policy” axioms: 

v(ai,aj) (0 5 i < j 5 3). 

The additional axioms tell us that P may be varied at the 
points “later than z”when minimized at x; in this way, it 
“gives prefcrcnce to tlic past”. If a model with a2 -f a3 

satisfies I,llc> lirst tcrui of (IO) tllcll a “bc11,er” mottcl can 
be constructed by making Pa2 false and Pa3 true. 

This method cm1 be also used to resolve a diffi- 
culty uncovered in recent attempts to formalize reasoning 
about thcl blocks world using circumscription (see (Mc- 
Carthy 198G), Section 12). WC would like to use the 
formalism of Sit~lliLtiOIi calculus to tlescribc the effect of 
moving a block. One of the axioms is “111~ law of mo- 
tion” expressing that, norn~nlly, moving a block x to a 
location 1 leacls to a situation in which 2 is at 2. Rn- 
other axiom tells us that. tlic case when x is riot clear 
is a11 cxccp tion. Imagine 11ow two blocks A and R side 
by side on the table. Vi’C iL1 t.Clll[)l t0 pl;L’.C It 011 top Of 
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B and then to move B somewhere else. Intuitively, the 
second action will be unsuccessful, because after the first 
action B is not clear. In ot(her words, the first action 
will be “normal” relative to the law of motion, and the 
second will be “abnormal”. Unfortunately, circumscrib- 
ing abnormality does not allow us to prove this assertion. 
It does not eliminate the possibility that the first action 
leaves the positions of the blocks unchanged, so that B 
remains clear, and the second action leads to the normal 
result. In this alternative model, the second action is 
“normal” , and the first is not. Each of the two models 
corresponds to a minimal value of AB; circumscription 
only gives a disjunction. 

The “bad” model can be eliminated by “giving pref- 
erence to the past”, as in the previous example. Details 
will be given in the full paper. The solution uses also the 
ideas of the previous section, so that what we need is a 
definition of circumscription which covers all the forms 
introduced above. This most general definition of point- 
wise circumscription is given in the next section. 

7. The General Case 

Let A(S1, . . . , S,) b e a sentence, where each S; is 
a predicate symbol or a function symbol (in particular, 
it can be a 0-ary function symbol, i.e., an object con- 
stant). We want to minimize one of the predicate sym- 
bols from this list, say, Si. (Thus 5’1 corresponds to P 
and Sz,..., S,, correspond to 2 in the notation used be- 
fore). The pointwise circumscription of 5’1 in A with S; 
&owed to vary on I< is, by definition, 

A(S) A V’ZS~[S~Z A A EQV,,(Si, Si) 
i=l (11) 

A @Y(QY A x Z Y), 32,. . .>I. 

Here S stauds for ,!?I,. . . , S,, s is a list 31,. , . , s,, of pred- 
icate and function variables corrcspouding to the pred- 
icate atld frrllctiott ~~~lIlStiLlltS S; V; (; = 1,. . . ,72) is a 
predicate without parameters which does not contain 
Sl , * * * , s,, and whose arity is the arity of SI plus the 
arity Of Si. 

We denote (11) by Cs,(A; Sl/Vl,. . . ,S,/V,,). If K 
is identically true then we will drop /Vi in this notation. 
If V, is idrutically false Illen we can drop the term Si/Vi 
altogether. 

8. Conclusion 

The 
following 

point wise i1pprOdl 
atlvautnges over the traditiounl globill approach. 

to circumscription hits the 

1. The basic case of pointwise 
expressed by a first-order formula. 

circumscription is 

2. There is no need to define the circumscription of 
more than one predicate. 

3. Circumscription policies become more “modular”: 
a separate policy is defined for each of the minimized 
prcdicat es. 

4. Circumscription policies, including the selection 
of priorities, can be described by axioms, instead of meta- 
mathematical definitions. 

5. Circumscription policies may vary from point to 
point, which provides additional flexibility useful in appli- 
cations to formalizing reasoning about time and actions. 

We hope that the form of circumscription proposed 
in this paper is sufficiently powerful for formalizing many 
relatively complex forms of commonsense reasoning. Fu- 
ture work on applications of pointwise circumscription 
should lead to the discovery of general principles regard- 
ing the choice of circumscription policies (such as, for in- 
stance, the principle of assigning a higher priority to min- 
imization at earlier instants of time in temporal reason- 
ing). The present situation, when the policy is selected 
in many cases by trial and error, is clearly unsatisfactory. 
It is also important to extend the existing methods for 
determining the res.llt of circumscription to more general 
forms needed in applications. 
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