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ABSTRACT 

An apparently negative result of Montague has 

diverted research in formal modalities away from syntactic 

(“first-order”) approaches, encouraging rather weak and 

semantically complex modal formalisms, especially in 

representing epistemic notions. We show that, Montague 

notwithstanding, consistent and straightforward first- 

order syntactic treatments of modality are possible, espe- 

cially for belief and knowledge; that the usual modal treat- 

ments are on no firmer ground than first-order ones when 

endowed with self-reference; and that in the latter case 

there still are remedies. 

I. INTRODUCTION 

We are in this paper particularly concerned with 

the concepts of belief and knowledge, in their relation to 

(and in the avoidance of) self-referential paradox. Let us 

write Bel(x) and K(x) to indicate that x is believed, resp. 

known, by an implicit agent g. The syntactic status of x is 

one of the issues to be addressed. If Be1 and K are predi- 

cate symbols, then x is an ordinary first-order term which 

in particular may be the name of a sentence, as in 
Bel(“Snow is white”). On the other hand, if Be1 and K are 

modal operators, then x will be a well-formed formula, as 

in Bel(Snow is white). In [al] it was suggested that for an 
intelligent reasoner g, a self-referential language is desirable 

in order to represent such notions as that g has a false 

belief, this itself being a likely belief of g. We may write, 

for instance, (Ex)(Bel(x) & -True(x)). But if this very wff is 
to be a belief of g, then it too can serve (either in quoted 

first-order form, or in formula -- modal -- form) as 

argument within another belief formula. We contend that 

this is such a basic aspect of language and thought that 

any reasonable representational mechanism for common- 
sense reasoning must include facilities for expression of 

self-reference and syntactic substitutions. (Note that 

Rieger [25] calls essentially this same notion referenceabil- 

ity.) We will show that this has significant consequences 

regarding consistency and modal treatments, in that 

apparent advantages of the latter over non-modal (“syn- 

tactic”) ones disappear in the presence of self-reference. A 

longer version of the present paper [22] contains proofs of 
theorems. 
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The example of an agent having a false belief is a 

key one. For it distinguishes between what we might call 

weak and strong languages. In particular, traditional 

modal languages with an operator Be1 for belief do not 

ordinarily allow variable operands; this would amount to 

something like a second-order modal language. This means 

that having a false belief is not straightforwardly 

representable in such languages. Of course, the same can 
be said for traditional first-order languages. Thus tradi- 

tional logics tend to be weak. However, the obvious 

remedy of introducing names for formulas as in “Snow is 
white” above, leads to familiar problems of inconsistency. 

While this has been taken by some to mean that epistemic 

notions such as Be1 should be left as modal operators 

rather than risk inconsistency in a first-order setting with 

names, on the other hand it is too weak to accommodate 

the needs of artificial intelligence (as in the false belief 

case). Here we will investigate the introduction of names 

into formal treatments of belief and knowledge, and ways 

to retain consistency while retaining as well the strong 

feature of referenceability. 

II. PRELIMINARY RESULTS 

We shall call a theory T (over a language L) with 

mechanisms for expressing and asserting all such substitu- 
tions unqualifiedly substitutive. The hallmark of an 

unqualifiedly substitutive language is that it possesses an 

operator Sub(P,Q,a,n) directly asserting the result of sub- 

stituting in an expression P the expression Q for the nth 

occurrence of the subexpression a. I.e., if P[Q/a,n] is the 

expression that results from the indicated substitution, 
then we are requiring Sub(P,Q,a,n) to be provably 

equivalent to P[Q/a)n]. Note that Sub here is to be an 

actual symbol (predica.te or otherwise) of L, while P[Q/a,n] 

is a meta-notation denoting some actual expression of L, 

namely the one resulting from the actual performance of 

the substitution. Of course, for the above-mentioned 

equivalence to be meaningful, the substitution must result 

in a well-formed formula of L. 

It turns out that for the applications to be pursued 

here, only a rather special use of an operator such as Sub 

is required, namely one in which the substitution of Q for a 

in P be performed for precisely all occurrences of a in P 

except the last. Therefore we will write simply Sub(P,Q,a). 
Contexts will vary slightly in that sometimes all 

occurrences of a will be identical, sometimes one occurrence 

will be quoted. We beg the reader’s indulgence in sloppily 

using the same notation for both cases. We also write 

P[Q/a] for the result of substitution in either case. 
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As will be seen, the asserting of the results of sub- 

&tutions, i.e., relating the referenced syntactic elements to 

their intended meanings, runs into paradoxes of self- 

reference. Firstly, a means of unquoting quoted elements is 

needed; i.e., of saying formally that “A” carries the mean- 

ing A. This is often represented as defining a truth predi- 
cate: True(“A”) is to tell us that the sentence “A” carries 

a true meaning, i.e., A. That is, Sub(P,Q,a) can be thought 

of as consisting of two conceptually distinct aspects: form- 

ing the new expression, and asserting it. These we can con- 

veniently distinguish by writing, as a gloss for Sub(P,Q,a), 

the (perhaps pseudo-) formula True(sub(P,Q,a)) where sub 
is a function producing (a name for) the expression that 

the indicated substitution leads to, and True asserts this 

expression. Again of course this can be meaningful only if 

the substitution leads to a wff of L. 

For precision’s sake we offer the following 

definition: Let T be a first-order theory over a language L 

containing a 3-place predicate symbol Sub together with 

the axiom schema Sub(“P”,” &“,a) cf P[Q/a] where PiQ/a] 

is as previously described, for all wffs P and Q and terms a 

of the language I, (which is assumed to contain a constant 
“A” for each wff A of L). Then T is said to be an 

unqualifiedly substitutive theory. 

Theorem 1: Let T be an unqualifiedly substitutive first- 

order theory. Then T is inconsistent. 

For the proof of this and subsequent results, see longer ver- 

sion 

In 1191 and [ZI] the difficulty of formalizing a truth 

predicate in first-order languages was circumvented, based 

on ideas in [Sj and [14j. It turns out t,hat. this approach 

can be applied fairly directly as well to the Sub predicate, 

and leads us to the following result: 

Theorem 2: A (“qualifiedly substitutive”) first-order 
theory T formed from extending a consistent theory T’ not 

involving the symbol Sub, by the addition of the (qualified) 

schema Sub(“P”,“Q”,a) tf P[Q/a]*, where o* is the result 

of replacing +ub(“P”,...) by Sub(“lP”,...) in CY, is con- 

sistent. 

What we wish to investigate eventually (section IV) 

is the extent to which the same result holds for modal 

theories. First we turn to a question addressed by Mon- 

tague 1161 concerning first-order ana!ogues of certain modal 

theories. 

III. FIRST-ORDER ANALOGUES 

There are some solid technical benefits that would 

accrue from a first-order approach to propositional atti- 

tudes; in particular, in the words of Montague [16], “if 

modal terms [i.e., modal operators] become predicates, they 

will no longer give rise to non-extensional contexts, and the 
customary laws of predicate calculus may be employed.” 

Motivated by these concerns, Montague [16] applied this 

approach to a modality for necessity. That is, writing Net 

(“A”) instead of Net A he obtained a quotational first- 

order construction. Montague proposed axioms for such a 

formulation, in analogy with standard axioms in the 

corresponding modal treatments. Unfortunately he found 

these versions to be inconsistent, whereas each correspond- 

ing modal operator version h1 is consistent. This seemed to 

be strong evidence in favor of the modal treat,ment. How- 
ever, it appears that the inconsistency Montague 

uncovered hinges on certain fundamental expressive 

strengths of quotational first-order languages which are 

lacking in usual modal languages. That is: first-order log- 

its have richer set,s of formulas than have traditional 

modal logics. For variables allow the formation of (self- 

referential) wffs that otherwise would not appear in the 
language, and thus more is being asserted in first-order 

logic than in the corresponding modal logic. The question 

then arises: if a modal theory M is made self-referential 

[i.e., endowed with expression and assertion of substitu- 

tions], is it, still consistent? 

It is of separate interest whether a first-order logic 

version of a modal logic can be kept suitably “w-eak” so as 

not to intrude, via its variables, new kinds of wffs that des- 

troy a faithful match with the modal logic. This has been 
explored by [d es Rivieres & Levesque 261. Our purposes 

here are somewhat different, namely, how to represent pro- 

positional attitudes in an explicitly self-referential context. 

Our contention is that apart from a desire to avoid incon- 

sistency, there should be an underlying intuitive model jus- 

tifying ones axioms, and then presumably whatever under- 

lying intuitive model justifies the use of any particular 

modal formulation should apply as well to the full first- 

order formulation, unless that model itself indicates a prin- 

cipled argument to the contrary. 

Montague studied several systems related to S5, 

with the particular aim of changing Net int,o a predicate 

symbol applied to names of formulas. VVe need not present 

details of these modal variants in order to state the follow- 

ing variation on a result of his, where we freely adopt the 

symbol I (for information) in place of Net. (Note that 

under an assumption of omniscience, S5 plausibly formal- 
izes the “information” a reasoning agent may have. VVe for 

the moment avoid the terms “knowledge” and “belief” in 

favor of this more neutral expression.) 

If T is a first-order theory with function symbols 

sub and quote of three and one arguments, respectively, 
and supplied wit#h a term ‘Lo” for each wff Q as well as 

axioms defining sub and quote appropriately, i.e., quote(e) 
ZZZZ “e” for each constant symbol e, and sub(P,Q,a) = 

“<P[Q/a]>“, i.e., the name of the result of the indicated 

substitution, then T is first-order self-referential. 

Theorem 3: Let T be a first-order self-referential theory 

having a monadic predicate symbol I and axioms I(“u.“) - 

CY for each closed wff Q, and satisfying the condition ]-- 

l(“(sy”) whenever )-- (u. Then T is inconsistent,. 

\Yhat does this result tell us? It appears that even a 

very weak subtheory of S5, when “translated” into a first- 

order context, goes awry, at least in the presence of substi- 
tutivity. But is this reason to think that the modal ver- 

sion is better off? It is true that S5 (and therefore its sub- 

theories) are consistent. But S5 is not in a substitutive con- 

text. So the question arises as to whether modal theories 

such as S5 remain consistent when augmented with substi- 

tution capabilities. 
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IV. SUBSTITUTrVE MODAL LOGIC 

If we endow a modal logic M with the property of 
substitutivity in the form of an operator Sub(P,Q,a), with 

the intention that this thereby create suitable conditions 

for referenceability within such an extended version of M, 

we have at least two available approaches. We can let P 

and Q be quoted expressions and Sub a predicate symbol, 

or we can let P and Q be formulas and Sub another modal- 

ity. 

Let us begin by exploring the first alternative. 

Since we already know that a first-order unqualifiedly sub- 

stitutive theory is inconsistent (Theorem l), then so will be 

any modal theory M that extends such a first-order theory. 

Therefore, if we endow S5 with a predicate symbol Sub, 

we can’t allow it the unqualified substitution axioms as 

well. What then if we use only qualified substitution 

axioms of the sort known to be consistent in the first-order 

case? That is, can we extend S5 to include Sub(x,y,z) f-t 

True(sub(x,y,z) together with the consistent treatment of 

True and sub mentioned earlier, and thereby retain con- 

sistency in the modal theory that results? Unfortunately, 

the following result shows that we cannot. 

Theorem 4: If M consists of S5 extended by the qualified 

Sub predicate with axiom Sub(x,y,z) t-+ True(sub(x,y,z)) 

and associated axioms for True and sub, then M is incon- 

sistent. 

We then consider the second alternative mentioned 

above, namely, that Sub(P,Q,a) be a modality in which P 

and Q are formulas. It turns out that even without vari- 

able arguments to modalities, contradiction arises. 

Specifically, we define T to be an unqualiJedly substitutive 
modal logic if T has a modality Sub(P,Q,a) and the by 

now familiar substitution axioms using P[Q/a], where P, Q 
and a are wffs. That is, Sub(P,Q,a) is equivalent to the 

result of substituting Q for all but the last occurrence of a 
in P. (We need not even use names at all, for instead of 

arbitrary expression, it suffices to refer to whole formulas.) 

Theorem 5: Any 
is inconsistent. 

unqualifiedly substitutive modal theory 

So S5 itself is inconsistent with either form of self- 

reference that naturally arises. We now turn to remedies of 

this situation, hinging on separating the two troublesome 

features, namely the schema I(“o?‘)-+cu, and the rule for 

inferring I(“o?‘) f rom Q. This will at last split I into the 

two cases of Be1 and K. 

V. CONSISTENT FORMALIZATIONS 

We suggest (as is fairly common) that Kx means x 

is among those beliefs of g that are true. It is important to 

emphasize that K is to be a symbol in g’s own language, so 

that Kx means to g that x is one of its true beliefs, even 

though in general g cannot identify which these are! That 

is, in general g can only refer in the abstract to its 

knowledge (true beliefs). Indeed, all g’s beliefs are (by 
definition) believed by g; as soon as any one is suspected of 

being false, it is no longer believed. So g cannot isolate its 

true beliefs from the rest; it simply can refer t#o them in 

the abstract, just as it can refer to its entire belief set. In 

effect, g may believe that (the extension of K) is a proper 

subset of (the extension of) Bel, but can give no examples 
of the relative complement ! Thus general assertions about 

K (such as that Kx + x) are part of g’s external view of 

itself, so to speak, comparing its belief set to an unauthen- 

ticated outer world of truth, while assertions about part,ic- 

ular elements are part of an internal view of Be1 relevant. 

to working directly with individual beliefs as things to use 

in planning and acting. 

That is, we are suggesting two postulates, one for 
individual beliefs (from x infer Be1 x), and one for the 

totality of beliefs and knowledge ((x)(Kx + x)). It is mix- 

ing the two that is problematic. A judicious approximat#ion 

to a mix is however possible, as the following results indi- 

cate. 

Theorem 6: Let T be any consistent qualifiedly substitu- 

tive first-order theory. Then there is a consistent first- 

order theory Int, which is an extension of T having predi- 

cate symbol Bel, and obeying the subsumed rules I-- 
Bel(“cu”) iff I-- CY. 

A still stronger result would seem to arise if we 

simply formally identify Be1 with the predicate Thm via 

the use of Godel numbers. This of course requires incor- 

porating a certain amount of number theory into the 

agent’s reasoning, but given the rather powerful assump- 

tions that go into most logics of knowledge (e.g., that all 

logical consequences of an agent’s knowledge are also 

known to the agent), this seems easy to grant. hloreover, 

the use of substitution is virtually tantamount to the 

introduction of a certain amount of arithmetic in any case 

(see Quine [24]), and we have argued that substitution is 

an essential feature of commonsense reasoning. 

We then are left with the suggestion that a theory 

along the lines of Int is appropriate for a formalization of 

belief. It allows for introspection, to the extent that if a is 

believed (affirmed) then that very fact is also believed, and 

conversely. But it makes no claim that totality of its 

beliefs need be true, even though each separate belief is of 

course asserted, and hence taken to be the true. The strong 
contrast with a logic of knowledge is shown in the follow- 

ing result, which is based on [6,14,19,21]. 

Theorem 7: Let T be any consistent qualifiedly substitu- 
tive first-order theory. Then there is a consistent first-order 

theory Ext, which is an extension of T having predicate 

symbol K, and axioms K(“cy”) --+ LY for each wff Q, and 

obeying the (subsumed) rule that I-- K(“Q”) whenever I-- 

a*, where CY* is the result of replacing lK(“...“) b? 

K(“l...“) in 0. 

From cy can be inferred Bel(L’o!“), but to infer 

K(‘c~“) more is needed, namely CY*, the positrive form of CL. 

This can be interpreted in various ways depending on the 

underlying conceptualization of the formalism either as the 
agent’s-eye-view of the world, or as our own god’s_eye 

view. The longer paper describes more fully the 

significance of this and of the *; the latter is the critical 

distinction between K (Ext) and Be1 (Int). Note that for 

most wffs 0, CY* is a. 
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As with Int and belief, we suggest Ext as a possibly 

appropriate formalization of the notion of an agent’s 

knowledge. But contradiction will arise if the agent tries to 

combine Int and Ext into one theory (i.e., with Be1 and K 

conflated). We hope to have suggested why such a combi- 

nation is not appropriate. More motivational discussion is 

provided in the longer paper. Elsewhere [23] we have inves- 
tigated further the ramifications of the idea that an agent’s 

beliefs are not all true (known), and that a rational agent 

will believe that. 

One more observation is in order. An agent g may 
reason about both its beliefs and its knowledge, simply by 

combining the theories Int and Ext, but keeping K and Be1 

as separate predicates. One can even relate them judi- 

ciously, such as by the axiom Kx + Be1 x. This we state in 

the following theorem. The extent to which theories such 

as S5 can be viewed as ‘Lincorporated” within theories such 

as Omni below is discussed in the longer paper. 

Theorem 8: Let T be any consistent qualifiedly 

substitutive first-order theory. Then there is a consistent 

first-order theory Omni, which is an extension of T having 

predicate symbols Be1 and K, the axioms of Int and Ext as 

in Theorems 6 and 7, and axiom Kx -+ Be1 x. 

Note that if we introduce Kx by definition to be 

Bel(x) & True(x), th en we can simply use axioms and rules 

for True as in [21]. Th is then provides a slightly sharper 
version of Theorems 7 and 8, in which for instance 

K(“lK(“cr”)“) may be inferred from [lBel(L’o”) v 

True(“lcr”)]. 

VI. CONCLUSIONS 

When a formal language is endowed with self- 

referential capabilities, especially in the presence of 
unqualifiedly substitutive mechanisms, difficulties of con- 
tradiction can easily arise. This holds for modal as well as 

(pure) first-order logics. However, the features of self- 

reference and substitutivity appear fundamental to any 

broad knowledge representation medium. Moreover, when 

remedies are taken, the modal treatments seems to offer no 

advantage over the first-order ones, and indeed the latter 

carry advantages of their own. 

One can argue that although an agent g can’t know 
his beliefs to be true, still they might be true by good luck 

(or by the clever design of the agent’s reasoning devices by 

a godlike artificial intelligencer), and all g’s inference rules 

might be sound as well. But then, if g is an ideal reasoner, 

wouldn’t it. be appropriate for g to believe Be1 x -+ x? The 

odd answer (which we have seen in Theorem 3) is: not if 

g’s beliefs are to be consistent, which of course they must 

be if they are to be true. This can be seen also as an illicit 

identification of Be1 with K. 

The proposed theories Int, Ext, and Omni appear 

relevant to the study of omniscient reasoning. For limited 

reasoning, alterations will be needed. Further related work, 
especially to the latter, includes [1,2,3,4,5,7,8,9,12,15,17,27]. 
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