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Abstract. Suppose one wishes to construct, use, and 
maintain a knowledge base (KB) of beliefs about the 
real world, even though the facts about that world are 
only partially known. In the AI domain, this problem 
arises when an agent has a base set of beliefs that re- 
flect partial knowledge about the world, and then tries 
to incorporate new, possibly contradictory knowledge 
into this set of beliefs. We choose to represent such a 
KB as a logical theory, and view the models of the the- 
ory as representing possible states of the world that are 
consistent with the agent’s beliefs. 

How can new information be incorporated into 
the KB? For example, given the new information that 
“b or c is true,” how can one get rid of all outdated in- 
formation about b and c, add the new information, and 
yet in the process not disturb any other information in 
the KB? The burden may be placed on the user or other 
omniscient authority to determine exactly what to add 
and remove from the KB. But what’s really needed is a 
way to specify the desired change intensionally, by stat- 
ing some well-formed formula that the state of the world 
is now known to satisfy and letting the KB algorithms 
automatically accomplish that change. 

This paper explores a technique for updating 
KBs containing incomplete extensional information. 
Our approach embeds the incomplete KB and the in- 
coming information in the language of mathematical 
logic. We present semantics and algorithms for our op- 
erators, and discuss the computational complexity of 
the algorithms. We show that the incorporation of new 
information is difficult even without the problems asso- 
ciated with justification of prior conclusions and infer- 
ences and identification of outdated inference rules and 
axioms. 

1. Introduction 

This section informally describes our view of the knowl- 
edge base component of an intelligent reasoning agent, 
and reviews the phases of belief revision required when 
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the agent makes new observations about the world, con- 
cluding with an outline of the remainder of the paper. 

We envision the KB for an agent as containing, 
among other items, a set of extensional beliefs whose 
contents are not generated via inference from other data 
but rather by direct observation or input, and whose 
justification is therefore simply the fact of direct input. 
One can imagine these primitive beliefs as stemming 
from processed sensory input, such as a scene analyzer 
that uses a line and shadow drawing as its primitive 
depiction. 

In addition, the agent’s knowledge base may con- 
tain derived or intensional beliefs. Intensional beliefs 
are derived from extensional and intensional beliefs via 
data-independent logical inference rules such as modus 
ponens, and data-dependent axioms, such as functional 
dependencies. For example, in the blocks world, a typ- 
ical axiom might say that any block is either on the 
table or on another block. An extensional belief may 
also have an intensional justification; for example, in 
the blocks world an agent may directly observe that 
block A is on the table and also be able to deduce that 
fact from the observation that block A is not on top of 
any other block. 

Belief revision comes in a number of guises. 
First, new extensional information may lead to a change 
in extensional beliefs. These new beliefs may in turn 
trigger changes in intensional and previously exten- 
sional beliefs, and in axioms. For example, the place- 
ment of a new block so as to block vision of the rest 
of a scene may cause uncertainty about the placement 
of the objects hidden by the new block, or may cause 
the beliefs about hidden objects to become intensional 
(i.e., justified solely by frame axioms) rather than exten- 
sional, depending upon the inferences employed by the 
agent. This process of belief justification, or reconsider- 
ation of intensional beliefs, has been studied extensively 
(see e.g. [Doyle 791). 

Another variety of belief revision occurs when 
new information implies that the current set of axioms 
is now incorrect (typically, when the new theory has no 
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models). There is no established technique for revamp- 
ing axiom sets, and this is an open area of research 
[Fagin 83, 841. 

What is less well recognized is that the first stage 
of belief revision, incorporating new extensional beliefs 
into the pre-existing set of extensional beliefs, is itself 
quite difficult if either the new or old beliefs involve in- 
complete information. In this paper we focus entirely 
on this problem of adding new extensional knowledge to 
the set of extensional beliefs, and do not consider the 
activities of subsequent stages of belief revision such 
as making new inferences, checking belief justifications, 
or revoking old axioms. In addition, we do not con- 
sider here the problems associated with the presence 
of intensional beliefs and interaction of intensional and 
extensional beliefs when new extensional information 
is presented to the agent; the interested reader is re- 
ferred to [Winslett 86b] f or a discussion of these topics. 
Finally, we do not consider the problem of extracting 
information from the KB; for that purpose, we suggest 
operations such as Levesque’s ASK [Levesque 841. 

We consider extensional beliefs that have incom- 
plete information in the form of disjunctions or null 
values, which are attribute values that are known to 
lie in a certain domain but whose value is currently un- 
known; see e.g. [Imielinski 841, [Reiter 841. Levesque 
[84] considered the problem of updating such KBs with 
his TELL operation; however, TELL could only eliminate 
models from the set of models for the theory, not change 
the internal contents of those models. In other words, 
one could only TELL the KB new information that was 
consistent with what was already known. This is an 
important and vital function, but an agent also needs 
to be able to make changes in the belief set that contra- 
dict current beliefs. For example, the agent should be 
able to change the belief that block A is on block B if, 
for example, the agent observes a robot arm removing 
A from B. 

In recent work on circuit diagnosis and updat- 
ing propositional formulas, DeKleer [85] and Reiter [85] 
take a logic theory describing the correct behavior of 
a ci rcuit, and consider the problem of making mini- 
ma1 changes in that theory in order to make it consis- 
tent with a formula describing the circuit’s observed 
behavior. (Weber [86] does not focus on circuit di- 
agnosis, but takes a similar approach with a slightly 
different choice of semantics.) One cannot expect to 
find a polynomial-time algorithm for diagnosis, as the 
changes needed in the theory-the diagnosis-are them- 
selves the output of the diagnostic process, and the 
determination of whether any changes are needed at 
all in a propositional theory-i.e., whether the circuit 

is functioning correctly-cannot in general be done in 
polynomial time. However, in Section 3 we present a 
polynomial-time approach that may be used when only 
the new “diagnosed” theory is of interest, rather than 
the changes made to the old theory. 

In the database realm, the problem of incorpo- 
rating new information was considered by Abiteboul 
and Grahne [Abiteboul 851, who investigate the prob- 
lem of simple updates on several varieties of relations 
containing null values and simple auxiliary constraints. 
They do not frame their investigation in the paradigm 
of mathematical logic, however, making their work less 
applicable to AI needs. 

In the remainder of this paper, we set forth a 
facility for incorporating new information into KBs of 
extensional information. Section 2 introduces exten- 
sional belief theories, a formalization of such KBs. Sec- 
tion 3 sets forth a language for adding new information 
to these theories, and gives syntax, semantics, and a 
polynomial-time algorithm for a method of adding new 
information. In [Winslett 86b], the algorithm is proven 
correct in the sense that the alternative worlds produced 
under this algorithm are the same as those produced by 
updating each alternative world individually. 

2. Extensional Belief Theories 

The language L for extensional belief thories, our for- 
malization of extensional belief sets, contains the usual 
first-order symbols, including an infinite set of variables 
and constants, logical connectives, the equality predi- 
cate, and quantifiers. Lc also includes the truth values T 
and F, and an infinite set of Skolem constants E, ~1, ~2, 
. . . . Skolem constants are the logical formulation of null 
values and represent existentially quantified variables; 
we assume that the reader is acquainted with their use. 
ldoes not contain any functions other than constants 
and Skolem constants, and all constants are standard 
names. 

C also contains a set of purely extensional pred- 
icates (e.g., OnTopOf(), Red()), that is, predicates for 
which the agent’s belief justification is always the fact 
of direct observation, rather than inference from other 
beliefs. (In [Winslett 86b] we also consider predicates 
with intensional aspects.) In addition, l includes one 
extra history predicate HR for each extensional predi- 
cate R. History predicates are for internal use of the 
algorithm implementations only; the agent is unaware 
of their existence. 

Unlike the language used by Levesque [84], C does 
not include a K operator to refer explicitly to the KB’s 
knowledge about the world. The main use of the K op- 

erator in the TELL operation is to add bits of a closed- 
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world assumption to the belief set, and we have devised 
a separate technique for performing that function and 
for maintaining the closed-world assumption when new 
information arrives, as described in [Winslett 861. 

Definition. A theory 7 over f, is an exten- 
sional belief theory iff 

(1) for each pair of constants cl, c2 in C , 7 con- 
tains the unique name axiom cl # ~2; 

(2) the remainder of 7 (its body) is any finite 
set of well-formed formulas of 1s that do not contain 
variables. 

Though the models of 7 look like possible states 
of the world consistent with the agent’s extensional ob- 
servations, not everything in a model of 7 is an instan- 
tiated consequence of extensional beliefs of the agent, 
due to the presence of history predicates. For this rea- 
son we define an alternative world of 7 as a model of 
7 minus the equality and history predicates. 

3. An Operation For Specifying New Beliefs 

We now present an operation for specifying new exten- 
sional beliefs or observations, based on the language L. 

3.1. Observation Syntax 

Let 4 and w be formulas over L without history predi- 
cates or variables. Then an observation takes the form 
IFdTHENw. 

Examples. Suppose L contains two predicates, Redo 
and OnTopOf(), and B, C, and Table are constants in 
L, presumably denoting blocks and tables. Then the 
following are observations, with their approximate in- 
tended semantics (presented formally in the next sec- 
tion) offered in italics: 

IF T THEN 1 Red(B) V (OnTopOf(B, E)/\ (E #Table)). 
Change alternative worlds so that either B isn’t red or 
it’s on top of something other than the table. 

IF 1 Red(B) THEN F. Eliminate all alternative worlds 
where % is not red. 

IF OnTopOf(B,e) V OnTopOf(r ,B) THEN 1 Red( (e 
# C). In each alternative world where % is on top of or 
below something, change the alternative world so that 
that something isn ‘t red and isn’t C. 

3.2. Semantics 

We define the semantics of an observation applied to an 
extensional belief theory 7 by its desired effect on the 
alternative worlds of 7. In particular, the alternative 

worlds of the new theory must be the same as those ob- 
tained by applying the observation separately to each 
original alternative world. This may be rephrased as fol- 
lows: Extensional beliefs with incomplete information 
represent a possibly infinite set of alternative worlds, 
each different and each one possibly representing the 
real, unknown world. The correct result of incorporat- 
ing new information into the KB is that obtained by 
storing a separate extensional belief theory with com- 
plete information for each alternative world and pro- 
cessing the observation in parallel on each separate KB. 
A necessary and sufficient guarantee of correctness for 
any more efficient and practical method of observation 
processing is that it produce the same results as the 
parallel computation method. Equivalently, we require 
that the diagram below be commutative: both paths 
from upper-left-hand corner to lower-right-hand corner 
must produce the same result. 

7’ 

has alternative world 
7 ,A 

1 

observation observation 

has alternative world ,i 
A’ 

The general criteria guiding our choice of se- 
mantics are, first, that an observation cannot directly 
change the truth valuations of any atomic formulas 
(atoms+) except those that unify++ with atoms of w . For 
example, the observation IF T THEN Red(A) cannot 
change the color of any block but A, and cannot change 
the truth valuation of formulas such as Green(A). (Of 
course, after the first stage of belief revision has incor- 
porated the extensional fact that A is red, in a second 
stage the axioms and rules of inference may be used to 
retract the belief that A is green and any other out- 
moded fancies. As noted earlier, in this paper we only 
consider the first stage of belief revision.) 

The second criterion is that the new information 
in w is to represent the most exact and most recent state 
of extensional knowledge obtainable about the atoms in 
w , and is to override all previous extensional informa- 
tion about the atoms of w . These criteria have a syntac- 
tic component: one should not necessarily expect two 
observations with logically equivalent w s to produce the 
same results. For example, if the agent observes IF T 

t In this discussion, atoms may contain Skolem constants. 
++ In this formulation, two atoms a and b unify if there 

exists a substitution of constants and/or Skolem constants for the 
Skolem constants of a and b under which a and b are syntactically 
identical. 
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THEN T, this is different frcm observing IF T THEN 
Red(A)V 1 Red(A); ant observation reports no change 
in the re:lncss of A, and the other explicitly points out 
that whether A is red is now unknown. This syntactic 
property of the semantics may seem unusual at first, 
though a short acquaintance should prove sufficient to 
demystify it .t 

Under these desiderata, the observation IF 4 
THEN w is not equivalent to IF T THEN 4 + w ; the 
second observation allows the truth valuations of atomic 
formulas in 4 to change, while the first does not. For 
example, if the agent says something like IF leprechauns 
exist THEN there’s one outside my door now, this state- 
ment will not change any truth valuations about lep- 
rechauns, merely observe that if they do exist then 
there’s one hanging around now. On the other hand, 
with IF T THEN if leprechauns exist, then there’s one 
outside my door, the agent opens up the possibility of 
leprechauns even if the agent previously did not believe 
in them. The ability to make changes in the theory 
dependent upon an unknown bit of information, with- 
out affecting the truth or falsity of that information, is 
crucial. 

An intuitive motivation is in order for our method 
of handling Skolem constants. The essential idea is 
that if the agent only had more information, the agent 
would not be making an observation containing Skolem 
constants, but rather an ordinary observation without 
Skolem constants. Under this assumption, the correct 
way to handle an observation 0 with Skolem constants 
is to consider all the possible Skolem-constant-free ob- 
servations represented by 0 and execute each of those 
in parallel, collecting the models so produced in one 
large set. Then the result of the observation the agent 
would have had, had more information been available, 
is guaranteed to be in that set. 

For a formal definition of semantics that meets 
the criteria outlined in this section, let 0 be an obser- 
vation and let M be a model of an extensional belief 
theory 7. Let 0 be a substitution of constants for ex- 
actly the Skolem constants of C#J , w , and 7, such that 
M is a model of (7)0 , that is, a model of the theory 
resulting from applying the substitution u to each for- 
mula in 7 . tt Then for each pair M and 0, S is the 
set of models produced by applying 0 to M as follows: 
If (4)0 is false in M , then S contains one model, M . 

+ Other possible semantics are considered in [Winslett 86b]. 
+ + Since Skolem constants do not appear directly in models, 

the purpose of d is to associate the Skolem constants in 0 with 
specific constants in M, so that the agent can directly refer to 
objects such as “that block that I earlier observed was red, though 
I wasn’t able to tell exactly which block it was.” 

Otherwise, S contains exactly every model M* such 
that 

(1) M’ agrees with M on the truth values of 
all Skolem-constant-free atoms except possibly those in 
(& ; and 

(2) (40 is true in M* , and its truth valuation 
does not violate the unique name axioms of Ic . 

Example. If the agent observes IF T THEN 
Red(A) V Green(A), then three models are created from 
each model M of 7 : one where Red(A) A Green(A) 
is true, one where lRed(A) AGreen is true, and 
one where Red(A) A 1 Green(A) is true-regardless of 
whether A was red or green in M originally. 

The remarks at the beginning of this section on 
correctness of observation processing may be summed 
up in the following definition: 

Definition. The incorporation of an obser- 
vation IF 4 THEN w into an extensional belief theory 
7, producing a new theory 7’ , is correct and complete 
iff 7’ is an extensional belief theory and the alterna- 
tive worlds of 7’ are exactly those alternative worlds 
represented by the union of the models in the S sets. 

Please note that the observation IF 4THEN 
w does not set up a new axiom regarding 4and w ; 
rather, the new information is subject to revision at 
any time, as is all extensional data. 

3.3. An Algorithm for Incorporating Observa- 
tions into the KB 

The semantics presented in the previous section de- 
scribe the effect of an observation on the models of a 
theory; the semantics give no hints whatsoever on how 
to translate that effect into changes in the extensional 
belief theory. An algorithm for incorporating observa- 
tions into the KB cannot proceed by generating models 
from the theory and updating them directly, because 
it may require exponential time to generate even one 
model (since satisfiability testing is involved) and there 
may be an exponential number of non-isomorphic mod- 
els. Any algorithm for observations must find a more 
efficient way of implementing these semantics. 

The Observation Algorithm proposed in this sec- 
tion for incorporating observations into an extensional 
belief theory 7 may be summarized as follows: For each 
atom f appearing in 7 that unifies with an atom of a , 
replace all occurrences of f in 7 by a history atom. t 
Then add a new formula to 7 that defines the correct 

+ Th ese history atoms are not visible externally, i.e., they 
may not appear in any information requested from or provided 
by the KB; they are for internal KB use only. 

it4 ! SCIENCE 



truth valuation off when 4 is false, and another formula 
to give the correct valuation off when 4 is true. 

Before a more formal presentation of the Ob- 
servation Algorithm, let us motivate its workings in a 
series of examples that will illustrate the problems and 
principles underlying the algorithm. Let the body of 
7 be 1 OnTopOf(A, B), and the new observation be IF - 
T THEN OnTopOf(A, B). 

One’s natural instinct is to add 4 + w to 7, be- 
cause the observation says that w is to be true in all 
alternative worlds where $is true now. Unfortunately, 
w probably contradicts the rest of 7 . For example, 
adding T+ OnTopOf(A, B) to 7 makes 7 inconsistent. 
Evidently w may contradict parts of 7 , and those parts 
must be removed from 7 ; in this case it would suffice 
to simply remove the formula -) OnTopOf(A, B). 

But suppose that the body of Tcontains more 
complicated formulas, such as Red(A)- 1 OnTopOf(A, 
B). One cannot simply excise 1 OnTopOf(A, B) or re- 
place it by a truth value without changing the models 
for the rest of the atoms of 7 ; but by the semantics for 
observations, no truth valuation for extensional belief 
atoms except that of OnTopOf(A,B) can be affected 
by the requested observation. We conclude that con- 
tradictory wffs cannot simply be excised. They may be 
ferreted out and removed by a process such as that used 
in [Weber 861; however, in the worst case such a process 
will multiply the space required to store the theory by 
a factor that is exponential in the number of atoms in 
the observation! 

The solution to this problem is to replace all 
occurrences of OnTopOf(A, B) in 7 by another atom. 
However, the atom used must not be part of the alter- 
native world of the agent, as otherwise the replacement 
might change that atom’s truth valu ation. This is where 
the special history predicates of Cc come into play; we 
can replace each atom of w by a history atom through- 
out 7 , and make only minimal changes in the truth val- 
uations in the alternative worlds of 7. In the current 
case, OnTopOf(A, B) is replaced by Ho~T~~o~(A, B, 
0 ), where 0 is simply a unique ID for the current obser- 
vat ion. t For convenience, we will write Ho,,~~~of(A, 
B, 0) as H(OnTopOf(A, B), 0), to avoid the subscript. 
The substitution that replaces every atom f of w by its 
history atom H (f , 0 ) is called the history substitution 
and is written 0~. 

Let’s now look at a slightly more complicated 
observation. Suppose that the agent observes 0 : 
IF Red(B) THEN OnTopOf(A, B), when 7contains 

1 OnTopOf(A, B). As just explained, the first step is 
to replace this body by (1 OnTopOf(A, B)),,, i.e., 
1 H(OnTopOf(A,B),O). Within a model M of 7, this 
step interchanges the truth valuations of every atom 
f in w and its history atom H( f, 0) ; if 4 was true in 
M initially, then (#)0, is now true in M . 

It is now possible to act on the original algo- 
rithmic intuition and add (cJ~)~~ -+ w to the body of 
7, establishing correct truth valuations for the ground 
atomic formulas of w in models where 4 was true ini- 
tially. In the blocks world example, the body of 7 now 
contains the two formulas 1 H(OnTopOf(A,B),O) and 
Red(B)+ OnTopOf(A,B). 

Unfortunately, the fact that if B is not red 
then A is not on top of B has been lost! The solu- 
tion is to also add formulas governing truth valuations 
for atoms in w when 4 is false: Add 1 (+)0, -+ (f H 
H( f, 0) ) to 7 for each atom f in w . Then 7 contains 
1 H(OnTopOf(A,B),O), Red(B)+ OnTopOf(A,B), and 
-Red(B)+ (OnTopOf(A,B)c+ H(OnTopOf(A,B),O)). 
lnow has the desired alternative worlds. 

The informal algorithm proposed so far does not 
work when Skolem constants are present in either the 
theory or the observation. The basic difficulty is that 
one must update every atom in the theory that unifies 
with something in w , since truth valuations for that 
atom might possibly be changed by the new observa- 
tion. For example, suppose the body of 7 contains the 
formula Red(e ), and the agent receives the new infor- 
mation IF T THEN 1 Red(B). In other words, the agent 
knew that some object was red, and has observed that 
block B is now not red, quite possibly because it has just 
been painted green. t A moment’s thought shows that 
quite possibly no object is now red (e.g., if the agent 
has been painting them one by one), and so the formula 
Red@ ), which unifies with Red(B), must be changed in 
some way; (e # B)+ Red(e ) is the obvious replacement. 
In the general case, it is necessary to replace all atoms 
in 7 that unify with atoms of w by history atoms as part 
of the history substitution step. 

Let’s examine one final example. Suppose the 
agent’s theory initially contains the wff Red(A) and the 
new observation takes the form IF T THEN Red(e). 
The suggested algorithm produces a new theory con- 
taining the three formulas H((Red, A), 0), T-, Red(e), 

t If the argument 0 were not present, then a similar sub- 
stitution in a later observation involving OnTopOf(A, B) would 
make big changes in the alternative worlds of Tat that time. 
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and F+ (Red(e) H H((Red, E), 0)). Unfortunately, 
this theory has models where Red(A) is false! The 
problem is that the algorithm does not yet properly 
take care of the alternative worlds where eis not bound 
to A; for in those worlds, Red(A) must still be true, re- 
gardless of what the new information in the observation 
may be. The solution is to add (E # A)+ (Red(A)- 
H(Red(A),O)) to 7, and in fact this new theory has 
the desired alternative worlds. 

The lessons of the preceding examples may be 
summarized as an algorithm for executing an observa- 
tion 0 given by IF 4 THEN w against an extensional 
belief theory 7 . 
The Observation Algorithm 

Step 1. Make history. For each atom f either ap- 
pearing in w or appearing in Iand unifying with an 
atom of w , replace all occurrences of f by its history 
atom H(f, 0) in the body of 7, i.e., replace the body 
N of 7 by (N),, . Call the resulting theory 7’. 
Step 2. Define the observation. Add the wff 
wuw +wto7’. 
Step 3. Restrict the observation. First a bit of 
terminology: if atoms f and g unify with one another 
under substitutions ur and u2 , then 01 is more general 
than cr2 if it contains fewer individual substitutions for 
Skolem constants. For each atom fin I’such that f is 
not an equality atom and f unifies with some atom of w , 
let C be the set of all most general substitutions 0 under 
which f unifies with atoms of w. Add the wff 

(f * H(f, 0)) v (Wo, A v a) 
UEC 

to 7’ , writing the substitution Q = z::::z; as (pi = 
Cl)A. * A(& = c,,). Intuitively, for f an atom that might 
possibly have its truth valuation changed by observation 
0, this formula says that the truth valuation of f can 
change only in a model where 4 was true originally, and 
further that in any model so created, f must be unified 
with an atom of w . 0 

The models of 7’ produced by the Observation 
Algorithm represent exactly the alternative worlds that 
0 is defined to produce from 7 : 
Theorem 1. Given an extensional belief theory 7 and 
an observation 0, the Observation Algorithm correctly 
and completely performs 0. In particular, 

(1) the Observation Algorithm produces a legal 
extensional belief theory 7’ ; 

(2) The alternative worlds of 7’ are the same as 
the alternative worlds produced by directly updating 
the models of 7 . 0 

The interested reader is referred to [Winslett 
86b] for the proof of Theorem 1. 

3.4. Cost of the Observation Algorithm 

Let Ic be the number of instances of atoms in the obser- 
vation 0 ; and let R be the maximum number of distinct 
atoms of 7 over the same extensional predicate. When 
7 and 0 contain no Skolem constants, the Observation 
Algorithm will process 0 in time O(lc log(R)) (the same 
asymptotic cost as for ordinary database updates) and 
increase the size of 7 by O(lc) worst case. This is not 
to say that an O(lc log(R)) implementation of observa- 
tions is the best choice; rather, it is advisable to devote 
extra time to heuristics for minimizing the length of 
the formulas to be added to 7. Nonetheless, a worst- 
case time estimate for the algorithm is informative, as 
it tells us how much time must be devoted to the al- 
gorithm proper. The data structures required for this 
running time are described elsewhere [Winslett 861. 

When Skolem constants appear in 7 or in 0, 
the controlling factor in costs is the number of atoms 
of 7 that unify with atoms of 0. If n atoms of leach 
unify with one atom of 0, then 7 will grow by 0( r~ + Ic). 
In the worst case, every atom of 7 may unify with every 
atom of 0, in which case after a series of m observa- 
tions, the number of occurrences of atoms in Imay 
multiply by O(mk). To prevent excessive growth in 7 , 
we have devised a scheme of delayed evaluation and sim- 
plification of expensive observations, by bounding the 
permissible number of unifications for the atoms of an 
incoming observation. 

4. Other Work 

For a discussion of the interaction of extensional and 
intensional information in belief revision (e.g., how to 
enforce a class of axioms in the face of incoming infor- 
mation) and other possible semantics for belief revision, 
the interested reader is referred to [Winslett 86b]. 

5. Summary and Conclusion 

In this paper we represent the set of extensional beliefs 
of an agent as a logical theory, and view the models of 
the theory as representing possible states of the world 
that are consistent with the agent’s extensional beliefs. 
The extensional portion of an agent’s knowledge base 
is envisioned as a set of formulas that are not gener- 
ated via inference from other data but rather by direct 
observation; the remainder of the KB contains data- 
independent logical inference rules, data-dependent ax- 
ioms, and intensional beliefs that are derived from ex- 
tensional and other intensional beliefs using the agent’s 
axioms and rules of inference. The agent’s extensional 
beliefs may contain incomplete information in the form 
of disjunctions or null values (attribute values that are 
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known to lie in a certain domain but whose value is 
currently unknown). We formalize the extensional be- 
lief set as an extensional belief theory; formulas in the 
body of an extensional belief theory may be any sen- 
tences without universal quantification. 

From time to time an agent will make observa- 
tions, i.e., produce new extensional beliefs. This paper 
sets forth a language and semantics for observations, 
and an algorithm for incorporating observations into 
the agent’s KB. This Observation Algorithm is proven 
correct in the sense that the alternative worlds pro- 
duced under this algorithm are the same as those pro- 
duced by processing the observation in each alternative 
world individually. For beliefs and observations with- 
out Skolem constants, the Observation Algorithm has 
the same asymptotic cost as for an ordinary complete- 
information database update, but may increase the size 
of the KB. For observations involving Skolem constants, 
the increase in size will be severe if many atomic for- 
mulas in the KB unify with those in the observation; 
if desired, a lazy evaluation technique may be used to 
control expansion. A simulation program has been con- 
structed for a closed-world version of the Observation 
Algorithm. 

In sum, we have shown that the incorporation 
of new, possibly contradictory extensional information 
into a set of extensional beliefs is difficult in itself when 
either the old or new beliefs involve incomplete inform& 
tion, even when considered in isolation from the prob- 
lems associated with justification of prior conclusions 
and inferences from extensional data and the identi- 
fication of outdated and incorrect axioms. We have 
produced a polynomial-time algorithm for incorporat- 
ing extensional observations; however, it is not in gen- 
eral possible to process observations efficiently in exten- 
sional belief theories if the observations reference inten- 
sional beliefs. 
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