
What Can Machines Know? 
On the Epistemic Properties of Machines 

Ronald Fagin 
Joseph Y. Halpern 

Moshe Y: Vardi 

IBM Almaden Research Center 
650 Harry Road 

San Jose, California 95 120-6099 

Abstract: It has been argued that knowledge is a 
useful tool for designing and analyzing complex systems 
in AI. The notion of knowledge that seems most relevant 
in this context is an external, information-based notion that 
can be shown to satisfy all the axioms of the modal 
logic S5. We carefully examine the properties of this 
notion of knowledge, and show that they depend crucially, 
and in subtle ways, on assumptions we make about the 
system. We present a formal model in which we can 
capture the types of assumptions frequently made about 
systems (such as whether they are deterministic or 
nondeterministic, whether knowledge is cumulatiw, and 
whether or not the environment affects the transitions 
of the system). We then show that under some assump- 
tions certain states of knowledge are not attainable, and 
the axioms of S5 do not completely characterize the 
properties of knowledge; extra axioms are needed. We 
provide complete axiomatizations for knowledge in a 
number of cases of interest. 
1. Introduction 

A fundamental problem in many branches of AI and 
computer science (including planning, distributed com- 
puting systems, and robotics) is to design, analyze, and 
understand complex systems composed of interacting 
parts. An increasingly useful tool in this design and 
analysis process is the concept of knowledge. In AI, there 
have been two approaches to ascribing knowledge to 
machines or components of systems. The classical AI 
approach, which has been called the irzterpreted- 
symbolic-structures approach ([Ro]), ascribes knowledge on 
the basis of the information stored in certain data struc- 
tures (such as semantic nets, frames, or data structures 
to encode formulas of predicate logic; (cf. [BL]). The 
second, called the situated-automata approach, can be 
viewed as ascribing knowledge on the basis of the infor- 
mation carried by the state of the machine ([Ro]). 

Since we concentrate on the second approach in this 
paper, we describe the intuition in more detail. Imagine 
a machine composed of various components, each of 
which may be in various states. (Although we talk here 
of a “machine composed of components”, everything we 
say goes through perfectly well for a system of sensors 
taking readings, or a distributed system composed of 
robots, processes, or people, observing the environment.) 
We assume some sort of environment about which the 
system gains information. At any point in time, the 
system is in some global state, defined by the state of the 
environment and the local states of the components. We 
say a process or component p knows a fact p in global 
state s if 9, is true in all global states s’ of the system 
where p has the same local state as it does in s. 

This notion of knowledge is external. A process cannot 
answer questions based on its knowledge with respect to 
this notion of knowledge. Rather, this is a notion meant 
to be used by the system designer reasoning about the 

system. This approach to knowledge has attracted a great 
deal of interest recently among researchers in both AI 
([Ro,RK]) and distributed systems ([HMl, PR, HF, CM, 
FI]) precisely because it does seem to capture the type 
of intuitive reasoning that goes on by system designers. 
(See [RK] for some detailed examples.) 

If we are to use this notion of knowledge to analyze 
systems, then it becomes important to understand its 
properties. It is easy to show that the external notion 
of knowledge satisfies all the axioms of the classical 
modal logic S5 (we discuss this in more detail in Section 
2; an overview of S5 and related logics of knowledge 
and belief can be found in [HM2]). Indeed, the abstract 
model most frequently used to capture this notion (for 
example, in [Ro]), has been the classical Kripke-style 
possible-worlds model for S5 ([Kr]). But, a priori, it is not 
the least bit clear that this is the appropriate abstraction 
for the notion of knowledge in which we are interested. 
Does each Kripke structure really correspond to some 
state of knowledge that the system can be in? As we 
shall show, the answer to this question depends crucially, 
and in surprising ways, on the assumptions that one 
makes about the system. 

In order to explain our results, it is helpful to briefly 
review some material from [FV] which directly inspired 
our work here. In [FV] a particular scenario is considered, 
which intuitively can be viewed as robots observing their 
environment and then communicating about their obser- 
vations. These robots are assumed never to forget infor- 
mation they have learned. Moreover, the communication 
is assumed to proceed in rounds, and messages either 
arrive within one round or do not arrive at all. In 
addition, messages are assumed to be honest; for example, 
if Alice sends Bob a message p,, then it must be the case 
that Alice knows q. Under these assumptions (and, as 
we shall see, under several more that are implicit in the 
model), it is shown that certain states of knowledge are 
not attainable. In particular, suppose we let p be a fact 
that characterizes the environment (for example, if all 
we care about is the weather in San Francisco, we could 
take p to be “It is raining in San Francisco”), and suppose 
we have a system with exactly two robots, say Alice 
and Bob. Consider a situation where Alice doesn’t know 
whether p is true or false, and Alice knows that either 
p is true and Bob knows p, or p is false and Bob doesn’t 
know that p is false. Alice’s state of knowledge can be 
captured by the formula: 

(*I “KilrceP A +he -P A 
KAllce((PAKBobP)V(-PA~KBab-P))’ 

Although the state of knowledge described by this for- 
mula is perfectly consistent with the axioms of SS, it is 
not attainable under the assumptions of [FV]. 

To see that it is not attainable, suppose that it were 
attainable. Then we can reason as follows: 
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Sup- p is false. Then Alice’s state of knowle&e implies 
that neither Alice nor Bob knows that p is faire. But if Bob 
se& Alice a message saying “I don’t know p’: then, since 
Alice knows that either p is true and Bob knows p or p is 
faire and Bob doesn ‘t know that p is faire, Ah’ce will know 
that p must be false. But it ti impossible for Alice and Bob 
to discover that p 13 false simply by communicating if neither 
of them had any knowledge about p beforehand. So p murt 
be tNe. And since this argument holds for aN states where 
Alice has the same information, Alice knows p. But thB 
contradicts the assumption that Alice a&n ‘t know p. 

In [FV] a formal proof of the unattainability of this 
state of knowledge is given for their model. In order to 
show the subtlety of the assumptions required to make 
the proof go through, we now give three situations where 
the state of knowledge ti attainable. For the first case, 
suppose p is now the statement “the communication line 
between us is up”. Suppose p is true and Alice sends 
Bob the message “Hello”, which Bob receives (since, after 
all, the communication line is up). At this point, Bob 
knows p (since he received the message) and Alice doesn’t 
know whether p is true or false (since she doesn’t know 
whether Bob received her message). But Alice does know 
that either p is true and Bob knows it, or p is false and 
Bob doesn’t know p is false (since if p is false, Bob will 
have no way of knowing whether he didn’t receive a 
message because the line was down or because Alice 
didn’t send one in the first place). Thus, we exactly 
have the state of knowledge previously shown to be 
unattainable! 

Of course, there is nothing wrong with either proof. 
The first proof of impossibility breaks down in the latter 
scenario because of Alice’s seeming innocuous assumption 
that Bob could send her (and she could receive) a message 
saying “I don’t know p”. If p is false in the latter 
scenario, then she could never receive such a message 
because the communication line would be down. Im- 
plicitly, there is an assumption in the model of [FV] that 
the primitive propositions talk about “nature” and have 
no impact on the transitions of the system. In particular, 
a proposition cannot say that a communication line is 
down or a message buffer is full. 

Now suppose we slightly modify the example so that 
there is a communication link from Alice to Bob and a 
separate one from Bob to Alice. Further suppose that 
the link from Bob to Alice is guaranteed to be reliable. 
Let p say that the communication link from Alice to 
Bob is up. Just as before, suppose Alice sends Bob a 
message saying “Hello”, which Bob gets. The same rea- 
soning as above shows that we have again attained the 
“unattainable” state of knowledge. But in this case, Bob 
can send Alice a message saying “I don’t know p”, and 
Alice would be guaranteed to receive it. So now where 
does the reasoning in the proof of [FV] break down? 
This time it is in the assumption that Alice and Bob 
cannot gain knowledge of a fact that they did not even 
have implicit knowledge of beforehand (this is called the 
principle of “Conservation of Implicit Knowledge” in 
[FV]).’ Although neither Alice nor Bob had any knowl- 
edge of p before the message was sent, when the message 
arrived Bob knew p was true, so implicit knowledge is 
gained in this situation. The point is that while implicit 
knowledge of the environment cannot be gained if the 
processes first observe the environment and then com- 

municate about it (so that, intuitively, all transitions are 
independent of the environment), this may not be true 
in a more general setting. 

A third critical assumption being made in the argument 
from [FV] is that neither robot forgets; i.e. their knowledge 
is cumulative. We implicitly assume that if at some point 
neither Alice nor Bob knows that p is false, then they 
never had any knowledge of p beforehand. But if knowl- 
edge is not cumulative, then it may have been the case 
that Bob knew that p was false, imparted a piece of this 
knowledge to Alice, and then forgot about it. For ex- 
ample, suppose Alice knows that if Bob knows p, he will 
never forget it, while if Bob knows -p, then he may 
forget it. Suppose in fact that p is true and Bob knows 
it, and Bob sends Alice two messages. The first one says 
“either I know p or I know -p” (i.e., KBobpVKsob-p), 
while the second says “I don’t know that p is false” (i.e., 
-KBob-p). At this point, Alice knows that either p is 
true and Bob knows it, or that p is false and Bob doesn’t 
know that p is false (he may have known this before 
and forgotten). Again, we have shown that the “unat- 
tainable” knowledge state is attainable! 

While this example’ may seem a little contrived, it is 
in fact easy to capture if we view Alice and Bob as 
finite-state machines. Indeed, an agent that does not 
forget must in general have unbounded memory (in order 
to remember all the messages it has sent and received), 
so that, in a sense, a finite-state machine can be viewed 
as the canonical example of a machine that does forget. 

In order to examine the properties of knowledge care- 
fully, we define an abstract model of knowledge for 
machines. Using this model, we are able to give precise 
formulations of a number of parameters of interest when 
analyzing systems. The exact setting of the parameters 
depends, of course, on the system being analyzed, although 
some choices of parameters seem more common in AI 
applications than distributed systems applications, and 
vice versa. Typical parameters include: 

Is a process’ knowledge cumulative? Most papers that 
consider reasoning about knowledge over time implicitly 
assume that knowledge is cumulative. Indeed, this is 
one of the major reasons that Moore ([MO]) considers 
knowledge rather than belief. As Moore points out, 
“If we observe or perform a physical action, we gen- 
erally know everything we knew before, plus whatever 
we have learned from the action.” For example, when 
considering a robot learning a telephone number, we 
don’t worry about the robot forgetting the number a 
few steps later. A similar assumption is often made 
in the distributed systems literature, (cf. 
[HMl,HF,Le,PR,DM]). This assumption is, of course, 
an idealization, since cumulative knowledge in general 
requires unbounded memory. Bounded memory is a 
more realistic assumption (and has been used in papers 
such as ([CM,FI,RK]). But note that for limited inter- 
actions, knowledge can be cumulative even with 
bounded memory; all that is required is enough memory 
to store the history.2 
Are transitions of the system independent of the en- 
vironment? In the case of processes or sensors observing 
the environment and then communicating about it, 
transitions would be independent if nothing about the 
state can effect the possibility of communication. But 
suppose we are observing the weather. One can well 
imagine that the presence of a heavy thunderstorm 

1 We discuss implicit knowledge formally in the next section. Roughly speaking, a system has implicit knowledge of a fact if by 
putting all their information together, the components of the system could deduce that fact. 

2 We remark that Halpern and Vardi have shown that that the assumption that processes’ knowledge is cumulative has a drastic 
effect on the complexity of the decision procedure for validity of formulas involving knowledge and time ([HV]). 
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could affect communication, and so affect the transi- 
tions in the system. 

l Is the system deterministic or nondeterministic? The 
answer to this question might depend partly on the 
granularity of our analysis. A system that seems 
deterministic at one level of analysis may seem 
nondeterministic if we get down to the level of elec- 
trons. Note that even if the individual processes or 
components of the system are deterministic, the system 
as a whole may be nondeterministic, since we may 
decide to ignore certain components of the system 
(such as a message buffer or a particular and-gate) in 
doing our analysis. 

l Do we view the system as embedded in its environment, 
so that the initial state of the system is a (possibly 
nondeterministic) function of the environment, or do 
we take the system to be the total environment, so 
that the initial state of the system completely determines 
the state of the environment? The former is appropriate 

w if we consider the system to consist of sensors observing 
nature, while the latter is more appropriate in certain 
distributed systems applications where we identify the 
“environment” with the initial setting of certain vari- 
ables. Of course, there may well be applications for 
which some point between these poles might be more 
appropriate. 

. Is the system synchronous or asynchronous? 
The list of parameters mentioned above is not meant 

to be exhaustive. The interesting point for us is the 
subtle interplay between these parameters and the states 
of knowledge that are attainable. For example, if (1) 
processes’/components’ knowledge is cumulative, (2) the 
system is embedded in the environment, and (3) transitions 
of the system are independent of the environment, then 
it turns out that the axiom system ML of [FV] gives a 
complete characterization of the knowledge states attain- 
able (i.e., is sound and complete), independent of the 
choices of the other parameters. If we assume that the 
system is deterministic, we get yet another axiom. On 
the other hand, if we assume that knowledge is not 
cumulative or that the state of the environment can 
affect the transitions of the system, we find that S5 does 
provide a complete characterization of the states of 
knowledge attainable. To us, the moral of this story is 
that a reasonable analysis of a system in terms of knowl- 
edge must take into account the relationship between the 
properties of the system and the properties of knowledge. 

The rest of the paper is organized as follows. In 
Section 2 we describe our abstract model and show how 
all the various assumptions we would like to consider 
can be captured in the model. In Section 3 we briefly 
review the semantics of knowledge in systems. In Section 
4 we characterize what states of knowledge are attainable 
under a number of different reasonable assumptions 
about systems. We conclude in Section 5 with some 
directions for further research. 
2. The model 

Consider a system with n processes (or components). 
A global state of the system is a tuple that describes the 
state of the environment and the local state of each 
process. We consider the system to be evolving over 
time. A complete description of one particular way the 
system could have evolved is a run. We identify a system 
with a set of runs. 

More formally, a system M is a tuple (E, C, R, L,g), 
where E is a set of primitive environment states; C is a finite 
set of processes, which, for convenience, we shall usually 
take to be the set (l,..., n) if n is the total number of 
processes; R is a set of runs; L is the set of local states 
that the processes can take on; and g associates with 

each run r E R and each natural number m E m (which 
we are viewing as a time) a global state g(r,m), where a 
global state is a tuple <e,lr ,..., 1, >, with e tl E and /, E L 
for i= l,...,n. Following [HMl], we may refer to the 
pair (r, m) as a point. 

A few comments about the model are now in order. 
We view a primitive environment state as being a 

complete description of “nature” (or whatever the domain 
of discourse is). We could instead have started with a 
set of primitive propositions, say p1, . . ..p.,,. In this case 
a primitive environment state would just be one of the 
2m truth assignments to the primitive propositions. We 
prefer to start with these primitive environment states, 
since they seem to us more basic than primitive propo- 
sitions (and, as we shall see, our axioms are more nat- 
urally expressed in terms of them), but everything we 
say can be easily reformulated in terms of primitive 
propositions. 

For the rest of this paper we assume that the primitive 
environment state does not change throughout the run. 
Formally, for all runs r c R and all m,m’ E IV, if 
g(r, m> = k, 11, . . . . I,> and g(r, m’) = (e’, & , . . . . r’,), then e = e’. 
One can certainly imagine applications where the envi- 
ronment does change over time (if we have sensors ob- 
serving some terrain, we surely cannot assume that the 
terrain does not change over time!). But even in such 
applications the sensors usually communicate about a 
particular reading taken at a particular time. In this case 
we can think of the primitive environment states as 
describing the possible states of the environment at that 
time. 

We have taken time here to be discrete (ranging over 
the natural numbers). This is mainly an assumption of 
convenience. We could have taken time to range, for 
example, over the non-negative reals, and defined a global 
state g(r,t) at all non-negative real times I; none of the 
essential ideas would change in this case. Of course, we 
do not assume that there is necessarily a source of time 
within the system. Time is external to the system, just 
like knowledge. 

Note that we have made no commitment here as to 
how the transitions between global states occur. There 
is no notion of messages or communication in our model, 
as there is, for example, in the model of [HF]. While it 
is easy to incorporate messages and have the transitions 
occurring as a result of certain messages occurring, tran- 
sitions might also be a result of physical interactions or 
even random events internal to some component. 

As it stands, this model is still too general for many 
purposes. We now discuss how a number of reasonable 
restrictions. can be captured in our model. There are 
two general types of restrictions we consider: restrictions 
on the possible initial global states and restrictions on 
the possible transitions. In terms of knowledge, these 
restrictions can be viewed as restrictions on the initial 
state of knowledge and restrictions on how knowledge 
can be acquired. 
Definition 2.1. Fix a system M = (E, C, R, L,g). We say 
s = < e, 11 , . . . . 1, > is a global state in M if s =g(r, m) for some 
run r < R and time m; e is the environment component of s 
while <ll,...,l, > is the process componen I. Let 
s= <e,ll ,..., i,> and s’=<e’,l: ,..., I;> be two global 
states in M. We say s and s’ are indistinguishable to process 
i, written s -, s’, if 1, = 1:. We say s and s’ are &cess 
equivalent if they are indistinguishable to all processes 
j = 1 , . . . . n, i.e., if s and s’ have the same process component. 
Process i’s view of rw2 r up to time m is the sequence lo, . . . . lk 
of states that process i takes on in run r up to time m, 
with consecutive repetitions omitted. For example, if 
from time 0 through 4 in run r process i goes through 
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the sequence l,l, r’, 1,l of states, its view is just l,Z’,l. 
Finally, s is an initial state if s = g(r, 0) for some run r. 

We can now precisely state a few reasonable restric- 
tions on systems. 

1. Restrictions on possible initial states. 
a. In many applications we view the system as 

embedded in an environment, where the pro- 
cesses’ initial states are a function of.observations 
made in that environment. Thus if process i is 
placed in environment e, then its initial state is 
some function of e. This function’ is in general 
not deterministic; i.e., for a given state of the 
environment, there may be a number of initial 
local states that a given process can be in. For- 
mally, we say that the environment determines the 
initial states if for each process i and each primitive 
state e, there is a subset L(i,e) of local states 
such that the set of initial states is 
j<e,ll,...,l, > 11, EL(i, e)). Intuitively, L(i,e) is the 
set of states that i could be in initially if the 
environment is in state e. If we imagine that i 
is a sensor, then these states represent all the 
ways i could have partial information about e. 
For example, if facts p and q are true in an 
environment e, we can imagine a sensor that 
sometimes may observe both p and q, neither, 
or just one of the two; it would have a different 
local state in each case. Note we have also 
implicitly assumed that there is initially no in- 
teraction between the observations. That is, if 
in a given primitive environment state e it is 
possible for process i to make an observation 
that puts it into state 1, and for j to make an 
observation that puts it into l,, then it is possible 
for both of these observations to happen simul- 
taneously. This assumption precludes a situation 
where, for example, exactly one of two processes 
can make a certain observation. An important 
special case occurs when the initial state of the 
processes is a deterministic function of the en- 
vironment. We say the environment uniquely deter- 
mines the initial state if the environment determines 
the initial states and, in addition, if L(i,e) is a 
singleton set for all i and e. 

b. At the other extreme, we have the view that 
the system determines the environment. For 
example, in some distributed systems applications 
we may want to take the “environment” to be 
just the initial setting of certain local variables 
in each process. We say the initial state uniquely 
determines the environment if, whenever two initial 
global states are process equivalent, they are in 
fact identical. 

Of course, many situations between these extremes 
are possible. 

2. Restrictions on state transitions. 
a. If a process’ knowledge is cumulative, then the 

process can and does “remember” its view of a 
run. Thus, if two global states are indistinguish- 
able to process i, then it must be the case that 
process i has the same view of the run in both. 
More formally, knowledge is cumulative if for all 
processes i, all runs r,r , and all times m, m’, if 
g(r, ml *, g(r’,m’), then process i’s view of run r 
up to time m is identical to its view of run r’ 
up to time m’. Note that cumulative knowledge 
requires an unbounded number of local states in 

general, since it must be possible to encode all 
possible views of a run in the state. In particular, 
the knowledge of finite-state machines will, in 
general, not be cumulative. 
In a synchronous system, every process has access 
to a global clock that ticks at every instant of 
time, and the clock reading is part of its state. 
Thus, in a synchronous system, each process 
always “knows” the time. Note that in particular, 
this means that in a synchronous system processes 
have unbounded memory. More formally, we 
say a system is synchronous if for all processes 
i and runs r, if g(r, m) -, g(r,m’), then m = m’. 
An easy proof (by induction on m) shows that 
in a synchronous system where knowledge is 
cumulative, if g(r, m) -I g(r’, m’), then m = m’ and, 
if m > 0, g(r,m - 1) -( g(r’,m - 1). A system that 
is not synchronous is called asynchronous. 
We say that transitions are independent of the envi- 
ronment if, whenever we have two process- 
equivalent initial states, then the same sequence 
of transitions is possible from each of them; i.e., 
if s= <e,lI ,..., I,> and s’= <e’,ll,..., l,> are 
process-equivalent initial states and r is a run 
with initial state s (i.e., g(r, 0) =s), then there is 
a run r’ with initial state s’ such that g(r,m) is 
process equivalent to g(r’, m) for all times m. 
We say a system is deterministic if the initial state 
completely determines the run; i.e., whenever r 
and r’ are runs with g(r, 0) =g(r’, 0), then r = r’.j 
Note that in both of the previous definitions we 
considered only initial states. Even if transitions 
are independent of the environment, it will not 
in general be the case that the same sequence 
of transitions is possible starting from two arbi- 
trary process-equivalent global states, since the 
transitions may depend on the whole history of 
the run, including, for example, messages that 
were sent but did not yet arrive. Similarly, even 
in a deterministic system there may be two dif- 
ferent transitions possible from a given global 
state, depending on the previous history, The 
point is that there may be some information 
about the system not described in the global 
state (such as the fact that certain messages have 
not yet been delivered). Intuitively, this “incom- 
pleteness” in the global state arises because we 
choose not to describe certain features of the 
system. For example, we may choose the com- 
ponents of C to be only the processors in the 
system, ignoring the message buffers. We say 
there are no hidden components in a system if, 
whenever r,r’ E R are two runs such that 
g(r,m) =g(r’,m’), then there is a run r” E R which 
has the same prefix as r up to time m and 
continues as r’ (i.e., g(r”, k) = g(r, k) if k < m, and 
g(r”, k) =g(r’, m’ + k -m) if k 2 m). Intuitively, 
since the global state contained all the relevant 
information, starting with r it could have been 
the case that from time m on we could have 
continued as in run r’. Note that in a deterministic 
system with no hidden components, if 
g(r,m) =g(r’,m’), then g(r,m + 1) =g(r’,m’+l). 
Similarly, in a system where transitions are in- 
dependent of the environment with no hidden 
components, the same sequence of transitions is 

3 It is not hard to see that in a deterministic system where transitions are independent of the environment, the initial process 
component completely determines the run; i.e. 
g(r’,m) are process-equivalent for every m. 

if I and r’ are runs where g(r, 0) and g(r’,O) are process-equivalent, then g(r, m) and 
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always possible from two process equivalent 
global states. 

We have outlined a few reasonable restrictions on 
possible initial states and on state transitions. Certainly 
it is possible to come up with others. The main point 
we want to make here is that many reasonable restrictions 
on systems can be easily captured within our model. 
3. States of knowledge 

Consider the language that results when we take prim- 
itive environment states e,e’, . . . . and close off under ne- 
gation, conjunction, and knowing, so that if 9 and r+~’ are 
formulas, so are -p, p, A p’, and K,QJ, i = 1, . . . . n. We also 
find it convenient at times to have implicit knowledge in 
the language. Intuitively, implicit knowledge (which is 
formally introduced in [HM2] and has also been used in 
[CM, DM, FV, RK]) is the knowledge that can be obtained 
when the members of a group pool their knowledge 
together. Put differently, it is what someone who had 
all the knowledge that each member in the group had 
could infer. We use Ip, to denote implicit knowledge of 
V* 

We now define what it means for a formula ‘p in the 
language to be true at time m in run r of system 
M=(E,C,R,L,g), written M,r,m l==v: 

M,r,m p e, where e is a primitive environment state, 
if g(r, m) = <e, . . . > 
M,r,m F-q if M,r,m Vq 
M,r,m I= ~1 A92 if M,r,m I= w and M,r,m I= ~2 
M,r,m /= K, CJI if M,r’, m’ + q for all r’,m’ such that 
g(r, ml -, g(r’, m’> 
M,r, m + lg, if M, r’, m’ k cry for all r’, m’ such that g(r, m) 
is process equivalent to g(r’,m’). 

It is helpful to comment on the last two clauses of the 
above definition, which describe when K,p and le, hold. 
Let S, = {(r’, m’) I g(r, m) -, g(r’, m’)). Intuitively, 
(r’, m’) E S, precisely if at time m in run r, it is possible, 
as far as process i is concerned, that it is time m’ in run 
r’. It is easy to verify that K,IJI holds at time m in run 
r precisely if q holds at every point in S,. Let S be the 
intersection of the S’s. Intuitively, (r’, m’) E S precisely 
if at time m in run r, if all of the processes were to 
combine their information then they would still consider 
it possible that it is time m’ in run r’. It is easy to verify 
that 8 (r,m) is process equivalent to g(r’,m’) precisely if 
(r’, m ) E S. Thus, lp, holds at time m in run r precisely 
if q holds at every point in S. 
Definition 3.1. A formula F is valid if M, r, m /= q for all 
systems M, runs r, and times m. 

It is easy to see that the truth of a formula depends 
only on the global state; i.e., if g(r, m) = g(r’,m’), then 
for all formulas q,, we have M,r,m p q iff M, r’, m’ I== q. 
This way of assigning truth gives us a way of ascribing 
knowledge to components of a system in a given global 
state. But we still have not defined the notion of a state 
of knowledge. What is the state of knowledge of a system 
in a given global state ? We could identify the state of 
knowledge with the set of formulas true in the global 
state, but this definition is too dependent on the particular 
language chosen. Instead, we give a semantic definition 
of a state of knowledge. We first need a preliminary 
definition. 
Definition 3.2. A global state s’ is reachable from s in S 
if there exist global states se, . . ..sk in S and (not necessarily 
distinct) processes il, . . . . ik such that s = SO, s’= Sk, and 
S/-l -,, sI for j= l,..., k. 

Intuitively, the state of knowledge of the system in 
global state s depends only on the global states reachable 
from s. This is borne out in our formal semantics by 
the fact that the truth of a formula at time m in run r 
only depends on the global states reachable from g(r,m). 
Thus, we have the following definition. 
Definition 3.3. A state of knowledge is a pair (S,s) where 
S is a set of global states, s E S is a global state, and 
every member of S is reachable from s in S. A state 
(S,s) is attainable in a system M if there is a global state s 
in M such that S consists precisely of those states reach- 
able from s. 

In the full paper ([FHV]) we review the classical 
Kripke semantics for the modal logic S.5 and define the 
analogue of the notion of state of knowledge for Kripke 
structures. It is fairly easy to show that there is an 
exact correspondence between states of knowledge in our 
model and states of knowledge in Kripke structures. This 
perhaps justifies the choice of Kripke structures as an 
appropriate abstraction for the notion of knowledge in 
systems. However, as we show in the next section, 
under some of the restrictions on systems we have dis- 
cussed, not all states of knowledge are attainable. 
4. The properties of knowledge 

We shall not try to give here a complete taxonomy 
of the properties of knowledge for each choice of pa- 
rameters that we have discussed (although in the full 
paper, we do characterize the properties of knowledge 
for many cases of interest). Instead, we discuss a few 
illustrative cases, with a view towards showing the sub- 
tlety of the interaction between the properties of the 
system and the properties of knowledge. 

As we remarked above, if we put no restrictions on 
systems, then there is an exact correspondence between 
states of knowledge in our model and those in Kripke 
structures. It is well-known that the axiom system SS 
captures the properties of knowledge in Kripke structures; 
i.e., it is sound (all the axioms are valid) and complete (all 
valid formulas are provable). S5, (the extension of the 
classical axiom system S5 to a situation with n knowers) 
consists of the following axioms and rules of inference. 
The axioms are: 

Al. All substitution instances of propositional 
tautologies.’ 
A2 K,PI~AK,(~~+~~)+K,v~, i- l,..., n 
A3. K,~=+~, i=l,..., n 
A4. K,q+K,K,q, i- l,..., n 
A5. -K,q+K,-KIpl. 

There are two rules of inference: modus ponens (“from 
~1 and qr+ 72 infer CJQ”) and knowledge generalization 
(“from p infer K,p”). 

If we extend the language to include implicit knowl- 
edge, then we obtain a complete axiomatization by adding 
axioms that say that I acts like a knowledge operator 
(i.e., all the axioms above hold with K, replaced by r> 
and the additional axiom: 

K,q=+lq~, i= l,..., II. 
In [HM2] it is shown that this axiomatization, called 
S5I,, is sound and complete in Kripke structures for the 
extended language with implicit knowledge. 

For various reasons, philosophers have argued that S5 
is an inappropriate axiom system for modelling human 
knowledge. For example, axiom A2 seems to assume 
perfect reasoners, that know all logical consequences of 
their knowledge, while A5 assumes that reasoners can 

4 Since our base language consists of primitive environment states rather than primitive propositions, we also have tautologies of the 
form e+ -e’ if C,C’ are distinct primitive environment states. In addition, if we have only finitely many primitive environment 
states, say cl, . . . . ex, then elV...Ve~ is a tautology. 
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do negative introspection , and know about their lack of 
knowledge. While these axioms may be controversial 
for some notions of knowledge, they are not controversial 
for the external, information-based notion that we are 
concerned with here. Moreover, it is easy to see that 
all of these axioms are still sound even under the restric- 
tions on systems discussed in Section 2. But of course, 
they may no longer be complete. 

Recall the Alice and Bob story discussed in the intro- 
duction. What assumptions were really needed to show 
that the state of knowledge defined by formula (*) was 
not attainable? As the counterexamples given in the 
introduction suggest, we need to assume cumulative 
knowledge (i.e., no “forgetting”) and that the environment 
does not affect the transitions. Also implicit in the story 
is that Alice and Bob initially study nature independently, 
so we also need the assumption that the environment 
determines the initial states. It turns out that these three 
conditions are sufficient to show that (*) is not attainable, 
as we shall see below. 

Our first step is to get a semantic characterization of 
the attainable states of knowledge under these assump- 
tions. 
Definition 4.1. A knowledge state (S,s) satisfies the 
pasting condition if, whenever s’,sr, . . ..s. are global states 
in S such that e is the environment component of s, and 
s’ -, s,, i = 1 , . . . . n, then there exists a global state s” in S 
such that s” is process equivalent to s’ and e is the 
environment component of s”. Thus, a knowledge state 
(F, s> satisfies the pasting condition if, whenever 
s = ( l , 1 1 , . . . . I,) E s, and also sl = (e, 11, 9, . . . . ‘) E S, 
p,= (e, l , 12, ‘, . . . . ‘) E S, . . . . and s, = (e, ., . . . . ., 1,) E S, then 
S = k, h , . . . . I,) E S. (Each . represents a value we do not 
care about.) 
Proposition 4.2. If M is a system where (I) knowledge is 
cumulative, (2) the environment determines the initial states, and 
(3) transitions are independent of the environment, then all the 
states of knowledge attainable in M satisfy the pasting condition. 
Conversely, if a state of knowledge satisfre the pasting condition, 
then it is attainable in some system M satisfying these three 
assumptions. 
Note that these assumptions are not unreasonable. They 
hold for “ideal” sensors or robots observing and commu- 
nicating about an external environment. 

Not surprisingly, the fact that the pasting condition 
holds affects the properties of knowledge. Neither S5, 
nor S51, is complete. Consider the following axiom in 
the extended language, where e is a primitive environment 
state and 11, ,.., n) is the set of processes: 

A6 I-e + Kl-eV...VK,-e. 
This says that if it is implicit knowledge that the primitive 
environment state is not e, then it must be the case that 
some process knows it. The soundness of this axiom, 
which is not a consequence of SX,, is easily seen to 
follow from the pasting condition. We remark that the 
formula (*) discussed in the introduction is a consequence 
of S5 together with A6 (provided we assume that the 
primitive proposition p in formula (*) is a primitive 
environment state; recall that we said it “completely 
characterizes the environment”). 

Even without implicit knowledge in the language, we 
can get an axiom that captures some of the intuition 
behind the pasting condition. We define a pure knowledge 
formula to be a Boolean combination of formulas of the 
form K,q,, where v is arbitrary. For example, 

is a pure 
.;Ac,t the fc.11 

edge formula, 
9 v;nm .xrharta 

“UL y r I \ .-fi,y IJ 

e is a primitive 
edge formula: 

U”L. b”IIJIUGI LIIG I “I,” VY ,116 cI.-.I”UI, ” I‘bl c 

envir .onment state and v is a pure knowl- 

A6’. K,(~,~e)=$K,(~~(KI-eV...VK,-e)). 
The intuition behind this rather mysterious formula is 
discussed in [FV]. Let ML, (resp. ML;) be S51, (resp. 
SS,) together with A6 (resp. A6f). 
Theorem 4.3. ML, (resp. ML,,) is a sound and complete 
axiomatization (for the extended language) for systems of n pro- 
cesses where (I) knowledge is cum&tine, (2) the environment 
determines the initial states, and 13) transitions are in&pen&nt 
of the environment. 

Soundness and completeness theorems for ML; and 
ML, are also proven by Fagin and Vardi in [FV], but in 
a rather different setting from ours. The model in [FV] 
is much more concrete than the model here; in particular 
there is in their model a particular notion of communi- 
cation by which the system changes its state. Here we 
have an abstract model in which, by analyzing the im- 
plicit and explicit assumptions in [FV], we have captured 
the essential assumptions required for the pasting property 
and A6 to hold. While soundness in [FV] follows easily 
from soundness in the model here, they have to work 
much harder to prove completeness. 

Recall from our Alice and Bob story in the introduction 
that the assumptions we made all seemed to be necessary. 
The following theorem confirms this fact. It shows that 
if we drop any one of assumptions (l), (2), or (3), all 
states of knowledge are attainable, and S5, (resp. S51,) 
becomes complete. 
Theorem 4.4. All states of knowledge are attainable in systems 
that satisfy only two of the restrictions of Proposition 4.2 and 
Theorem 4.3. Thus S5, (resp. SSI,J is a sound and complete 
axiomatization (for the extended language) for such systems. 

We remark that in Proposition 4.2 and Theorem 4.3 
we assumed that the environment determines the initial 
states. If we make the stronger assumption that the 
environment uniquely determines the initial state, then a 
smaller set of knowledge states is attainable, and again 
knowledge has extra properties. This is discussed in 
detail in the full paper. 

Finally, we turn our attention to systems where the 
initial state uniquely determines the environment. Recall 
that this assumption is appropriate for distributed systems 
applications where the environment is just the initial 
setting of certain local variables in each process. If 
knowledge is not cumulative, then it again can be shown 
that all states of knowledge can be attained. But if 
knowledge is cumulative, then not only is it initially the 
case that the processes’ state uniquely determines the 
environment, but this is true at all times. 
Definition 4.5. (S,s) is a state of knowledge where the 
processes’state uniquely&ermines the environment if, whenever 
two global states s and s’ in S are process equivalent, 
then s and s’ have the same environment component. 
Proposition 4.6. If M is a system where knowledge is cumulative 
and the initial state uniquely determines the environment, then in 
every state of knowledge attainable in M, the processes’ state 
uniquely determines the environment. Moreover, every state of 
knowledge where the processes# state un&uely determmes the en- 
vironment is attainable in a system where knowledge is cumulative 
and the initial state uniquely determines the environment. 

We can show that if the processes’ state always 
uniquely determines the environment, then S51, is not 
complete. The fact that the processes’ state uniquely 
determines the environment can be characterized by the 
following axiom: 

A7. q+Ig,. 
Note that this is an axiom in the extended language. 
Somewhat surprisingly (and in contrast to the situation 
in Theorem 4.3), it turns out that if we restrict our 
attention to formulas involving only knowledge, then S5, 
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ir a complete axiomatization. 
quired! Thus we have: 

No new axioms are re- 

Theorem 4.7. S5, is a sound and complete axiomatization for 
systems of n processes whose knowledge ti cumulative where the 
initial state uniquely determines the environment. In the extended 
kznguclge, S5I, together with A7 forms a sound and complete 
axiomatization for such systems. 

This theorem shows that there are cases where the 
language may not be sufficiently powerful to capture the 
fact that not all states of knowledge are attainable. 

Details of the proofs of theorems stated above and 
further results along these lines can be found in the full 
paper. 
5. Conclusions 

We have presented a general model for the knowledge 
of components of a system and shown how the properties 
of knowledge may depend on the subtle interaction of 
the parameters of the system. Although we have isolated 
a few parameters of interest here, we clearly have not 
made an exhaustive study of the possibilities. Rather, 
we see our contributions here as (1) showing that the 
standard S5 possible-worlds model for knowledge may 
not always be appropriate, even for the external notion 
of knowledge which does satisfy the S5 axioms, (2) 
providing a general model in which these issues may be 
examined, (3) isolating a few crucial parameters and 
formulating them precisely in our model, and (4) providing 
complete axiomatizations of knowledge for a number of 
cases of interest (complete axiomatizations are provided 
for many choices of parameters in the full paper). 

We intend to push this work further by seeing what 
happens when we add common knowledge and time to 
the language. By results of [HMl] (since reproved and 
generalized in [CM,FI]), we know that for many choices 
of parameters, common knowledge will not be attainable 
in a system. Thus, we expect that even in cases where 
the axioms of S5 are complete, when we add common 
knowledge to the language we will need extra axioms 
beyond the standard S5 axioms for common knowledge 
(see [Le,HM2] for a discussion of the S5 axioms of 
common knowledge). We expect to find yet other com- 
plexities if we allow the language to talk explicitly about 
time by adding temporal modalities (as is done in 
[Le,RK,HV]). We can then explicitly axiomatize cumu- 
lative knowldge, although results of [HV] imply that it 
may often be impossible to get complete axiomatizations 
in some cases. 
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