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ABSTRACT 

This work treats the case of expert-originated 
hypotheses which are to be modified or refined by training 
event data. The method accepts the hypotheses in the form 
of weighted VL, expressions and uses the probabilistic rule 
generator, PRG. The theory of operation, verified by 
experimental results, provides for any degree of hypothesis 
modification, ranging from minor perturbation to complete 
replacement according to supplied confidence weightings. 

I INTRODUCTION 

There are many situations where we would like to con- 
struct a knowledge base initially as a set of hypotheses, 
introduced by a human expert, which are later systemati- 
cally modified by experimental training data events. 
Indeed, one might say that this ordering of the learning 
process is analogous to theoretical study of a problem’s 
solution methods followed by practical experience with the 
problem, wherein modification or adaptation of the initial 
rules or hypotheses occur. R.equired modifications may 

range from small perturbations of the hypotheses through 
major or minor deletions and addition of new rules. 

This problem has been called,“rule refinement”, in 
which cases it was viewed as an incremental learning of 
machine generated rules. Here, we extend the idea to modi- 
fying hypotheses originated either by human agent or 
machine. Therefore, communication between human expert 
and machine becomes possible in the sense of human intro- 
duction of a bias or preliminary problem treatment. Our 
approach hinges upon a probabilistic formulation of the 

rule generation problem and deviates significantly from pre- 
vious approaches because of this and its embodiment in the 
Probabilistic Rule Generator (PRG) (Lee and Ray, 1986a & 
b). The form of expression of the rules must also be equally 
convenient both for a human and for the rule generator. 

First, some of the difficulties arising from the rule 
refinement problem are discussed. Next, related works are 
examined, and then, a language is presented describing the 
initial hypotheses appropriately to communicate to a 
machine. Finally, a scheme to modify initial hypotheses 
with the training data set is described with some practical 
application results. 

II DIFFICULT NATURE OF THE PROBLEM 

To examine the difficult nature of the problem, let us 
consider a simple case first. Assume that we have only one 

initial hypothesis V, for a class C,, and one hypothesis, V,, 

for a class C,. Let F, and F, be new training event sets for 
C, and C,, respectively, to be used in rule refinement. 

If V, and V, perfectly describe classes C, and C,, 

respectively, then all the events in F, will be covered by the 
hypothesis V,, and likewise, there will be no events in F, 

which are not covered by V,. But, in general, hypotheses 
are not perfect, hence usually not consistent with the new 
event sets. Therefore, hypotheses need to be modified to 
accommodate newly acquired facts. But, the modification 
process is complicated by various interactions among 
hypotheses and events as described below. 

A hypothesis V, is incomplete if it does not cover all 

the events in F1(we are still assuming that there is only one 
hypothesis V, for the class C,). 

A hypothesis is inconsistent if it covers events which 
belong to other classes. 

A hypothesis V, collides with another hypothesis V, if 
their intersection is non-null. If the two hypotheses belong 
to different classes, then a contradiction between the 
hypotheses results. On the other hand, if the two 
hypotheses belong to the same class, then they might have 
to be merged together to form a new hypothesis. 

Now, let us consider all of the three problems men- 
tioned above at the same time(see Figure 1). More compli- 
cations arise since when we try to resolve incompleteness by 
expanding a hypothesis, then inconsistency might occur 
during the process by covering exception events belonging 
to other classes. 

Likewise, if we shrink a hypothesis to resolve incon- 
sistency by not covering exception events, then incomplete- 
ness might occur during the process since some of the 
events included in the former hypothesis might not belong 
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Figure 1. Simple example of a general rule refinement 
problem: here, “+” are events in F,, and “-” are those in 
F,. Notice the probabilistic nature of the problem. 
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to the modified hypothesis any more. 

Of course, we can always adjust hypothesis V, so that 

it includes some of the events in F,, and does not cover any 
event in F,. But, in doing so, the newly generated 
hypothesis might become malformed in shape as it might 
have to be shrunk too much to exclude all exception events. 
Therefore, the classical viewpoint of strict completeness and 
consistency of a concept is no longer adequate. A scheme 
should be flexible enough to generate an appropriate form 
of hypotheses according to user specification, and it is desir- 
able to have a process with a probabilistic nature, allowing 
partially complete and partially consistent concepts. The 
point here is that a general rule refinement scheme must be 
able to deal with all the possible situations that the usually 
noisy data set might present. 

As we can see, the problem of dealing with collisions 
between hypotheses will become increasingly complex, as 
the situation worsens by the addition of problems of incom- 
pleteness and inconsistency. 

We have considered only a simple case so far; each 
class having only one initial hypothesis. But, what about 
more complex cases when there is more than one hypothesis 
for each class? A bewildering variety of interactions among 
the hypotheses and the event sets can occur then. 

Implicit in the above discussion is that we modify the 
hypotheses to fit with the example events. But, if the 
hypotheses represent only a few cases of the facts, and if 
the new training data set contains a large amount of events 
not described by the initial hypotheses, the idea of starting 
with the hypotheses and adjusting them to fit the data 
might not be the right one. Rather, we might want to pro- 
duce complexes from the data events first, and adjust those 
complexes according to hypotheses. An extreme case arises 
when the initial hypotheses do not cover any of the events 
in the new training data set. The idea is that we should not 
give any special privilege to the initial hypotheses, but treat 
the hypotheses equally with the event sets according to 
their importance of how many data events they represent. 

III PREVIOUS WORK* 

A. AQ Rule Refinement 

The AQ rule refinement scheme was derived in 
(Michalski and Larson, 1978). There are some shortcom- 
ings in this scheme. First, the objective of AQ incremental 
rule generation is to produce a new decision rule consistent 
with the input hypotheses and the observed events. Initial 
hypotheses are not modified to make them consistent with 
observed events; they are rather used to find events that 
cause inconsistency and incompleteness to the hypotheses, 
and to generate a cover of an event set against those 
hypotheses. 

Since complexes are generated around the example 
events only, and no attempt is made to modify the initial 
hypotheses to make them consistent with the example 
events, it is argued that the expansion strategy used in 
incremental rule generation in AQ should be 

*Rule refinement for production rules was 
Ginsberg et al. (Ginsberg et al., 1985). 

treated by 

dropped(O’Rorke, 1982). 

Secondly, it has been observed that new hypotheses 
generated are usually overly complex compared to former 
hypotheses. This is because there is a lack of facility to 
capture complexes with some exception events in them, and 
therefore all the new hypotheses are formed to include 
strictly positive events only. 

There have been attempts to remedy the problems 
mentioned above (Reinke and Michalski, 1985). But since 
those methods are based on the modified AQ star synthesis, 
they do not address the probabilistic nature of rule 
refinement fully. Some problems associated with AQ still 
remain in them(Lee and Ray, 1986a). The capability to cap- 
ture complexes probabilistically becomes important since 
there will be a large number of interactions among com- 
plexes and events in the modification process. 

B. ID3 iterative rule generation -- methodology and 
discussion 

A rule can be generated by ID3 iteratively by selecting 
a subset of training events, called a “window”, at each 
iteration(Quinlan, 1983). 

There are two methods of forming a new window in 
ID3. One way is to add the exceptions to the current win- 
dow up to some specified number to form an enlarged win- 
dow. The other one is to select “key” events in the current 
window and replace the rest with the exceptions, thus keep- 
ing the window size constant. 

Notice that ID3 itself does not have the capability to 
accept initial hypotheses, but uses already existing data 

events to iteratively generate a decision tree. Also, ID3 
itself is intended to make a decision tree, rather than to 
synthesize variable-valued logic expressions. Therefore, 
the ID3 rule refinement scheme is not intended for initial 
hypotheses modification. 

Yet, when we relax some of the constraints in the 
scheme, we can extract some useful ideas from it. 

First, let us consider the case of making a new window 
by adding some specified number of exceptions to the 
current window. Let us relax the requirement of “some 
specified number”, so that we can add a large number of 
exceptions to the current window, if we desire. Then we 
observe that the ID3 rule refinement scheme will not 
differentiate between already available rules and the train- 
ing events. In other words, the current rule can be grown 
in any direction. Therefore, a new rule can have any shape 
from almost identical to the current rule to almost entirely 
different from the current one. 

Secondly, let us consider the idea of selecting the key 
events in the current window to represent the current rule. 
It is important to select these key events to represent the 
current rule faithfully as they will be mixed with “foreign” 
exception events. 

If there is no further information available about the 
general distribution tendency of the events in each variable 
domain, we might want to choose events which are distri- 
buted equally over the subspace of the complex to which 
these events belong. 

Let us further imagine the situation that, after we 
generate a rule, we lost all the actual data sets of events. 
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Figure 2. An example of a rule refinement problem. 
Hypotheses are denoted as bold dashed rectangles, and “+” 
and “-” are the events in the sets F, and F-, respectively. 

Figure 4. Case 2: notice that the major hypothesis is a spe- 
cialization of the original hypothesis V,. 

Then one way to recover the rule for the next iteration is to 
generate events artificially, thus simulating the hypotheses. 

Because the event space is generally huge, and the 
number of available training events is usually small, and 
more importantly, human conceptual knowledge may be 
very condensed, a concept by a human expert can play an 
important role. Thus, a scheme to modify an 
expert-driven concept systematically may be especially 
effective. 

3). This kind of situation occurs when an expert is inexperi- 
enced and is not sure of some of his claims, or is merely 
guessing the rule. Therefore, the expert wants the machine 
to generate a new rule mainly by the new event sets F, and 

F-. Thus, machines should be able to detect the fact that 
these hypotheses are indeed unimportant or light, and 
hence ought to generate new hypotheses by the given exam- 
ples. In this case, the major cluster would emerge by cap- 
turing a cluster made of C, events. 

Case 2 
IV CASE STUDIES 

VL, expressions(Michalski, 1975) have been used to 

describe rules generated by inductive inference machines. 
Consider a simple example to see whether the VL, expres- 
sion is sufficient to convey an expert’s hypotheses to a 
machine so that rule refinement might be done by the 
machine. 

Let there be two classes, C, and C-, and two linear 
variables, vi and vz, describing the events, each with cardi- 
nality 5. Let there be two initial hypotheses, V, and V,, 
both for class G,, and new sets of exampIe events, F, and 

F-, belonging to C, and C-, respectively(see Figure 2). 

Here, hypotheses V, and V, are described by the VL, 
expression as two complexes, [v2 = 1..2], and [vr = 2..4][~z 
= 41, respectively. 

Let us consider the following five cases. 

Case1 

Let the hypotheses be very “light” in weight, not 
representing many actual events by themselves(see Figure 

Let us consider the case when the hypothesis I’, is 
heavy, but V, is light, compared with the actual number of 
C, example events(see Figure 4). 

A major, newly generated hypothesis might be the ori- 
ginal hypothesis except the part that a C- event resides 
inside the hypothesis V,. Thus, this example shows how a 

hypothesis can be speciaked by some exception events. 

Case 3 

Here, let VI be light, while V, is heavy. This is the 
reverse of the case 2, and therefore a major new hypothesis 
would be created around the hypothesis V,. 

As we can see in Figure 5, because two C, events are 
in the region where I/, can be more generalized, a new 

hypothesis would be formed by merging I/, with these two 

C, events. 

Therefore, 
be merged with 
ized. 

this case exemplifies how a hypothesis can 
some example events to be more general- 

Vl 
v2 

0 

1 1 

2 
1 

3 

4 1 

Figure 3. Case 1: here, a major hypothesis is denoted 
bold rectangle, and is created mainly from C, events. 

by a Figure 5. Case 3: notice that the major hypothesis is a gen- 
eralization of the original hypothesis I/,. 
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Figure 6. Case 4: notice that the major hypothesis is made 
from the original hypotheses V, and I/,. 

Case 4 

Next, consider the case when both hypotheses V, and 
V2 are equally heavy(see Figure 6). If there is no way to 
merge these two hypotheses to make a heavier hypothesis, 
then new hypotheses would be created around original 
hypotheses. 

But, in this specific example, as in the figure, if there 
is a way to merge these two together, and if the merged 
hypothesis is indeed heavier than each individual 
hypothesis, then a new, more important hypothesis can be 
made by the merge. 

Case 5 

Finally, let us reconsider the case 2, when hypothesis 
V, is heavy, but V, is not(see Figure 7). If the hypothesis 
‘VI is heavy enough, then a flexible rule refinement scheme 
should be able to ignore a small number of exception events 
which would otherwise make the new hypothesis shrink too 
much. By doing so, the new hypothesis would be general 
enough to be a good description of the facts. This, in turn, 
is the problem of a rule refinement scheme having the capa- 
bility of capturing complexes probabilistically. 

V COMMUNICATION LANGUAGE 

We have discussed so far only some of the cases that 
can occur during rule refinement process. There are other 
cases, such as the case when two hypotheses belonging to 
two different classes collide with each other. Then, a deci- 
sion should be made by the user whether to divide an initial 
hypothesis to generate new hypotheses without any excep- 
tion, or to accept the initial hypothesis without change if 

3 4 
I I 

Figure 7. Case 5: notice that the major hypothesis is the 
same as the original hypothesis V,, and contains one excep- 
tion event. 

the collision is not severe. Of course, there should be some 
intermediate solutions between the two extremes. according 
to the user specification. Again, this is most naturally 
treated as a probabilistic rule refinement problem. Since 
the data might well be contaminated, being able to gen- 
erate hypotheses probabilistically becomes important. 

.4s we have seen, if an expert wished to describe his 
hypotheses to communicate with the machine, he would 
need to describe how important each hypothesis is, com- 
pared not only with other hypotheses, but also with the sets 
of example events. 

Let us, for instance, say that there are two 
hypotheses, [v2 = 1..2] having a weight of 0.8 and [vl = 
2..4][v, = 41 having a weight of 0.2, representing a total of 
100 events. Then, we can express the initial hypotheses as 

8O[~2 = 1..2] + ~O[W, = 2..4][~, = 41. 

Therefore, this expression cont,ains not only the rela- 
tive importance of each hypothesis, but also the relative 
importance of the total hypotheses to the sets of example 
events. 

We will call this expression a weighted VL, (WVL,) 
expression.” 

VI PRG RULE REFINEMENT 

The objective of the PRG rule refinement scheme is 
summarized below. 

First, it should be able to consider all the interactions 
among hypotheses and sets of example events. In other 
words, it must be capable of merging hypotheses, resolving 

collisions between hypotheses belonging to different classes, 
generalizing hypotheses by adding some events, and special- 
izing hypotheses by excluding some exception events. 

Secondly, it should be flexible enough, hence be proba- 
bilistic, in generating new hypotheses according to user 
specification. For instance, a hypothesis can be very 
specific, explaining only the positive events, or be more gen- 
eral by ignoring some minor exceptions. 

Because PRG is already probabilistic, the only prob- 
lem left is to enter the WVL, expression into PRG to- be 
modified. 

A simple solution is used in PRG rule refinement 
scheme. Since a human expert’s description of a concept is 
often probabilistic, it is suitable for simulation in PRG. 

PRG rule refinement scheme is described as: 

PRG rule refinement; 
begin 

simulate each hypothesis by a set of randomly 
generated events in the subspace described 
by the hypothesis, making the number of 
events equal to the weight of the hypothesis; 

*Notice that this expression is different from the 
weighted DVL expression in (Michaiski and Chilausky, 
1980), since weighted DVL expressions are concerned with 
the weighted selectors in a VL, expression, rather than 
weighted complexes. We will call the coefficient in front of 
each complex, a “weight”, as it represents the strength of 
evidence of each hypothesis. 
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Table 1. Result of Experiment 1. 

Notes: 

1. Major complex is created mainly from positive training events since hypotheses are lightly 
weighted. 

2. The major complex comes from original hypothesis, V,, by excluding one exception event. 

3. The major complex is formed by merging the dominant hypothesis, V,, with some positive 
training events. 

4. A new, heavier hypothesis is created by merging hypotheses V, and V,. 

5. With specificity=0.9(which means that any subspace that has ratio of the number of posi- 
tive events to the total number of events in it is greater than or equal to 0.9, is considered 
as an acceptable complex), a single exception event in hypothesis V, is ignored, permitting 

V, to be retained as the major complex. 

WVL, Hypotheses Refined Rule Note 

1 v/1 + 1 v, ~[w~=~..~][v~=~..~]+~[v,=~]+~[v~=~] 1 

lOV, + lV, 9[v1=1..4][2r2=l..2]+5[v1=O..l][v2=2..4]+3[2r2=4] 2 

lV, + lOV, 12[vz=4]+2[vz=2]+4[vI=0..l][v,=2..4] 3 

lOV, + lOV, l4[v,=3..4][~2=l..4]+~2[v,=4]+5[v2=2]+5[v,=O..l][~2=2..4] 4 
lOV, + lV, ~~[v~=~..~]+~[v~=~]+~[v,=~..~][v~=~..~] 5 

add sets of training events; 
run PRG to generate new hypotheses according 

to user specification; 
end. 

Thus, the PRG rule refinement scheme does not give 
any special attention to the hypotheses, but treats them 
equally with the example events. This makes it possible to 
face the complexity of the interactions among the 
hypotheses and the sets of example events in a uniform 
way, and PRG will generate new hypotheses as if there 
were no special hypothesis at all, and hence no partiality 
will take place in the rule refinement process. 

VII EXPERIMENTS 

Experiment 1 : In Sec. IV, we dealt with some cases that 
a rule refinement scheme should be able to resolve. Those 
cases were run by the PRG rule refinement program. 

Two initial hypotheses for class C, were: 
V, = [u2 = 1..2] and 
V, = [wl = 2..4][v, = 41. 

The two sets of training events, F, and F-, used in Sec. IV, 
were introduced as data. Complexes generated by PRG 
agree with the earlier discussion(see Table 1). 

Experiment 2 : Rules for five classes of sleep (“stages”) 
were written by a human expert based on standard sleep 
stage scoring principles(Ray, et al., 1985) and presented as 
initial hypotheses to the PRG program. 

A data base of 742 events from one individual’s full 
night sleep study was introduced as new data. Sets of rules 
were generated by the PRG using four different relative 
weightings of the hypotheses and the new events in addition 
to the hypotheses alone. The experiment consisted of test- 
ing the accuracy of the rules in classifying the 742 events 
for each of the five rulesets, the results of which are shown 
in Table 2. 

Note Class 3 where with hypotheses only (X = x ), 
the accuracy was only 19% but with X = 2, the new events 
overcame the inaccuracy of the hypotheses and the result- 
ing rules were nearly perfect(99% accuracy). 

Class 2 exhibits more typical behavior, the accuracy 
rising monotonically ( except for trivial noise fluctuations) 
from 71%, with hypotheses only, to 94% when only train- 
ing data was used for the rules. Class 5 also exhibits accu- 
racy growth that is monotonic, paralleling that of Class 2. 

Only Class 1, which is known semantically as the 
noisiest, most poorly clustered class, shows strongly erratic 
behavior. The anomalous-looking 5370 accuracy for 
hypotheses only is due to “overgeneralization” which 
becomes constrained by negative events as new data events 
are introduced. As hypothesis weight decreases, interaction 
between Class 0 and Class 1 manifests as non-monotonic 
accuracy increase. 

Table 2. Rule Modification Experiment Result. Entries are 
% of events correctly classified(X=s is the case of 
hypothesis only). H ere, specificity = 0.9, certainty = 0.9, 
and weight = 0.05. 

j Class 1 # New 117 
X=wt. of hypothesis/wt. of new events 1 

I I I 1 
Events s 

0 100 19 
1 83 53 
2 385 71 
3 108 19 
5 66 47 

Total 742 52.4 

2.0 1 1.0 ] 0.25 ] 0.0 
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VIII CONCLUSION 

A system has been developed to permit communica- 
tion between expert and machine using the following princi- 
ples. Weighted VL, expressions are used by the expert to 
introduce hypotheses. Training events may be appended as 
new data, each event having weight 1. The hypotheses are 
expanded into a weight-equivalent number of data events, 
which are joined with the actual new events. Thus, neither 
hypotheses nor training events have special significance 
except through weighting. 

The superset of events is then submitted to the Proba- 
bilistic Rule Generator which is capable of capturing major 
complexes in spite of moderate noise. 

Experiments verify that the resulting rules may range 
from minor refinement of the hypotheses through various 
reorganizations of the hypotheses and on to rules which are 
completely dominated by the new training events in a con- 
tinuous, systematic spectrum, controlled by assigned 
(confidence) weighting. 
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