
OPTIMAL ALLOCATION OF VERY LIMITED SEARCH RESOURCES

David Mutchler t

Naval Research Laboratory, Code 7591
Washington, D.C. 20375-5000

Abstract

This paper presents a probabilistic model for studying the
question: given n search resources, where in the search tree should
they be ezpended? Specifically, a least-cost root-to-leaf path is
sought in a random tree. The tree is known to be binary and com-
plete to depth N. Arc costs are independently set either to 1
(with probability p) or to 0 (with probability l-p). The cost of a
leaf is the sum of the arc costs on the path from the root to that
leaf. The searcher (scout) can learn n arc values. How should
these scarce resources be dynamically allocated to minimize the
average cost of the leaf selected?

A natural decision rule for the scout is to allocate resources
to arcs that lie above leaves whose current expected cost is
minimal. The bad-news theorem says that situations exist for
which this rule is nonoptimal, no matter what the value of n .
The good-news theorem counters this: for a large class of situa-
tions, the aforementioned rule is an optimal decision rule if
p 5 0.5 and within a constant of optimal if p > 0.5. This report
discusses the lessons provided by these two theorems and presents
the proof of the bad-news theorem.

I Informal description of the problem
Searching the state-space for an acceptable solution is a fun-

damental activity for many AI programs. Complete search of the
state-space is typically infeasible. Instead, one relies on whatever
heuristic information is available. Interesting questions then arise
as to how much speed-up is obtained and at what price.

Many authors have evaluated the complexity of algorithms
that invoke heuristic search [I, 3, 6, 7, 9, 10, 111. A typical ques-
tion asked is:

How fast can the algorithm find an optimal
(nearly-optimal) (probably nearly-optimal) solution?

This paper focuses upon the inverse question:

Given n search resources, how good a solution can one obtain?

This inverse question is appropriate for real-time processes
characterized by an insistence upon an answer (decision) after X
seconds have passed. For example, a chess-playing program is lim-
ited by the external chess clock. A speech recognizer should main-
tain pace with the speaker. In these and other processes, search
resources are very limited; even linear time may not be fast
enough.

Heuristics are often said to offer “solutions which are good
enough most of the time” [4, page 61. The converse of this phrase
implies that heuristics will, by definition, fail some of the time.
Worst-case analysis is unilluminating-any algorithm using the
heuristic information will, on occasion, perform poorly. One is
forced, reluctantly perhaps, to turn to probabilistic, average-case

t This report describes work done in the Department of Computer
Science at Duke Umverslty It was supported m part by the Au Force
Office of Scientific Research, Au Force Systems Command under Grant
AF’OSR LB-0205

analysis. Karp and Pearl said it well [lo]:

Since the ultimate test for the success of heuristic methods is that
they work well “most of the time”, and since probability theory is
our principal formalism for quantifying concepts such as “most of
the time “, it is only natural that probabilistic models should provide
a formal ground for evaluating the performance of heuristic
methods quantitatively.

In agreement with this philosophy, this paper seeks the algo-
rithm whose average result is best. It must be emphasized from
the outset that any conclusions drawn from average-case analysis
depend fundamentally on the underlying probability distribution
assumed. The concluding section of this paper discusses whether
the results of this paper do in fact apply to real-world algorithms.

II The formal model
This paper restricts its interest to a particular variety of

heuristic search-finding a least-cost root-to-leaf path in a tree.
The trees considered are binary trees complete to depth N. The
arcs of the trees are assigned costs randomly and independently;
each arc costs either 1 (with probability p) or 0 (with probability
l-p). The cost of a leaf is the sum of the costs of the arcs on the
path from the root to the leaf. This arc-sum method for assigning
dependent leaf costs has been used by several researchers
[2, 5, 10, 12, 13, 171.

The searcher (hereafter called the scout) begins with exactly
the foregoing information. Th e scout acquires additional informa-
t,ion by expanding arcs, i.e., learning the actual cost (either 1 or 0)
of the arc expanded. At each stage of the search, the scout can
expand any arc on the frontier of the search (any arc whose parent
has been expanded already). Backtracking incurs no extra penalty.
Recall that this paper focuses upon limited resources. Model this
by insisting that the scout halt after n arc expansions. The gen-
eral then comes forward to select a leaf whose cost is (in general) a
random variable. The general seeks a low-cost leaf, of course.
The optimal decision-strategy for the general is easily seen. The
interesting issue is how the scout should allocate the n arc expan-
sions.

Time for an example. Let p = 0.7 and N (depth of tree) be
four. Suppose the scout expands the left arc beneath the root and
finds that its cost is 1. Suppose further that the scout began with
two arc expansions available, hence has only one more to use. Of
the three arcs on the frontier of the search, which should the scout
expand for this final action? Please pause a moment to decide for
yourself.

depth 4 tree

Figure 1. Which arc should the scout expand?

LEARNING / -t6’

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

The natural answer seems to be arc A , perhaps because
leaves beneath A have lower expected cost (given the current
information) than those beneath the other frontier arcs. In fact,
expanding arc A is wrong. The expected cost of the leaf selected
by the general will, on average, be strictly lower if the scout
expands arc B or C instead of arc A . The next section contains
the generalized version of this startling result, and a reassuring
theorem to counter it.

The scout is initially quite uncertain about the leaf costs. As
the search proceeds, leaf costs beneath expanded arcs become less
indeterminate. This accumulation of knowledge models what a
“generic” heuristic rule might provide. This heuristic rule is
better described as vague than as error-prone, as is fitting for a
study of the utilization by various algorithms of heuristically
acquired information. Contrast this with studies concerned with
how the amount of error in the heuristic rule affects a given algo-
rithm (6, 8, 9, 11, 14,15, 16, 191.

This model differs from that used by Karp and Pearl [lo] in
only two aspects. First, they expand nodes (learning the costs of
both arcs below the node) instead of arcs. This difference is not of
consequence; more on this later. The second and more significant
difference is the presence of a cutoff beyond which search cannot
continue. This cutoff models the limitation on resources. The
present model is the appropriate model if the search process must
shut down and an answer must be given after a certain amount of
time has elapsed, that is, after a certain number of arc expansions.

III Results

First consider the general’s decision. For any frontier arc cr,
define the zero-value of arc (Y to be

aum of the coats of the arcs from the root to a

+ P x (distance from cm to the bottom of the tree)

For example, in the depth 4 tree of Figure 1, arcs B and C each
have zero-value 1 + 3p , while arc A has zerevalue 4p . The
zerevalue of an arc is the expected cost of each of the leaves
beneath that arc based on current information. Since the general
will received no further data, the optimal decision for the general
is to select any leaf beneath the arc whose zero-value is smallest,
breaking ties arbitrarily.

The scouting activity can be modeled as a finite-horizon
Markov decision process [18]. The acore of a scouting algorithm is
the expected value of the smallest zero-value corresponding to a
frontier arc after n arc expansions. An optimal algorithm is one
that minimizes this score. Because zero-values are themselves
expected costs, the score of a scouting algorithm is an expected
expected cost. Note that an optimal algorithm does not usually
discover the in-fact optimal path in the tree. An optimal algo-
rithm finds a path whose average cost is no larger than the average
cost of the path discovered by any other algorithm restricted to n
arc expansions.

What are the optimal scouting algorithms? As discussed
above, the general should choose any leaf below the arc whose
zerevalue is smallest. (The scout will assume that the general
behaves optimally.) Perhaps the Same policy should be used by
the scout. Call this scouting algorithm-expand the arc whose
zerevalue is smallest-the greedy policy. The following theorem
relates the bad news: the greedy policy is not optimal.

No matter how many arc expansions
remain, if p is large enough, there exist situations from which

can arise even if the dictates of the greedy policy have been
followed from the beginning of search.

The bad-news theorem says that the scout should, under cer-
tain circumstances, apply search resources to an arc that is not
currently the arc that looks “best”, insofar as the final decision
goes. Return to the example in Figure 1. The scout should
expand arc B instead of arc A because, in that example, informa-

tion about the second-best arc (B)
tion about the best arc (A).

is more valuable than informa-

This distinction between information and path-cost compli-
cates the optimal scouting policy. A priori, one might have
guessed that the two would coincide, i.e., that information is most
valuable when gathered for the path whose expected cost is
currently smallest. The bad-news theorem denies that these two
measures are the same. The d enial is strong-the measures may
differ whether there be 5 or 500 arc expansions left.

Note the order of quantification in the bad-news theorem.
The theorem says that for every n (number of arc expansions
remaining), there exist values of p and situations from which the
greedy decision is a mistake. Th e models considered in this paper
are parameterized by p . Specifying p specifies the model. The
bad-news theorem says: if you tell me how many arc expansions
you have left, I will give you a specific model (value of p) and a
specific state (subtree with its arc costs labeled) from which the
greedy decision is wrong. What can be said for a fixed model, i.e.,
for fixed p ? There the sun shines brightly. For a large class of
situations, the greedy decision can be proved optimal.

Good-news theorem. Consider any state from which the
scout cannot reach a leaf before exhausting the n remaining
arc expansions. From any such state:
for p 5 0.5, the greedy decision is an optimal decision;
for 0.5 < p 5 0.618, the greedy decision is optimal if n 2 2;
for 0.618 < p < 0.682, the greedy decision is optimal if n 2 3.
(The numbers 0.618 and 0.682 are more accurately described
as the solutions to the equations p2=1-p and
p 3 = 1 - p , respectively.)

So, if the scout is exploring a tree for which p 5 0.5, the . .
greedy policy can be used with complete confidence. If p is
between 0.5 and 0.618, the good-news theorem tells the scout that
only at the last arc expansion might the greedy policy err; for p
between 0.618 and 0.682, only the last two arc expansions are
suspect, Section VI discusses the gravity of the restriction that the
scout be unable to reach a leaf (i.e., that search resources are very
limited).

The proof of the good-news theorem contains three induc-
tions on n , one for each of the three ranges of p listed. The basis
case of each induction is the smallest value of n for which the
greedy decision is guaranteed to be optimal: n = 1 for p 5 0.5,
n = 2 for 0.5 < p I: 0.618, and n = 3 for 0.618 < p 5 0.682.
Interestingly, the induction step for the third range also applies to
any p 5 0.99. It fails for larger p only because the proof uses a
numerical step for which arithmetic roundoff plays a role eventu-
ally. Unfortunately, the value of n for the basis case grows as p
increases (see the conjecture below), so that the basis case involves
increasingly complicated algebraic comparisons. This prevents the
proof of the good-news theorem from extending beyond 0.682.
There is no evidence that the basis case fails for larger values of p .
Indeed, it would be strange-though of course possible-if the
basis case were to hold for p up to 0.682 but fail for larger p ,
while the induction step provably works for p up to 0.99. The
success of the induction step provides theoretical support for the
following conjecture.

I
Conjecture. Consider any fixed model, i.e., any fixed
value for p . Let M be the k for which p k = 1 - p . That
is, let A4 = log, (l-p). If M or more arc expansions remain,
the greedy decision is an optimal decision from any situation
from which the scout cannot reach a leaf before exhausting
the remaining arc expansions.

Corollary. Suppose the scout begins with no more arc ex-
pansions available than the depth of the tree. For any fixed
p , the expected score of the greedy policy is within a constant
of the expected score of the optimal scouting algorithm.

468 I SCIENCE

Computer simulation provides additional, albeit anecdotal,
support for the conjecture. It is not hard to compute mechanically
the optimal decision for any specific state, model (value of p), and
small value of n . A wide variety of such runs yielded no excep-
tions to the conjecture. The restriction of the simulations to small
values of n (5 10) is not particularly worrisome, because (as
explained above) only the basis case needs to be verified.

IV Proof of the bad-news theorem
We prove the bad-news theorem for n = 2. The proof for

larger n is analogous; see [12].

Choose p large enough that p2 > l-p . The troublemaking
state is the example seen earlier. We show that expanding arc A
is a nonoptimal decision if the scout has exactly two arc expan-
sions to apply to the state shown in Figure 1. Suppose the con-
trary: suppose there is an optimal algorithm, call it algorithm
OPT, that expands arc A from the state pictured. Here optimal
means that the expected value of the leaf chosen by the general is
minimized if the scout uses algorithm OPT. There are many
optimal algorithms. Without loss of generality, algorithm OPT
can be taken to be a deterministic algorithm.

Imagine that OPT expands arc A and finds that it has cost
1. OPT now has only one arc expansion left. It can expand any
of the four frontier arcs-all have the same zero-value. Algorithm
OPT, being deterministic, must fail to expand three of these fron-
tier arcs. The expected value of OPT is the same no matter which
three are skipped. Hence OPT can be chosen to skip the two arcs
below arc A and (say) arc B , in the event that arc A has value 1.
That is, OPT expands arc C if its previous expansion of arc A
yielded a l-arc.

We now define an algorithm called MIMIC that uses OPT as
a subroutine. We will show that MIMIC performs better than
OPT (on average), thus contradicting the assumption that OPT
(and the greedy decision) are optimal. Algorithm MIMIC mimics
OPT, but with arcs A and B reversed. OPT expands A from the
state in Figure 1, so MIMIC expands B from that state. MIMIC
continues its mimicry (still with A and B reversed) on its last arc
expansion, as shown below. (The fat line indicates the arc to be
expanded.)

1 0

OPT
3
/ \ \ I \ \
/I \ \ \ \

\ \ \ \
MIMIC

Figure 2. The final arc expansion by MIMIC and OPT

Return to the state pictured in Figure 1, from which 2 arc
expansions remain. The expected score of algorithm OPT is the
weighted average of the expected cost the general incurs when the
scout uses OPT. This average is over all 22 trees r that the scout

might hand the general after 2 expansions from the pictured state.
The four such trees possible after 2 expansions of the state in Fig-
ure 1 are shown in the top half of the following figure. (The
highlighting therein becomes meaningful shortly.)

Group 3 Group 1 Group 2 Group 2

Figure 3. All the possible trees the general might be given

The expected score of MIMIC is likewise a weighted average,
but over a different set of 22 trees, pictured in the bottom half of
Figure 3. The action “exchange arc A and the subtree beneath it
with arc B and its attached subtree” provides a l-l correspon-
dence between these two sets of trees. (The correspondence is
shown by vertical pairing in Figure 3.) Note that any tree r and
its corresponding tree 7’ are equally likely. It follows that the
difference between the expected score of OPT and the expected
score of MIMIC is the difference between the score of OPT on r
and the score of MIMIC on the corresponding tree r’, averaged over
all 22 trees T that OPT might reveal to the general. Let us com-
pute this difference as just described, but in three groups.

Group 1: consider any tree r on which the general selects a
leaf below arc B when the scout uses OPT on 7. The second tree
in the top half of Figure 3 falls in this group. (Highlighted arc B
is tied with two other frontier arcs for smallest zerovalue in that
tree. Let the general break ties in favor of arc B . This is as good
a tie-breaking rule as any.) When the scout uses MIMIC on the
corresponding tree T’, arc B and the subtree beneath it in r also
appear in I’, but from a better starting point. (Arc B is alone in
the example in Figure 3; the visible subtree below it is null.) To
be precise, algorithm MIMIC scores (on average) l-p better on T’
than OPT does on r, for any tree r in Group 1.

Group 2: consider any tree r on which the general selects a
leaf below arc A when the scout uses OPT on T. The third and
fourth trees in the top half of Figure 3 fall in this group. When
the scout uses MIMIC on Y’, arc A and the subtree beneath it in r
also appear in 71, but from a worse starting point. (These subtrees
are highlighted in Figure 3.) Algorithm MIMIC scores (on average)
no worse than l-p worse on 7’ than OPT does on r, for any tree r
in Group 2.

Group 3: consider any tree r on which the general selects a
leaf below neither arc A nor arc B when the scout uses OPT on r.
The first tree in the top half of Figure 3 falls in this group. The
same frontier arc in r beneath which the general chose a leaf also
appears in f. (The common subtree is highlighted in Figure 3.)
The expected score of the general (and MIMIC) is no worse on r’
than the expected score of the general (and OPT) on T, for any
tree r in this group.

Conclude: if the collective likelihood of Group 1 exceeds
that of Group 2, algorithm MIMIC performs (on average) better

LEARNING / 469

than algorithm OPT. A trite calculation shows this to be the case
for the trees in Figure 3. The following discussion suggests how
the proof works when n > 2.

What is the probability of Group l? Return to the situation
of Figure 1. In the event that both remaining arc expansions
reveal only l-arcs in the tree r uncovered by OPT, arc B is tied
for minimum zero-value at the conclusion of search. (Remember:
arc B is chosen as an arc that OPT will not expand in just this
case and the general breaks ties in favor of arc B .) Then

Pr (Group 1) > Pr (two l-arcs) = p 2

What is the probability of Group 2? Remember that algo-
rithm OPT-by design-will ignore the arcs below arc A if arc A
has cost 1. The only hope for Group 2 is that arc A has cost 0.
That is,

P” and Pa as functions of 8. It, can be shown that:

a. The expected score the general achieves when the scout uses
either of these algorithms is a continuous, piecewise-linear
function of p.

b. At B

C.

using
= cr, the general achieves
either scouting algorithm.

the same expected score by

For any scouting algorithm P , let the phrase ,8 wins by using
policy P be shorthand for the event the general chooaee a
leaf below arc fi tvhen scouting poficy P ia used. The slope of
each linear segment in the graph of the general’s expected
score when the scout uses P” is simply the probability that p
wins by using P”. A similar statement holds for algorithm
PP.

It follows that one way to show
well as policy Pa) is to show that

our goal (policy P” performs as

Pr (Group 2) 5 Pr (arc A has cost 0) = l-p

By choice of model, p2 > l-p so Group 1 is more likely
than Group 2. This contradicts the assumption that OPT is
optimal and shows that the greedy decision is not an optimal deci-
sion in this construction.

Pr (a wine by using Ps) > Pr (/3 wins by ueing P*) (t)

for any value of p such that CY < @ < cr + p .

V Proof of the good-news theorem
The proof of the good news is long and involved. This sec-

tion presents some of the more appetizing parts of the proof, to
give its flavor. Th e reader’s pardon is asked for the lack of rigor
in the presentation that follows. See [12] for a careful exposition
of all the details.

The devices used for p < 0.5 (where the greedy policy is
optimal) are somewhat different from those used for p > 0.5
(where it is not). Within each half, further division is necessary as
well. In each subcase, however, the proof is by induction on n,
the number of arc expansions remaining. The basis cases compute
the optimal policy explicitly.

B

Figure 4. Piecewise linearity

Consider an arbitrary state z . Because of the assumption
that the scout can no longer reach a leaf, the state is characterized
by the zero-values of the frontier arcs. Let (Y denote the smallest
of these zero-values. Let “arc cry” denote the arc corresponding to
CY. Let PB be an optimal algorithm. If this algorithm expands arc
o from state z , the greedy decision (expand the arc whose zero-
value is smallest) is an optimal decision, completing the induction
step of the proof. Suppose the contrary: suppose this optimal
algorithm expands some other arc whose zerovalue is (say) p > a;
call this other arc /?. (Hence the name of the algorithm.) Define
P* to be the policy that expands arc (Y and then proceeds
optimally. The goal of the rest of this proof is to show that policy
P” performs (on average) as well as optimal policy PB. Achieving
this goal will hemonstrate that expanding arc (Y is also an optimal
decision, hence that the greedy decision is an optimal decision,
hence (by induction) that the greedy policy is optimal.

First consider the case in which ,8 exceeds CY by at least p)
i.e., 3 2 ff + p . In this case, cr will be the smallest zero-value
after policy PB expands arc ,8, no matter what the result of that
expansion. By the induction hypothesis, policy Pp (being optimal)
will continue by expanding the arc whose zero-value is smallest,
namely, arc 0. In other words, policy PB is (in this case)
equivalent to the policy that expands both (Y and ,0 without regard
to order. But such a policy is certainly no better than the more
flexible policy P” that expands (Y and then proceeds optimally.
The goal described in the preceding paragraph has been achieved
in this case.

Turn now to the case in which p < (Y + p . The argument
in this case operates by considering the performance of algorithms

The “meat” of the proof is devoted to showing the truth of
inequality (t). Th is is done by conditioning on the possible costs
of arcs CY and /3 and meticulously examining the four cases that
result. The central theme is an application of the induction
hypothesis: if “enough” O-arcs lie on and beneath the arc that is
first expanded, the policy (either P” or pa) never leaves the sub-
tree beneath that arc; hence that first expanded arc wins. For
example, if arc /3 has cost 0 and has an infinite path of O-arcs
directly beneath it, p must win when policy Pa is used. The clas-
sical theory of branching processes provides an easy formula for
the probability that there is such an infinite path. New results for
branching random walks developed for this proof give stronger
approximations to the “win probabilities”. These new results are
of particular interest because numerical approximations are used to
provide analytic bounds.

VI Discussion

Ia the “limited resources” problem relevant to the real world?
Is it reasonable that after n arc expansions, the search halts? This
absolute cutoff is not typical in AI problem-solving programs.
Only real-time processes might be so described. Nonetheless, I
view this aspect of the model as a significant contribution to inves-
tigation of optimal, dynamic allocation of search resources. The
cutoff clearly separates the search process from the final-decision
process. Search gathers information for two purposes: to optimize
some final decision, and to assist the accumulation of additional
useful information. The present model, by design, accents this
latter purpose.

One reasonable alternative is a staged search: the scout gains
some information; the general makes some decision; then the pro-
cess iterates, although still with some final cutoff. Such a model is
appropriate if outside factors are involved: an unpredictable

i-0 / SCIENCE

opponent, for instance, or events whose outcome is impervious to
search but can be experienced as consequences of the general’s
decisions. A second alternative is to abandon the absolute cutoff.
Allow the general to direct the scout to continue search, at some
additional cost. The problem then becomes an optimal stopping
process. Both of these alternatives are attractive. It is their
analysis that appears forbidding.

Is our arc-sum model the right model for studying search with
limited resources? Without doubt, the present model is simple-
minded. Some of its simplicity has merit, capturing essence
without detail. The restriction to binary tress with two-valued
arcs falls into this class. On the other hand, the assignment of leaf
costs by arc costs that are independent and identically distributed
is artificial. Happily, the foregoing results are oblivious to some of
the assumptions. Any value is permitted for the heuristic parame-
ter p. The bad-news theorem can be shown to apply to any
branching factor. Both the bad-news theorem and a weaker ver-
sion of the good-news theorem apply to the model in which nodes
are expanded instead of arcs [12].

Does the assumption that search resources be very limited
sabotage the substance of the good-news theorem? From a practi-
cal standpoint, this restriction (that the scout be unable to reach a
leaf) is a big winner. Without it, all sorts of rough-edged boun-
dary problems are encountered. For example, a prejudice appears
against expanding arcs at the bottom of the tree because such
expansions cannot be followed-up. In addition to this practical
justification, there is a heuristic argument that the restriction is of
little effect. The argument goes like this. The search begins well
away from leaves. Whether the tree has depth 50 or 5000 should
have little effect while the search is rummaging around level 5 or
so. Any reasonable algorithm (including the greedy policy) has a
breadth-first character whenever l-arcs are found. Conclude: the
search typically will not reach a leaf. So long as this is the case,
the analysis in this paper works.

Open questions: is the conjecture in section III true? Can
similar results be obtained for generalizations of the present
model? (In particular, what happens if one allows arc values other
than 0 and l? a random branching factor? a depth-dependent dis-
tribution for arc values?) Do the lessons of this study apply to
other models of heuristic search? More to the point, do the lessons
apply in practice? Is the greedy policy a good algorithm if the
scout misestimates p ?

What do the results in this study REALLY say? These
results should not be taken as literal advice for finding a least-cost
root-to-leaf path in a tree. The b a news and good news should be d
assimilated in a broader sense, as follows.

Bad news: intuition about heuristic search is not always
right. The example at the beginning of this paper shows that one’s
intuitions can be firmly set, and firmly wrong. Our model and the
bad-news theorem show that blind adherence to custom may
prevent optimal use of search resources. In particular, there is a
real difference between where best to gather information and how
best to utilize it.

Good news: theoretical justification can be provided for the
intuition that the best information is acquired from the path that
currently looks best. As the bad-news theorem shows, this intui-
tion fails when p > 0.5. But for p 2 0.5, the intuition is sound;
even for p > 0.5, the good-news theorem and accompanying con-
jecture show that the intuition provides a good approximation.

In sum, this study of heuristic search establishes that this
intuition-search the path you currently judge best-can
justifiably be labeled a heuristic. It sometimes fails, but on aver-
age provides a result close to optimal.

References
1. Bagchi, A. and A. Mahanti, “Search algorithms under

different kinds of heuristics - A comparative study,” .I=1C‘\I
30(l) pp. 1-21 (January 1983).

2. Ballard, Bruce W., “The *-minimax search procedure for
trees containing chance nodes,” Artificial Intelligence 21 pp.
327-350 (1983).

3. Dewitt, H.K., “The t,heory of random graphs with applica-
tions to the probabilistic analysis of optimization algo-
rithms,” Ph.D. dissertation, Computer Science Dept..
University of California, Los Angeles (1977).

4. Feigenbaum, E.A. and J. Feldman
McGraw-Hill Book Company, New

Computers
‘York (1963).

and Thought.

5. Fuller, S.H., J.G. Gaschnig, and J.J. Gillogly, “An analysis
of the alpha-beta pruning algorithm,” Dept. of Computer
Science Report, Carnegie-blellon University, Pittsburgh, P-4
(1973).

Gaschnig, John, “Performance measurement and analysis of
certain search algorithms,” Ph.D. dissertation, Technical
Report CMU-cs-79-124, Computer Science Dept.,
Carnegie-Mellon University (1979).

Golden, B. L. and M. Ball, “Shortest paths with Euclidean
distances: An explanatory model,” Networks S(4) pp. 297-314
(Winter 1978).

8. Harris, Larry R., “The heuristic search under conditions of
error,” Artificial Intelligence 5 pp. 217-234 (1974).

9. Huyn, Nam, Rina Dechter, and Judea Pearl, “Probabilistic
analysis of the complexity of I%*,” Artificial Intelligence
15 pp. 241-254 (1980).

10. Karp, R.M. and J. Pearl, “Searching for an optimal pat,h in a
tree with random costs,” ilrtificial Intelligence 21 pp. OS-116
(1983).

11. Munyer, J., “Some results on the complexity of heuristic
search in graphs,” Technical Report HP-76-2, Information

mversity of California, Santa Cruz (1976).

12. ZZ1::PZZ,,i,” C “Search with very limited resources.”
Ph.D. dfssertation,” Duke Technical Report cs-1986-10,
Duke University Department of Computer Science (1986).

13. Newborn, M. M., “The efficiency of the alpha-beta search on
trees with branch-dependent terminal node scores.,”
Artificial Intelligence 8 pp. 137-153 (1977).

14. Pearl, Judea, “Knowledge versus search: A quantitative
analysis using A’,” Artificial Intelligence 20 pp. 1-13 (1983).

15. Pohl, Ira, “First results on the effect of error in heuristic
search,” pp. 219-236 in Machine Intelligence 5, ed. Bernard
Meltzer and Donald Mitchie,American Elsevier, New ‘l-ork
(1970).

16. Pohl, Ira, “Practical and theoretical considerations in heuris-
tic search algorithms,” pp. 55-72 in Machine Intelligence X
cd. E.W. Elcock and D. hlitchie,Wiley, New Y-ork (1970).

17. Reibman, Andrew L. and Bruce IV. Ballard, “The perfor-
mance of a non-minimax search strategy in games with
imperfect players,” Duke Technical Report CS-1983-17.
Duke University Department of Computer Science (1983).

18. Ross, Sheldon M., Introduction to Stochastic Dynamic Pro-
gramming, i\cademic Press, New York (1983).

19. VanderBrug, Gordon J., “Problem representations and for-
ma1 properties of heuristic search.” Information Sciences
11 pp. 279-307 (1976).

LEARNING / t-l

