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Abstract 

This paper presents a probabilistic model for studying the 
question: given n search resources, where in the search tree should 
they be ezpended? Specifically, a least-cost root-to-leaf path is 
sought in a random tree. The tree is known to be binary and com- 
plete to depth N. Arc costs are independently set either to 1 
(with probability p ) or to 0 (with probability l-p ). The cost of a 
leaf is the sum of the arc costs on the path from the root to that 
leaf. The searcher (scout) can learn n arc values. How should 
these scarce resources be dynamically allocated to minimize the 
average cost of the leaf selected? 

A natural decision rule for the scout is to allocate resources 
to arcs that lie above leaves whose current expected cost is 
minimal. The bad-news theorem says that situations exist for 
which this rule is nonoptimal, no matter what the value of n . 
The good-news theorem counters this: for a large class of situa- 
tions, the aforementioned rule is an optimal decision rule if 
p 5 0.5 and within a constant of optimal if p > 0.5. This report 
discusses the lessons provided by these two theorems and presents 
the proof of the bad-news theorem. 

I Informal description of the problem 
Searching the state-space for an acceptable solution is a fun- 

damental activity for many AI programs. Complete search of the 
state-space is typically infeasible. Instead, one relies on whatever 
heuristic information is available. Interesting questions then arise 
as to how much speed-up is obtained and at what price. 

Many authors have evaluated the complexity of algorithms 
that invoke heuristic search [I, 3, 6, 7, 9, 10, 111. A typical ques- 
tion asked is: 

How fast can the algorithm find an optimal 
(nearly-optimal) (probably nearly-optimal) solution? 

This paper focuses upon the inverse question: 

Given n search resources, how good a solution can one obtain? 

This inverse question is appropriate for real-time processes 
characterized by an insistence upon an answer (decision) after X 
seconds have passed. For example, a chess-playing program is lim- 
ited by the external chess clock. A speech recognizer should main- 
tain pace with the speaker. In these and other processes, search 
resources are very limited; even linear time may not be fast 
enough. 

Heuristics are often said to offer “solutions which are good 
enough most of the time” [4, page 61. The converse of this phrase 
implies that heuristics will, by definition, fail some of the time. 
Worst-case analysis is unilluminating-any algorithm using the 
heuristic information will, on occasion, perform poorly. One is 
forced, reluctantly perhaps, to turn to probabilistic, average-case 
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analysis. Karp and Pearl said it well [lo]: 

Since the ultimate test for the success of heuristic methods is that 
they work well “most of the time”, and since probability theory is 
our principal formalism for quantifying concepts such as “most of 
the time “, it is only natural that probabilistic models should provide 
a formal ground for evaluating the performance of heuristic 
methods quantitatively. 

In agreement with this philosophy, this paper seeks the algo- 
rithm whose average result is best. It must be emphasized from 
the outset that any conclusions drawn from average-case analysis 
depend fundamentally on the underlying probability distribution 
assumed. The concluding section of this paper discusses whether 
the results of this paper do in fact apply to real-world algorithms. 

II The formal model 
This paper restricts its interest to a particular variety of 

heuristic search-finding a least-cost root-to-leaf path in a tree. 
The trees considered are binary trees complete to depth N. The 
arcs of the trees are assigned costs randomly and independently; 
each arc costs either 1 (with probability p ) or 0 (with probability 
l-p ). The cost of a leaf is the sum of the costs of the arcs on the 
path from the root to the leaf. This arc-sum method for assigning 
dependent leaf costs has been used by several researchers 
[2, 5, 10, 12, 13, 171. 

The searcher (hereafter called the scout) begins with exactly 
the foregoing information. Th e scout acquires additional informa- 
t,ion by expanding arcs, i.e., learning the actual cost (either 1 or 0) 
of the arc expanded. At each stage of the search, the scout can 
expand any arc on the frontier of the search (any arc whose parent 
has been expanded already). Backtracking incurs no extra penalty. 
Recall that this paper focuses upon limited resources. Model this 
by insisting that the scout halt after n arc expansions. The gen- 
eral then comes forward to select a leaf whose cost is (in general) a 
random variable. The general seeks a low-cost leaf, of course. 
The optimal decision-strategy for the general is easily seen. The 
interesting issue is how the scout should allocate the n arc expan- 
sions. 

Time for an example. Let p = 0.7 and N (depth of tree) be 
four. Suppose the scout expands the left arc beneath the root and 
finds that its cost is 1. Suppose further that the scout began with 
two arc expansions available, hence has only one more to use. Of 
the three arcs on the frontier of the search, which should the scout 
expand for this final action? Please pause a moment to decide for 
yourself. 

depth 4 tree 

Figure 1. Which arc should the scout expand? 
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The natural answer seems to be arc A , perhaps because 
leaves beneath A have lower expected cost (given the current 
information) than those beneath the other frontier arcs. In fact, 
expanding arc A is wrong. The expected cost of the leaf selected 
by the general will, on average, be strictly lower if the scout 
expands arc B or C instead of arc A . The next section contains 
the generalized version of this startling result, and a reassuring 
theorem to counter it. 

The scout is initially quite uncertain about the leaf costs. As 
the search proceeds, leaf costs beneath expanded arcs become less 
indeterminate. This accumulation of knowledge models what a 
“generic” heuristic rule might provide. This heuristic rule is 
better described as vague than as error-prone, as is fitting for a 
study of the utilization by various algorithms of heuristically 
acquired information. Contrast this with studies concerned with 
how the amount of error in the heuristic rule affects a given algo- 
rithm (6, 8, 9, 11, 14,15, 16, 191. 

This model differs from that used by Karp and Pearl [lo] in 
only two aspects. First, they expand nodes (learning the costs of 
both arcs below the node) instead of arcs. This difference is not of 
consequence; more on this later. The second and more significant 
difference is the presence of a cutoff beyond which search cannot 
continue. This cutoff models the limitation on resources. The 
present model is the appropriate model if the search process must 
shut down and an answer must be given after a certain amount of 
time has elapsed, that is, after a certain number of arc expansions. 

III Results 

First consider the general’s decision. For any frontier arc cr, 
define the zero-value of arc (Y to be 

aum of the coats of the arcs from the root to a 

+ P x (distance from cm to the bottom of the tree) 

For example, in the depth 4 tree of Figure 1, arcs B and C each 
have zero-value 1 + 3p , while arc A has zerevalue 4p . The 
zerevalue of an arc is the expected cost of each of the leaves 
beneath that arc based on current information. Since the general 
will received no further data, the optimal decision for the general 
is to select any leaf beneath the arc whose zero-value is smallest, 
breaking ties arbitrarily. 

The scouting activity can be modeled as a finite-horizon 
Markov decision process [18]. The acore of a scouting algorithm is 
the expected value of the smallest zero-value corresponding to a 
frontier arc after n arc expansions. An optimal algorithm is one 
that minimizes this score. Because zero-values are themselves 
expected costs, the score of a scouting algorithm is an expected 
expected cost. Note that an optimal algorithm does not usually 
discover the in-fact optimal path in the tree. An optimal algo- 
rithm finds a path whose average cost is no larger than the average 
cost of the path discovered by any other algorithm restricted to n 
arc expansions. 

What are the optimal scouting algorithms? As discussed 
above, the general should choose any leaf below the arc whose 
zerevalue is smallest. (The scout will assume that the general 
behaves optimally.) Perhaps the Same policy should be used by 
the scout. Call this scouting algorithm-expand the arc whose 
zerevalue is smallest-the greedy policy. The following theorem 
relates the bad news: the greedy policy is not optimal. 

No matter how many arc expansions 
remain, if p is large enough, there exist situations from which 

can arise even if the dictates of the greedy policy have been 
followed from the beginning of search. 

The bad-news theorem says that the scout should, under cer- 
tain circumstances, apply search resources to an arc that is not 
currently the arc that looks “best”, insofar as the final decision 
goes. Return to the example in Figure 1. The scout should 
expand arc B instead of arc A because, in that example, informa- 

tion about the second-best arc (B ) 
tion about the best arc (A ). 

is more valuable than informa- 

This distinction between information and path-cost compli- 
cates the optimal scouting policy. A priori, one might have 
guessed that the two would coincide, i.e., that information is most 
valuable when gathered for the path whose expected cost is 
currently smallest. The bad-news theorem denies that these two 
measures are the same. The d enial is strong-the measures may 
differ whether there be 5 or 500 arc expansions left. 

Note the order of quantification in the bad-news theorem. 
The theorem says that for every n (number of arc expansions 
remaining), there exist values of p and situations from which the 
greedy decision is a mistake. Th e models considered in this paper 
are parameterized by p . Specifying p specifies the model. The 
bad-news theorem says: if you tell me how many arc expansions 
you have left, I will give you a specific model (value of p ) and a 
specific state (subtree with its arc costs labeled) from which the 
greedy decision is wrong. What can be said for a fixed model, i.e., 
for fixed p ? There the sun shines brightly. For a large class of 
situations, the greedy decision can be proved optimal. 

Good-news theorem. Consider any state from which the 
scout cannot reach a leaf before exhausting the n remaining 
arc expansions. From any such state: 
for p 5 0.5, the greedy decision is an optimal decision; 
for 0.5 < p 5 0.618, the greedy decision is optimal if n 2 2; 
for 0.618 < p < 0.682, the greedy decision is optimal if n 2 3. 
(The numbers 0.618 and 0.682 are more accurately described 
as the solutions to the equations p2=1-p and 
p 3 = 1 - p , respectively.) 

So, if the scout is exploring a tree for which p 5 0.5, the . . 
greedy policy can be used with complete confidence. If p is 
between 0.5 and 0.618, the good-news theorem tells the scout that 
only at the last arc expansion might the greedy policy err; for p 
between 0.618 and 0.682, only the last two arc expansions are 
suspect, Section VI discusses the gravity of the restriction that the 
scout be unable to reach a leaf (i.e., that search resources are very 
limited). 

The proof of the good-news theorem contains three induc- 
tions on n , one for each of the three ranges of p listed. The basis 
case of each induction is the smallest value of n for which the 
greedy decision is guaranteed to be optimal: n = 1 for p 5 0.5, 
n = 2 for 0.5 < p I: 0.618, and n = 3 for 0.618 < p 5 0.682. 
Interestingly, the induction step for the third range also applies to 
any p 5 0.99. It fails for larger p only because the proof uses a 
numerical step for which arithmetic roundoff plays a role eventu- 
ally. Unfortunately, the value of n for the basis case grows as p 
increases (see the conjecture below), so that the basis case involves 
increasingly complicated algebraic comparisons. This prevents the 
proof of the good-news theorem from extending beyond 0.682. 
There is no evidence that the basis case fails for larger values of p . 
Indeed, it would be strange-though of course possible-if the 
basis case were to hold for p up to 0.682 but fail for larger p , 
while the induction step provably works for p up to 0.99. The 
success of the induction step provides theoretical support for the 
following conjecture. 

I 
Conjecture. Consider any fixed model, i.e., any fixed 
value for p . Let M be the k for which p k = 1 - p . That 
is, let A4 = log, (l-p ). If M or more arc expansions remain, 
the greedy decision is an optimal decision from any situation 
from which the scout cannot reach a leaf before exhausting 
the remaining arc expansions. 

Corollary. Suppose the scout begins with no more arc ex- 
pansions available than the depth of the tree. For any fixed 
p , the expected score of the greedy policy is within a constant 
of the expected score of the optimal scouting algorithm. 

468 I SCIENCE 



Computer simulation provides additional, albeit anecdotal, 
support for the conjecture. It is not hard to compute mechanically 
the optimal decision for any specific state, model (value of p ), and 
small value of n . A wide variety of such runs yielded no excep- 
tions to the conjecture. The restriction of the simulations to small 
values of n (5 10) is not particularly worrisome, because (as 
explained above) only the basis case needs to be verified. 

IV Proof of the bad-news theorem 
We prove the bad-news theorem for n = 2. The proof for 

larger n is analogous; see [12]. 

Choose p large enough that p2 > l-p . The troublemaking 
state is the example seen earlier. We show that expanding arc A 
is a nonoptimal decision if the scout has exactly two arc expan- 
sions to apply to the state shown in Figure 1. Suppose the con- 
trary: suppose there is an optimal algorithm, call it algorithm 
OPT, that expands arc A from the state pictured. Here optimal 
means that the expected value of the leaf chosen by the general is 
minimized if the scout uses algorithm OPT. There are many 
optimal algorithms. Without loss of generality, algorithm OPT 
can be taken to be a deterministic algorithm. 

Imagine that OPT expands arc A and finds that it has cost 
1. OPT now has only one arc expansion left. It can expand any 
of the four frontier arcs-all have the same zero-value. Algorithm 
OPT, being deterministic, must fail to expand three of these fron- 
tier arcs. The expected value of OPT is the same no matter which 
three are skipped. Hence OPT can be chosen to skip the two arcs 
below arc A and (say) arc B , in the event that arc A has value 1. 
That is, OPT expands arc C if its previous expansion of arc A 
yielded a l-arc. 

We now define an algorithm called MIMIC that uses OPT as 
a subroutine. We will show that MIMIC performs better than 
OPT (on average), thus contradicting the assumption that OPT 
(and the greedy decision) are optimal. Algorithm MIMIC mimics 
OPT, but with arcs A and B reversed. OPT expands A from the 
state in Figure 1, so MIMIC expands B from that state. MIMIC 
continues its mimicry (still with A and B reversed) on its last arc 
expansion, as shown below. (The fat line indicates the arc to be 
expanded.) 

1 0 

OPT 
3 
/ \ \ I \ \ 
/I \ \ \ \ 

\ \ \ \ 
MIMIC 

Figure 2. The final arc expansion by MIMIC and OPT 

Return to the state pictured in Figure 1, from which 2 arc 
expansions remain. The expected score of algorithm OPT is the 
weighted average of the expected cost the general incurs when the 
scout uses OPT. This average is over all 22 trees r that the scout 

might hand the general after 2 expansions from the pictured state. 
The four such trees possible after 2 expansions of the state in Fig- 
ure 1 are shown in the top half of the following figure. (The 
highlighting therein becomes meaningful shortly.) 

Group 3 Group 1 Group 2 Group 2 

Figure 3. All the possible trees the general might be given 

The expected score of MIMIC is likewise a weighted average, 
but over a different set of 22 trees, pictured in the bottom half of 
Figure 3. The action “exchange arc A and the subtree beneath it 
with arc B and its attached subtree” provides a l-l correspon- 
dence between these two sets of trees. (The correspondence is 
shown by vertical pairing in Figure 3.) Note that any tree r and 
its corresponding tree 7’ are equally likely. It follows that the 
difference between the expected score of OPT and the expected 
score of MIMIC is the difference between the score of OPT on r 
and the score of MIMIC on the corresponding tree r’, averaged over 
all 22 trees T that OPT might reveal to the general. Let us com- 
pute this difference as just described, but in three groups. 

Group 1: consider any tree r on which the general selects a 
leaf below arc B when the scout uses OPT on 7. The second tree 
in the top half of Figure 3 falls in this group. (Highlighted arc B 
is tied with two other frontier arcs for smallest zerovalue in that 
tree. Let the general break ties in favor of arc B . This is as good 
a tie-breaking rule as any.) When the scout uses MIMIC on the 
corresponding tree T’, arc B and the subtree beneath it in r also 
appear in I’, but from a better starting point. (Arc B is alone in 
the example in Figure 3; the visible subtree below it is null.) To 
be precise, algorithm MIMIC scores (on average) l-p better on T’ 
than OPT does on r, for any tree r in Group 1. 

Group 2: consider any tree r on which the general selects a 
leaf below arc A when the scout uses OPT on T. The third and 
fourth trees in the top half of Figure 3 fall in this group. When 
the scout uses MIMIC on Y’, arc A and the subtree beneath it in r 
also appear in 71, but from a worse starting point. (These subtrees 
are highlighted in Figure 3.) Algorithm MIMIC scores (on average) 
no worse than l-p worse on 7’ than OPT does on r, for any tree r 
in Group 2. 

Group 3: consider any tree r on which the general selects a 
leaf below neither arc A nor arc B when the scout uses OPT on r. 
The first tree in the top half of Figure 3 falls in this group. The 
same frontier arc in r beneath which the general chose a leaf also 
appears in f. (The common subtree is highlighted in Figure 3.) 
The expected score of the general (and MIMIC) is no worse on r’ 
than the expected score of the general (and OPT) on T, for any 
tree r in this group. 

Conclude: if the collective likelihood of Group 1 exceeds 
that of Group 2, algorithm MIMIC performs (on average) better 
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than algorithm OPT. A trite calculation shows this to be the case 
for the trees in Figure 3. The following discussion suggests how 
the proof works when n > 2. 

What is the probability of Group l? Return to the situation 
of Figure 1. In the event that both remaining arc expansions 
reveal only l-arcs in the tree r uncovered by OPT, arc B is tied 
for minimum zero-value at the conclusion of search. (Remember: 
arc B is chosen as an arc that OPT will not expand in just this 
case and the general breaks ties in favor of arc B .) Then 

Pr (Group 1) > Pr (two l-arcs) = p 2 

What is the probability of Group 2? Remember that algo- 
rithm OPT-by design-will ignore the arcs below arc A if arc A 
has cost 1. The only hope for Group 2 is that arc A has cost 0. 
That is, 

P” and Pa as functions of 8. It, can be shown that: 

a. The expected score the general achieves when the scout uses 
either of these algorithms is a continuous, piecewise-linear 
function of p. 

b. At B 

C. 

using 
= cr, the general achieves 
either scouting algorithm. 

the same expected score by 

For any scouting algorithm P , let the phrase ,8 wins by using 
policy P be shorthand for the event the general chooaee a 
leaf below arc fi tvhen scouting poficy P ia used. The slope of 
each linear segment in the graph of the general’s expected 
score when the scout uses P” is simply the probability that p 
wins by using P”. A similar statement holds for algorithm 
PP. 

It follows that one way to show 
well as policy Pa) is to show that 

our goal (policy P” performs as 

Pr (Group 2) 5 Pr (arc A has cost 0) = l-p 

By choice of model, p2 > l-p so Group 1 is more likely 
than Group 2. This contradicts the assumption that OPT is 
optimal and shows that the greedy decision is not an optimal deci- 
sion in this construction. 

Pr ( a wine by using Ps ) > Pr ( /3 wins by ueing P* ) (t) 

for any value of p such that CY < @ < cr + p . 

V Proof of the good-news theorem 
The proof of the good news is long and involved. This sec- 

tion presents some of the more appetizing parts of the proof, to 
give its flavor. Th e reader’s pardon is asked for the lack of rigor 
in the presentation that follows. See [12] for a careful exposition 
of all the details. 

The devices used for p < 0.5 (where the greedy policy is 
optimal) are somewhat different from those used for p > 0.5 
(where it is not). Within each half, further division is necessary as 
well. In each subcase, however, the proof is by induction on n, 
the number of arc expansions remaining. The basis cases compute 
the optimal policy explicitly. 

B 

Figure 4. Piecewise linearity 

Consider an arbitrary state z . Because of the assumption 
that the scout can no longer reach a leaf, the state is characterized 
by the zero-values of the frontier arcs. Let (Y denote the smallest 
of these zero-values. Let “arc cry” denote the arc corresponding to 
CY. Let PB be an optimal algorithm. If this algorithm expands arc 
o from state z , the greedy decision (expand the arc whose zero- 
value is smallest) is an optimal decision, completing the induction 
step of the proof. Suppose the contrary: suppose this optimal 
algorithm expands some other arc whose zerovalue is (say) p > a; 
call this other arc /?. (Hence the name of the algorithm.) Define 
P* to be the policy that expands arc (Y and then proceeds 
optimally. The goal of the rest of this proof is to show that policy 
P” performs (on average) as well as optimal policy PB. Achieving 
this goal will hemonstrate that expanding arc (Y is also an optimal 
decision, hence that the greedy decision is an optimal decision, 
hence (by induction) that the greedy policy is optimal. 

First consider the case in which ,8 exceeds CY by at least p ) 
i.e., 3 2 ff + p . In this case, cr will be the smallest zero-value 
after policy PB expands arc ,8, no matter what the result of that 
expansion. By the induction hypothesis, policy Pp (being optimal) 
will continue by expanding the arc whose zero-value is smallest, 
namely, arc 0. In other words, policy PB is (in this case) 
equivalent to the policy that expands both (Y and ,0 without regard 
to order. But such a policy is certainly no better than the more 
flexible policy P” that expands (Y and then proceeds optimally. 
The goal described in the preceding paragraph has been achieved 
in this case. 

Turn now to the case in which p < (Y + p . The argument 
in this case operates by considering the performance of algorithms 

The “meat” of the proof is devoted to showing the truth of 
inequality (t). Th is is done by conditioning on the possible costs 
of arcs CY and /3 and meticulously examining the four cases that 
result. The central theme is an application of the induction 
hypothesis: if “enough” O-arcs lie on and beneath the arc that is 
first expanded, the policy (either P” or pa) never leaves the sub- 
tree beneath that arc; hence that first expanded arc wins. For 
example, if arc /3 has cost 0 and has an infinite path of O-arcs 
directly beneath it, p must win when policy Pa is used. The clas- 
sical theory of branching processes provides an easy formula for 
the probability that there is such an infinite path. New results for 
branching random walks developed for this proof give stronger 
approximations to the “win probabilities”. These new results are 
of particular interest because numerical approximations are used to 
provide analytic bounds. 

VI Discussion 

Ia the “limited resources” problem relevant to the real world? 
Is it reasonable that after n arc expansions, the search halts? This 
absolute cutoff is not typical in AI problem-solving programs. 
Only real-time processes might be so described. Nonetheless, I 
view this aspect of the model as a significant contribution to inves- 
tigation of optimal, dynamic allocation of search resources. The 
cutoff clearly separates the search process from the final-decision 
process. Search gathers information for two purposes: to optimize 
some final decision, and to assist the accumulation of additional 
useful information. The present model, by design, accents this 
latter purpose. 

One reasonable alternative is a staged search: the scout gains 
some information; the general makes some decision; then the pro- 
cess iterates, although still with some final cutoff. Such a model is 
appropriate if outside factors are involved: an unpredictable 
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opponent, for instance, or events whose outcome is impervious to 
search but can be experienced as consequences of the general’s 
decisions. A second alternative is to abandon the absolute cutoff. 
Allow the general to direct the scout to continue search, at some 
additional cost. The problem then becomes an optimal stopping 
process. Both of these alternatives are attractive. It is their 
analysis that appears forbidding. 

Is our arc-sum model the right model for studying search with 
limited resources? Without doubt, the present model is simple- 
minded. Some of its simplicity has merit, capturing essence 
without detail. The restriction to binary tress with two-valued 
arcs falls into this class. On the other hand, the assignment of leaf 
costs by arc costs that are independent and identically distributed 
is artificial. Happily, the foregoing results are oblivious to some of 
the assumptions. Any value is permitted for the heuristic parame- 
ter p. The bad-news theorem can be shown to apply to any 
branching factor. Both the bad-news theorem and a weaker ver- 
sion of the good-news theorem apply to the model in which nodes 
are expanded instead of arcs [12]. 

Does the assumption that search resources be very limited 
sabotage the substance of the good-news theorem? From a practi- 
cal standpoint, this restriction (that the scout be unable to reach a 
leaf) is a big winner. Without it, all sorts of rough-edged boun- 
dary problems are encountered. For example, a prejudice appears 
against expanding arcs at the bottom of the tree because such 
expansions cannot be followed-up. In addition to this practical 
justification, there is a heuristic argument that the restriction is of 
little effect. The argument goes like this. The search begins well 
away from leaves. Whether the tree has depth 50 or 5000 should 
have little effect while the search is rummaging around level 5 or 
so. Any reasonable algorithm (including the greedy policy) has a 
breadth-first character whenever l-arcs are found. Conclude: the 
search typically will not reach a leaf. So long as this is the case, 
the analysis in this paper works. 

Open questions: is the conjecture in section III true? Can 
similar results be obtained for generalizations of the present 
model? (In particular, what happens if one allows arc values other 
than 0 and l? a random branching factor? a depth-dependent dis- 
tribution for arc values?) Do the lessons of this study apply to 
other models of heuristic search? More to the point, do the lessons 
apply in practice? Is the greedy policy a good algorithm if the 
scout misestimates p ? 

What do the results in this study REALLY say? These 
results should not be taken as literal advice for finding a least-cost 
root-to-leaf path in a tree. The b a news and good news should be d 
assimilated in a broader sense, as follows. 

Bad news: intuition about heuristic search is not always 
right. The example at the beginning of this paper shows that one’s 
intuitions can be firmly set, and firmly wrong. Our model and the 
bad-news theorem show that blind adherence to custom may 
prevent optimal use of search resources. In particular, there is a 
real difference between where best to gather information and how 
best to utilize it. 

Good news: theoretical justification can be provided for the 
intuition that the best information is acquired from the path that 
currently looks best. As the bad-news theorem shows, this intui- 
tion fails when p > 0.5. But for p 2 0.5, the intuition is sound; 
even for p > 0.5, the good-news theorem and accompanying con- 
jecture show that the intuition provides a good approximation. 

In sum, this study of heuristic search establishes that this 
intuition-search the path you currently judge best-can 
justifiably be labeled a heuristic. It sometimes fails, but on aver- 
age provides a result close to optimal. 
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